Download citation
Download citation
link to html
The crystal structures of SeP(o-tol)R2, where o-tol is ortho-tolyl (2-methyl­phen­yl) and R is Ph (phen­yl), namely (2-methyl­phen­yl)di­phenyl­phosphane selenide, C19H17PSe, or Cy (cyclo­hex­yl), namely di­cyclo­hex­yl(2-methyl­phen­yl)phosphane selenide, C19H29PSe, were determined to aid in the evaluation of the steric and electronic behaviour of these analogous phosphane com­pounds. The com­pounds crystallized in similar monoclinic crystal systems, but are differentiated in their unit cells by a doubling of the number of independent mol­ecules for R = Cy (Z′ = 2) and the choice of glide plane by convention. The preferred orientation for the o-tolyl substituent obtained from the X-ray structural analysis is gauche for R = Ph and anti for R = Cy (using the Se—P—Cipso—Cortho torsion angles as reference). Density functional theory (DFT) calculations showed both conformations to be equally probable and indicate that the preferred solid-state conformer is probably due to the minimization of repulsion energies, resulting in a packing arrangement primarily featuring weak C—H...Se inter­actions and additional C—H...π inter­actions in the R = Ph structure. A detailed electronic and steric analysis was conducted on both phosphanes using Se—P bond lengths, multinuclear NMR 1JSe–P coupling constants, theoretical topological evaluation and crystallographic and solid-angle calculations, and compared to selected literature examples. The results indicate that the use of the o-tolyl substituent increases both the electron-donating capability and the steric size, but is also dependent on whether the o-tolyl group adopts a gauche or anti conformation. The single-crystal geometrical data are unable to detect electronic differences between these two structures due to the somewhat large displacement parameters observed for the Se atom in the R = Cy structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229619011574/fn3324sup1.cif
Contains datablocks global, mo_13hp_wd1_0m, mo_12fm_wld10b_0m

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229619011574/fn3324mo_13hp_wd1_0msup2.hkl
Contains datablock mo_13hp_wd1_0m

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229619011574/fn3324mo_12fm_wld10b_0msup3.hkl
Contains datablock mo_12fm_wld10b_0m

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229619011574/fn3324mo_13hp_wd1_0msup4.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229619011574/fn3324mo_12fm_wld10b_0msup5.cml
Supplementary material

CCDC references: 1947975; 1947974

Computing details top

For both structures, data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT and XPREP (Bruker, 2008); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: publCIF (Westrip, 2010) and WinGX (Farrugia, 1999).

(2-Methylphenyl)diphenylphosphane selenide (mo_13hp_wd1_0m) top
Crystal data top
C19H17PSeF(000) = 720
Mr = 355.26Dx = 1.479 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2817 reflections
a = 10.0436 (9) Åθ = 2.4–26.2°
b = 9.7907 (10) ŵ = 2.44 mm1
c = 16.4825 (17) ÅT = 100 K
β = 100.228 (2)°Cuboid, colourless
V = 1595.0 (3) Å30.28 × 0.25 × 0.11 mm
Z = 4
Data collection top
Bruker APEX DUO 4K CCD
diffractometer
3966 independent reflections
Radiation source: sealed tube3074 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
Detector resolution: 8.4 pixels mm-1θmax = 28.3°, θmin = 2.2°
φ and ω scansh = 1311
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 1313
Tmin = 0.668, Tmax = 0.746l = 2021
17497 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0348P)2 + 0.4172P]
where P = (Fo2 + 2Fc2)/3
3966 reflections(Δ/σ)max = 0.001
191 parametersΔρmax = 0.72 e Å3
0 restraintsΔρmin = 0.36 e Å3
Special details top

Experimental. The intensity data was collected on a Bruker Apex DUO 4 K CCD diffractometer using an exposure time of 20 s/frame. A total of 1176 frames were collected with a frame width of 0.5° covering up to θ = 28.34° with 99.8% completeness accomplished.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

X-ray diffraction experiments for compounds I and II were performed at 100 K with a Bruker APEX DUO diffractometer with Mo-Kα radiation (λ = 0.71073). Data collections were performed with a CCD detector using Apex2 software (Bruker, 2011) from a single crystal mounted on a glass fibre. The intensities were integrated from several series of exposures measuring 0.5° in ω or φ (Bruker, 2008). Absorption corrections based on equivalent reflections were applied by using SADABS (Bruker, 2008). The structures were solved by using SIR97 (Altomare et al., 1999) and refined against all Fo2 data.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Se10.39492 (3)0.68778 (3)0.112605 (16)0.01976 (8)
P10.53742 (6)0.54638 (6)0.17474 (4)0.01372 (14)
C10.7014 (2)0.5658 (2)0.14359 (15)0.0144 (5)
C20.7072 (3)0.5951 (2)0.06130 (15)0.0183 (5)
H20.62580.60480.02240.022*
C30.8314 (3)0.6102 (3)0.03584 (16)0.0206 (5)
H30.83460.62810.02040.025*
C40.9506 (3)0.5992 (2)0.09300 (16)0.0207 (5)
H41.03540.61110.07610.025*
C50.9454 (3)0.5707 (2)0.17488 (16)0.0191 (5)
H51.02710.56350.21380.023*
C60.8225 (2)0.5527 (2)0.20040 (15)0.0169 (5)
H60.82020.53140.25640.02*
C70.5712 (2)0.5672 (2)0.28618 (15)0.0153 (5)
C80.5621 (2)0.6975 (2)0.31901 (15)0.0163 (5)
H80.53690.77280.28320.02*
C90.5899 (2)0.7177 (3)0.40405 (16)0.0199 (5)
H90.58460.80680.42610.024*
C100.6253 (3)0.6077 (3)0.45645 (16)0.0209 (6)
H100.6430.62120.51440.025*
C110.6349 (3)0.4772 (3)0.42407 (16)0.0242 (6)
H110.65960.4020.460.029*
C120.6085 (3)0.4571 (3)0.33947 (16)0.0208 (5)
H120.61580.36820.31760.025*
C130.4868 (2)0.3691 (2)0.15468 (14)0.0133 (5)
C140.3646 (2)0.3182 (2)0.17546 (15)0.0174 (5)
C150.3254 (3)0.1858 (3)0.15052 (16)0.0205 (5)
H150.24270.15110.16250.025*
C160.4030 (3)0.1028 (3)0.10881 (16)0.0213 (5)
H160.37420.01250.09340.026*
C170.5227 (3)0.1531 (2)0.09000 (15)0.0194 (5)
H170.57660.0970.06170.023*
C180.5642 (2)0.2851 (2)0.11237 (15)0.0166 (5)
H180.64620.31890.09880.02*
C190.2782 (3)0.3993 (3)0.22372 (18)0.0261 (6)
H19A0.19510.34840.22660.039*
H19B0.2550.48720.19640.039*
H19C0.32810.41510.27960.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se10.01963 (14)0.01717 (13)0.02205 (14)0.00645 (10)0.00256 (10)0.00325 (11)
P10.0138 (3)0.0120 (3)0.0152 (3)0.0010 (2)0.0021 (2)0.0002 (2)
C10.0132 (12)0.0115 (11)0.0188 (12)0.0005 (9)0.0034 (10)0.0000 (9)
C20.0159 (13)0.0199 (13)0.0184 (13)0.0010 (10)0.0010 (10)0.0023 (10)
C30.0227 (14)0.0204 (13)0.0197 (13)0.0003 (10)0.0068 (11)0.0030 (10)
C40.0187 (13)0.0168 (12)0.0290 (15)0.0017 (10)0.0107 (11)0.0026 (11)
C50.0153 (13)0.0180 (12)0.0224 (13)0.0017 (10)0.0007 (10)0.0050 (10)
C60.0201 (13)0.0174 (12)0.0132 (12)0.0016 (10)0.0029 (10)0.0020 (10)
C70.0123 (12)0.0166 (12)0.0175 (12)0.0011 (9)0.0040 (10)0.0025 (10)
C80.0140 (12)0.0136 (11)0.0224 (13)0.0002 (9)0.0055 (10)0.0001 (10)
C90.0177 (13)0.0192 (13)0.0239 (14)0.0000 (10)0.0067 (11)0.0075 (10)
C100.0219 (14)0.0260 (14)0.0160 (12)0.0049 (10)0.0067 (11)0.0048 (11)
C110.0306 (16)0.0202 (13)0.0215 (14)0.0043 (11)0.0034 (12)0.0036 (11)
C120.0292 (15)0.0129 (12)0.0202 (13)0.0002 (10)0.0045 (11)0.0002 (10)
C130.0141 (12)0.0126 (11)0.0121 (11)0.0007 (9)0.0004 (9)0.0010 (9)
C140.0169 (12)0.0163 (12)0.0184 (12)0.0016 (10)0.0014 (10)0.0029 (10)
C150.0159 (12)0.0196 (12)0.0237 (13)0.0032 (10)0.0031 (10)0.0061 (11)
C160.0238 (14)0.0184 (12)0.0191 (13)0.0019 (10)0.0036 (11)0.0009 (11)
C170.0238 (14)0.0164 (12)0.0169 (12)0.0053 (10)0.0004 (10)0.0006 (10)
C180.0152 (12)0.0176 (12)0.0157 (12)0.0015 (9)0.0011 (10)0.0017 (9)
C190.0199 (14)0.0249 (14)0.0369 (17)0.0009 (11)0.0143 (12)0.0002 (12)
Geometric parameters (Å, º) top
Se1—P12.1197 (7)C9—H90.95
P1—C71.819 (2)C10—C111.395 (4)
P1—C11.820 (2)C10—H100.95
P1—C131.823 (2)C11—C121.386 (4)
C1—C21.398 (3)C11—H110.95
C1—C61.403 (3)C12—H120.95
C2—C31.392 (4)C13—C181.400 (3)
C2—H20.95C13—C141.422 (3)
C3—C41.390 (4)C14—C151.395 (3)
C3—H30.95C14—C191.504 (3)
C4—C51.388 (4)C15—C161.389 (4)
C4—H40.95C15—H150.95
C5—C61.384 (3)C16—C171.384 (4)
C5—H50.95C16—H160.95
C6—H60.95C17—C181.388 (3)
C7—C81.394 (3)C17—H170.95
C7—C121.399 (3)C18—H180.95
C8—C91.394 (3)C19—H19A0.98
C8—H80.95C19—H19B0.98
C9—C101.387 (4)C19—H19C0.98
C7—P1—C1104.92 (11)C9—C10—C11120.0 (2)
C7—P1—C13106.61 (11)C9—C10—H10120
C1—P1—C13106.60 (11)C11—C10—H10120
C7—P1—Se1113.79 (8)C12—C11—C10120.1 (2)
C1—P1—Se1111.26 (8)C12—C11—H11120
C13—P1—Se1113.06 (8)C10—C11—H11120
C2—C1—C6119.1 (2)C11—C12—C7120.3 (2)
C2—C1—P1119.40 (18)C11—C12—H12119.9
C6—C1—P1121.51 (18)C7—C12—H12119.9
C3—C2—C1120.5 (2)C18—C13—C14119.6 (2)
C3—C2—H2119.7C18—C13—P1119.19 (18)
C1—C2—H2119.7C14—C13—P1121.01 (18)
C4—C3—C2119.8 (2)C15—C14—C13117.7 (2)
C4—C3—H3120.1C15—C14—C19119.2 (2)
C2—C3—H3120.1C13—C14—C19123.1 (2)
C5—C4—C3119.9 (2)C16—C15—C14122.4 (2)
C5—C4—H4120.1C16—C15—H15118.8
C3—C4—H4120.1C14—C15—H15118.8
C6—C5—C4120.7 (2)C17—C16—C15119.2 (2)
C6—C5—H5119.7C17—C16—H16120.4
C4—C5—H5119.7C15—C16—H16120.4
C5—C6—C1120.0 (2)C16—C17—C18120.3 (2)
C5—C6—H6120C16—C17—H17119.9
C1—C6—H6120C18—C17—H17119.9
C8—C7—C12119.3 (2)C17—C18—C13120.8 (2)
C8—C7—P1118.76 (18)C17—C18—H18119.6
C12—C7—P1121.91 (18)C13—C18—H18119.6
C9—C8—C7120.4 (2)C14—C19—H19A109.5
C9—C8—H8119.8C14—C19—H19B109.5
C7—C8—H8119.8H19A—C19—H19B109.5
C10—C9—C8119.9 (2)C14—C19—H19C109.5
C10—C9—H9120H19A—C19—H19C109.5
C8—C9—H9120H19B—C19—H19C109.5
C7—P1—C1—C2161.45 (19)C8—C9—C10—C110.9 (4)
C13—P1—C1—C285.7 (2)C9—C10—C11—C120.3 (4)
Se1—P1—C1—C238.0 (2)C10—C11—C12—C70.5 (4)
C7—P1—C1—C618.3 (2)C8—C7—C12—C110.6 (4)
C13—P1—C1—C694.6 (2)P1—C7—C12—C11179.3 (2)
Se1—P1—C1—C6141.75 (17)C7—P1—C13—C18119.28 (19)
C6—C1—C2—C30.4 (4)C1—P1—C13—C187.6 (2)
P1—C1—C2—C3179.89 (18)Se1—P1—C13—C18114.96 (18)
C1—C2—C3—C41.4 (4)C7—P1—C13—C1465.8 (2)
C2—C3—C4—C51.1 (4)C1—P1—C13—C14177.43 (19)
C3—C4—C5—C60.2 (4)Se1—P1—C13—C1460.0 (2)
C4—C5—C6—C11.3 (4)C18—C13—C14—C151.5 (3)
C2—C1—C6—C51.0 (3)P1—C13—C14—C15173.43 (18)
P1—C1—C6—C5178.77 (18)C18—C13—C14—C19177.5 (2)
C1—P1—C7—C891.0 (2)P1—C13—C14—C197.6 (3)
C13—P1—C7—C8156.19 (19)C13—C14—C15—C161.8 (4)
Se1—P1—C7—C830.9 (2)C19—C14—C15—C16177.2 (2)
C1—P1—C7—C1287.7 (2)C14—C15—C16—C170.9 (4)
C13—P1—C7—C1225.2 (2)C15—C16—C17—C180.2 (4)
Se1—P1—C7—C12150.51 (18)C16—C17—C18—C130.5 (4)
C12—C7—C8—C90.0 (4)C14—C13—C18—C170.4 (3)
P1—C7—C8—C9178.71 (18)P1—C13—C18—C17174.62 (18)
C7—C8—C9—C100.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19B···Se10.982.903.670 (3)136
C9—H9···Cg1i0.952.973.700 (3)134
C2—H2···Cg2ii0.952.963.673 (3)133
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+1, y+1, z.
Dicyclohexyl(2-methylphenyl)phosphane selenide (mo_12fm_wld10b_0m) top
Crystal data top
C19H29PSeF(000) = 1536
Mr = 367.35Dx = 1.325 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4902 reflections
a = 12.267 (2) Åθ = 2.4–26.6°
b = 10.2092 (15) ŵ = 2.12 mm1
c = 29.422 (5) ÅT = 100 K
β = 92.097 (4)°Needle, colourless
V = 3682.3 (10) Å30.25 × 0.08 × 0.07 mm
Z = 8
Data collection top
Bruker APEX DUO 4K CCD
diffractometer
9098 independent reflections
Radiation source: sealed tube6339 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
Detector resolution: 8.4 pixels mm-1θmax = 28.3°, θmin = 1.7°
φ and ω scansh = 1616
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 1213
Tmin = 0.619, Tmax = 0.866l = 3839
38052 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0401P)2 + 7.6673P]
where P = (Fo2 + 2Fc2)/3
9098 reflections(Δ/σ)max = 0.002
381 parametersΔρmax = 1.93 e Å3
0 restraintsΔρmin = 0.86 e Å3
Special details top

Experimental. The intensity data was collected on a Bruker Apex DUO 4 K CCD diffractometer using an exposure time of 60 s/frame. A total of 506 frames were collected with a frame width of 0.5° covering up to θ = 28.26° with 99.7% completeness accomplished.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

X-ray diffraction experiments for compounds I and II were performed at 100 K with a Bruker APEX DUO diffractometer with Mo-Kα radiation (λ = 0.71073). Data collections were performed with a CCD detector using Apex2 software (Bruker, 2011) from a single crystal mounted on a glass fibre. The intensities were integrated from several series of exposures measuring 0.5° in ω or φ (Bruker, 2008). Absorption corrections based on equivalent reflections were applied by using SADABS (Bruker, 2008). The structures were solved by using SIR97 (Altomare et al., 1999) and refined against all Fo2 data.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Se10.10334 (3)0.87095 (4)0.869021 (15)0.02718 (11)
Se20.60706 (3)0.60704 (4)0.894610 (16)0.02735 (11)
P10.06923 (7)0.87032 (9)0.87151 (3)0.01769 (19)
P20.43508 (7)0.60512 (9)0.88512 (3)0.01646 (19)
C10.1257 (3)1.0379 (4)0.86765 (13)0.0191 (8)
C20.0514 (3)1.1391 (4)0.86297 (18)0.0401 (12)
H20.02411.11880.86190.048*
C30.0838 (3)1.2687 (4)0.8598 (2)0.0463 (14)
H30.03151.33570.85540.056*
C40.1929 (3)1.3000 (4)0.86295 (15)0.0320 (10)
H40.21611.38880.86220.038*
C50.2673 (3)1.2002 (4)0.86717 (13)0.0232 (8)
H50.34251.22190.86820.028*
C60.2373 (3)1.0694 (4)0.86998 (13)0.0196 (8)
C70.3271 (3)0.9694 (4)0.87573 (16)0.0310 (10)
H7A0.3330.94860.90810.047*
H7B0.30990.88950.8590.047*
H7C0.39661.00540.86390.047*
C80.1170 (3)0.8029 (3)0.92489 (12)0.0187 (7)
H80.19850.80310.92280.022*
C90.0821 (3)0.8894 (4)0.96557 (13)0.0246 (8)
H9A0.00140.89320.96810.03*
H9B0.10960.97950.96040.03*
C100.1259 (4)0.8364 (4)1.00998 (14)0.0303 (9)
H10A0.10010.89231.03570.036*
H10B0.20660.8391.00850.036*
C110.0875 (3)0.6961 (4)1.01803 (14)0.0301 (9)
H11A0.11890.66191.04620.036*
H11B0.00710.69461.02210.036*
C120.1223 (3)0.6087 (4)0.97800 (14)0.0268 (9)
H12A0.09390.5190.98340.032*
H12B0.20290.60380.97580.032*
C130.0805 (3)0.6600 (4)0.93336 (13)0.0236 (8)
H13A0.10850.6040.9080.028*
H13B0.00020.65540.93410.028*
C140.1358 (3)0.7742 (4)0.82499 (13)0.0218 (8)
H140.20620.74050.83660.026*
C150.0679 (3)0.6540 (4)0.81165 (15)0.0294 (9)
H15A0.00270.68350.79990.035*
H15B0.05250.59910.83880.035*
C160.1292 (4)0.5731 (4)0.77527 (15)0.0350 (10)
H16A0.08350.49790.76650.042*
H16B0.19710.53820.78780.042*
C170.1573 (4)0.6554 (4)0.73347 (15)0.0381 (11)
H17A0.19920.60170.71090.046*
H17B0.08940.68460.71940.046*
C180.2251 (4)0.7751 (5)0.74639 (15)0.0391 (11)
H18A0.29580.74580.7580.047*
H18B0.24010.82970.71910.047*
C190.1639 (4)0.8568 (4)0.78295 (14)0.0319 (9)
H19A0.0960.89190.77050.038*
H19B0.20980.93190.79160.038*
C200.3799 (3)0.4380 (3)0.88597 (13)0.0184 (7)
C210.2695 (3)0.4049 (3)0.87767 (12)0.0192 (7)
C220.1789 (3)0.5025 (4)0.86829 (16)0.0324 (10)
H22A0.16790.51390.83540.049*
H22B0.19870.58670.88230.049*
H22C0.11150.47010.88110.049*
C230.2399 (3)0.2727 (4)0.87785 (13)0.0234 (8)
H230.16590.24990.87130.028*
C240.3141 (3)0.1741 (4)0.88721 (14)0.0255 (9)
H240.29180.0850.88690.031*
C250.4215 (3)0.2071 (4)0.89709 (16)0.0302 (10)
H250.47350.14070.90430.036*
C260.4534 (3)0.3374 (4)0.89645 (15)0.0266 (9)
H260.52760.35870.90340.032*
C270.3885 (3)0.6718 (3)0.82909 (13)0.0200 (8)
H270.30740.66190.8270.024*
C280.4338 (4)0.5906 (4)0.79085 (15)0.0349 (10)
H28A0.41060.49830.79410.042*
H28B0.51450.59330.79280.042*
C290.3931 (4)0.6432 (5)0.74428 (15)0.0401 (11)
H29A0.42720.59260.71990.048*
H29B0.31310.63120.7410.048*
C300.4206 (4)0.7875 (4)0.73915 (15)0.0373 (11)
H30A0.50070.7990.740.045*
H30B0.39130.81980.70940.045*
C310.3719 (4)0.8660 (4)0.77715 (15)0.0348 (10)
H31A0.29140.85910.77490.042*
H31B0.39160.95950.77380.042*
C320.4129 (4)0.8172 (4)0.82340 (14)0.0313 (10)
H32A0.37740.86750.84750.038*
H32B0.49260.83180.82670.038*
C330.3656 (3)0.7009 (3)0.92840 (12)0.0166 (7)
H330.29420.72980.91430.02*
C340.4280 (3)0.8256 (4)0.94286 (14)0.0237 (8)
H34A0.49780.80140.95870.028*
H34B0.44490.87760.91560.028*
C350.3594 (3)0.9079 (4)0.97454 (14)0.0279 (9)
H35A0.40080.9870.98410.034*
H35B0.29180.93650.9580.034*
C360.3301 (4)0.8303 (4)1.01614 (14)0.0330 (10)
H36A0.28170.88371.03490.04*
H36B0.39740.81111.03460.04*
C370.2729 (4)0.7017 (4)1.00355 (15)0.0343 (10)
H37A0.20040.72090.98920.041*
H37B0.26170.65031.03150.041*
C380.3396 (3)0.6206 (4)0.97072 (14)0.0283 (9)
H38A0.2980.54130.96150.034*
H38B0.40850.59210.98630.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se10.01311 (16)0.0241 (2)0.0445 (3)0.00118 (14)0.00294 (15)0.00667 (18)
Se20.01204 (16)0.0204 (2)0.0496 (3)0.00174 (14)0.00098 (15)0.00165 (18)
P10.0138 (4)0.0153 (5)0.0240 (5)0.0002 (3)0.0003 (3)0.0032 (4)
P20.0133 (4)0.0133 (4)0.0228 (5)0.0002 (3)0.0007 (3)0.0003 (4)
C10.0157 (16)0.0216 (19)0.020 (2)0.0013 (13)0.0008 (14)0.0023 (15)
C20.0189 (19)0.025 (2)0.077 (4)0.0003 (16)0.000 (2)0.010 (2)
C30.022 (2)0.023 (2)0.094 (4)0.0073 (17)0.001 (2)0.013 (2)
C40.030 (2)0.021 (2)0.045 (3)0.0031 (16)0.0007 (19)0.0058 (18)
C50.0202 (17)0.027 (2)0.022 (2)0.0032 (15)0.0019 (15)0.0013 (16)
C60.0161 (16)0.0210 (19)0.022 (2)0.0036 (14)0.0017 (14)0.0019 (15)
C70.0163 (17)0.025 (2)0.052 (3)0.0002 (15)0.0025 (18)0.0019 (19)
C80.0151 (15)0.0198 (19)0.021 (2)0.0000 (13)0.0028 (14)0.0029 (15)
C90.0301 (19)0.0201 (19)0.024 (2)0.0014 (15)0.0028 (16)0.0000 (16)
C100.038 (2)0.025 (2)0.028 (2)0.0020 (17)0.0053 (18)0.0022 (17)
C110.033 (2)0.029 (2)0.029 (2)0.0009 (17)0.0050 (18)0.0057 (18)
C120.0293 (19)0.020 (2)0.031 (2)0.0019 (16)0.0001 (16)0.0096 (17)
C130.0281 (19)0.0172 (18)0.025 (2)0.0019 (15)0.0005 (16)0.0025 (16)
C140.0201 (17)0.023 (2)0.023 (2)0.0011 (14)0.0010 (15)0.0002 (16)
C150.031 (2)0.026 (2)0.032 (2)0.0065 (16)0.0001 (17)0.0004 (18)
C160.046 (3)0.026 (2)0.033 (3)0.0016 (19)0.000 (2)0.0047 (19)
C170.053 (3)0.034 (2)0.027 (2)0.000 (2)0.001 (2)0.0057 (19)
C180.053 (3)0.040 (3)0.024 (2)0.009 (2)0.003 (2)0.002 (2)
C190.044 (2)0.031 (2)0.021 (2)0.0072 (18)0.0016 (18)0.0001 (18)
C200.0166 (16)0.0116 (17)0.027 (2)0.0020 (13)0.0018 (14)0.0001 (14)
C210.0174 (16)0.0196 (19)0.0204 (19)0.0009 (14)0.0010 (14)0.0002 (15)
C220.0165 (17)0.025 (2)0.055 (3)0.0016 (15)0.0082 (18)0.0053 (19)
C230.0183 (17)0.023 (2)0.029 (2)0.0063 (14)0.0043 (15)0.0002 (16)
C240.0264 (19)0.0160 (19)0.034 (2)0.0050 (15)0.0028 (17)0.0005 (16)
C250.0232 (19)0.018 (2)0.050 (3)0.0038 (15)0.0011 (18)0.0035 (18)
C260.0172 (17)0.0193 (19)0.043 (3)0.0013 (14)0.0030 (16)0.0006 (17)
C270.0208 (17)0.0187 (18)0.020 (2)0.0028 (14)0.0023 (14)0.0009 (15)
C280.045 (3)0.027 (2)0.032 (3)0.0002 (19)0.003 (2)0.0038 (19)
C290.055 (3)0.041 (3)0.024 (2)0.002 (2)0.001 (2)0.005 (2)
C300.043 (3)0.042 (3)0.026 (2)0.007 (2)0.002 (2)0.007 (2)
C310.045 (2)0.022 (2)0.037 (3)0.0032 (18)0.007 (2)0.0065 (19)
C320.045 (2)0.024 (2)0.024 (2)0.0031 (18)0.0063 (19)0.0020 (17)
C330.0146 (15)0.0162 (17)0.0188 (19)0.0010 (13)0.0008 (13)0.0002 (14)
C340.0254 (18)0.0197 (19)0.026 (2)0.0051 (15)0.0009 (16)0.0060 (16)
C350.035 (2)0.022 (2)0.026 (2)0.0008 (16)0.0001 (17)0.0060 (17)
C360.043 (2)0.032 (2)0.024 (2)0.0001 (19)0.0035 (18)0.0046 (18)
C370.046 (3)0.034 (2)0.024 (2)0.0091 (19)0.0144 (19)0.0035 (18)
C380.036 (2)0.021 (2)0.028 (2)0.0052 (17)0.0036 (17)0.0009 (17)
Geometric parameters (Å, º) top
Se1—P12.1210 (10)C18—H18A0.99
Se2—P22.1181 (10)C18—H18B0.99
P1—C81.831 (4)C19—H19A0.99
P1—C11.848 (4)C19—H19B0.99
P1—C141.850 (4)C20—C261.394 (5)
P2—C201.836 (4)C20—C211.409 (5)
P2—C331.840 (4)C21—C231.398 (5)
P2—C271.854 (4)C21—C221.510 (5)
C1—C21.388 (5)C22—H22A0.98
C1—C61.411 (5)C22—H22B0.98
C2—C31.384 (6)C22—H22C0.98
C2—H20.95C23—C241.379 (5)
C3—C41.382 (6)C23—H230.95
C3—H30.95C24—C251.381 (5)
C4—C51.376 (5)C24—H240.95
C4—H40.95C25—C261.386 (5)
C5—C61.387 (5)C25—H250.95
C5—H50.95C26—H260.95
C6—C71.516 (5)C27—C281.519 (6)
C7—H7A0.98C27—C321.525 (5)
C7—H7B0.98C27—H271
C7—H7C0.98C28—C291.538 (6)
C8—C91.536 (5)C28—H28A0.99
C8—C131.544 (5)C28—H28B0.99
C8—H81C29—C301.521 (6)
C9—C101.530 (5)C29—H29A0.99
C9—H9A0.99C29—H29B0.99
C9—H9B0.99C30—C311.515 (6)
C10—C111.524 (6)C30—H30A0.99
C10—H10A0.99C30—H30B0.99
C10—H10B0.99C31—C321.517 (6)
C11—C121.526 (6)C31—H31A0.99
C11—H11A0.99C31—H31B0.99
C11—H11B0.99C32—H32A0.99
C12—C131.520 (5)C32—H32B0.99
C12—H12A0.99C33—C381.534 (5)
C12—H12B0.99C33—C341.538 (5)
C13—H13A0.99C33—H331
C13—H13B0.99C34—C351.529 (5)
C14—C191.526 (5)C34—H34A0.99
C14—C151.542 (5)C34—H34B0.99
C14—H141C35—C361.512 (6)
C15—C161.528 (6)C35—H35A0.99
C15—H15A0.99C35—H35B0.99
C15—H15B0.99C36—C371.527 (6)
C16—C171.518 (6)C36—H36A0.99
C16—H16A0.99C36—H36B0.99
C16—H16B0.99C37—C381.532 (6)
C17—C181.534 (6)C37—H37A0.99
C17—H17A0.99C37—H37B0.99
C17—H17B0.99C38—H38A0.99
C18—C191.535 (6)C38—H38B0.99
C8—P1—C1105.68 (17)C14—C19—C18110.9 (4)
C8—P1—C14106.77 (17)C14—C19—H19A109.5
C1—P1—C14106.94 (16)C18—C19—H19A109.5
C8—P1—Se1112.45 (11)C14—C19—H19B109.5
C1—P1—Se1111.55 (12)C18—C19—H19B109.5
C14—P1—Se1112.99 (12)H19A—C19—H19B108
C20—P2—C33107.70 (16)C26—C20—C21118.2 (3)
C20—P2—C27104.57 (16)C26—C20—P2116.9 (3)
C33—P2—C27106.53 (16)C21—C20—P2125.0 (3)
C20—P2—Se2111.88 (11)C23—C21—C20118.6 (3)
C33—P2—Se2112.87 (11)C23—C21—C22116.6 (3)
C27—P2—Se2112.76 (12)C20—C21—C22124.8 (3)
C2—C1—C6118.5 (3)C21—C22—H22A109.5
C2—C1—P1116.7 (3)C21—C22—H22B109.5
C6—C1—P1124.8 (3)H22A—C22—H22B109.5
C3—C2—C1122.0 (4)C21—C22—H22C109.5
C3—C2—H2119H22A—C22—H22C109.5
C1—C2—H2119H22B—C22—H22C109.5
C4—C3—C2119.5 (4)C24—C23—C21122.4 (3)
C4—C3—H3120.2C24—C23—H23118.8
C2—C3—H3120.2C21—C23—H23118.8
C5—C4—C3118.8 (4)C23—C24—C25118.8 (3)
C5—C4—H4120.6C23—C24—H24120.6
C3—C4—H4120.6C25—C24—H24120.6
C4—C5—C6122.9 (3)C24—C25—C26119.9 (4)
C4—C5—H5118.6C24—C25—H25120
C6—C5—H5118.6C26—C25—H25120
C5—C6—C1118.2 (3)C25—C26—C20121.9 (3)
C5—C6—C7117.6 (3)C25—C26—H26119
C1—C6—C7124.2 (3)C20—C26—H26119
C6—C7—H7A109.5C28—C27—C32111.8 (3)
C6—C7—H7B109.5C28—C27—P2110.4 (3)
H7A—C7—H7B109.5C32—C27—P2113.6 (3)
C6—C7—H7C109.5C28—C27—H27106.9
H7A—C7—H7C109.5C32—C27—H27106.9
H7B—C7—H7C109.5P2—C27—H27106.9
C9—C8—C13110.3 (3)C27—C28—C29110.8 (4)
C9—C8—P1111.3 (2)C27—C28—H28A109.5
C13—C8—P1113.2 (3)C29—C28—H28A109.5
C9—C8—H8107.3C27—C28—H28B109.5
C13—C8—H8107.3C29—C28—H28B109.5
P1—C8—H8107.3H28A—C28—H28B108.1
C10—C9—C8111.4 (3)C30—C29—C28111.1 (4)
C10—C9—H9A109.3C30—C29—H29A109.4
C8—C9—H9A109.3C28—C29—H29A109.4
C10—C9—H9B109.3C30—C29—H29B109.4
C8—C9—H9B109.3C28—C29—H29B109.4
H9A—C9—H9B108H29A—C29—H29B108
C11—C10—C9110.4 (3)C31—C30—C29110.2 (4)
C11—C10—H10A109.6C31—C30—H30A109.6
C9—C10—H10A109.6C29—C30—H30A109.6
C11—C10—H10B109.6C31—C30—H30B109.6
C9—C10—H10B109.6C29—C30—H30B109.6
H10A—C10—H10B108.1H30A—C30—H30B108.1
C10—C11—C12110.7 (3)C30—C31—C32111.2 (4)
C10—C11—H11A109.5C30—C31—H31A109.4
C12—C11—H11A109.5C32—C31—H31A109.4
C10—C11—H11B109.5C30—C31—H31B109.4
C12—C11—H11B109.5C32—C31—H31B109.4
H11A—C11—H11B108.1H31A—C31—H31B108
C13—C12—C11111.8 (3)C31—C32—C27111.0 (3)
C13—C12—H12A109.3C31—C32—H32A109.4
C11—C12—H12A109.3C27—C32—H32A109.4
C13—C12—H12B109.3C31—C32—H32B109.4
C11—C12—H12B109.3C27—C32—H32B109.4
H12A—C12—H12B107.9H32A—C32—H32B108
C12—C13—C8111.1 (3)C38—C33—C34109.5 (3)
C12—C13—H13A109.4C38—C33—P2113.1 (2)
C8—C13—H13A109.4C34—C33—P2113.1 (2)
C12—C13—H13B109.4C38—C33—H33106.9
C8—C13—H13B109.4C34—C33—H33106.9
H13A—C13—H13B108P2—C33—H33106.9
C19—C14—C15110.0 (3)C35—C34—C33110.1 (3)
C19—C14—P1112.8 (3)C35—C34—H34A109.6
C15—C14—P1112.5 (3)C33—C34—H34A109.6
C19—C14—H14107.1C35—C34—H34B109.6
C15—C14—H14107.1C33—C34—H34B109.6
P1—C14—H14107.1H34A—C34—H34B108.2
C16—C15—C14110.6 (3)C36—C35—C34111.0 (3)
C16—C15—H15A109.5C36—C35—H35A109.4
C14—C15—H15A109.5C34—C35—H35A109.4
C16—C15—H15B109.5C36—C35—H35B109.4
C14—C15—H15B109.5C34—C35—H35B109.4
H15A—C15—H15B108.1H35A—C35—H35B108
C17—C16—C15111.1 (4)C35—C36—C37112.0 (3)
C17—C16—H16A109.4C35—C36—H36A109.2
C15—C16—H16A109.4C37—C36—H36A109.2
C17—C16—H16B109.4C35—C36—H36B109.2
C15—C16—H16B109.4C37—C36—H36B109.2
H16A—C16—H16B108H36A—C36—H36B107.9
C16—C17—C18110.4 (4)C36—C37—C38111.5 (4)
C16—C17—H17A109.6C36—C37—H37A109.3
C18—C17—H17A109.6C38—C37—H37A109.3
C16—C17—H17B109.6C36—C37—H37B109.3
C18—C17—H17B109.6C38—C37—H37B109.3
H17A—C17—H17B108.1H37A—C37—H37B108
C17—C18—C19110.6 (4)C37—C38—C33110.8 (3)
C17—C18—H18A109.5C37—C38—H38A109.5
C19—C18—H18A109.5C33—C38—H38A109.5
C17—C18—H18B109.5C37—C38—H38B109.5
C19—C18—H18B109.5C33—C38—H38B109.5
H18A—C18—H18B108.1H38A—C38—H38B108.1
C8—P1—C1—C2123.6 (3)C33—P2—C20—C26119.1 (3)
C14—P1—C1—C2122.9 (4)C27—P2—C20—C26127.8 (3)
Se1—P1—C1—C21.1 (4)Se2—P2—C20—C265.5 (4)
C8—P1—C1—C655.2 (4)C33—P2—C20—C2159.7 (4)
C14—P1—C1—C658.3 (4)C27—P2—C20—C2153.3 (4)
Se1—P1—C1—C6177.7 (3)Se2—P2—C20—C21175.7 (3)
C6—C1—C2—C31.1 (7)C26—C20—C21—C233.5 (6)
P1—C1—C2—C3179.9 (4)P2—C20—C21—C23177.7 (3)
C1—C2—C3—C42.4 (8)C26—C20—C21—C22176.7 (4)
C2—C3—C4—C52.9 (8)P2—C20—C21—C222.1 (6)
C3—C4—C5—C62.3 (7)C20—C21—C23—C242.0 (6)
C4—C5—C6—C11.0 (6)C22—C21—C23—C24178.1 (4)
C4—C5—C6—C7178.5 (4)C21—C23—C24—C250.5 (6)
C2—C1—C6—C50.4 (6)C23—C24—C25—C261.5 (7)
P1—C1—C6—C5179.1 (3)C24—C25—C26—C200.1 (7)
C2—C1—C6—C7179.1 (4)C21—C20—C26—C252.6 (6)
P1—C1—C6—C70.4 (6)P2—C20—C26—C25178.5 (3)
C1—P1—C8—C956.9 (3)C20—P2—C27—C2861.0 (3)
C14—P1—C8—C9170.5 (2)C33—P2—C27—C28174.9 (3)
Se1—P1—C8—C965.0 (3)Se2—P2—C27—C2860.8 (3)
C1—P1—C8—C13178.2 (2)C20—P2—C27—C32172.5 (3)
C14—P1—C8—C1364.6 (3)C33—P2—C27—C3258.6 (3)
Se1—P1—C8—C1359.9 (3)Se2—P2—C27—C3265.7 (3)
C13—C8—C9—C1055.9 (4)C32—C27—C28—C2954.0 (5)
P1—C8—C9—C10177.6 (3)P2—C27—C28—C29178.5 (3)
C8—C9—C10—C1157.3 (4)C27—C28—C29—C3055.4 (5)
C9—C10—C11—C1256.9 (4)C28—C29—C30—C3157.2 (5)
C10—C11—C12—C1356.6 (4)C29—C30—C31—C3257.9 (5)
C11—C12—C13—C855.5 (4)C30—C31—C32—C2756.6 (5)
C9—C8—C13—C1254.6 (4)C28—C27—C32—C3154.8 (5)
P1—C8—C13—C12179.9 (3)P2—C27—C32—C31179.5 (3)
C8—P1—C14—C19144.8 (3)C20—P2—C33—C3835.3 (3)
C1—P1—C14—C1932.1 (3)C27—P2—C33—C38147.0 (3)
Se1—P1—C14—C1991.0 (3)Se2—P2—C33—C3888.7 (3)
C8—P1—C14—C1590.1 (3)C20—P2—C33—C34160.6 (3)
C1—P1—C14—C15157.1 (3)C27—P2—C33—C3487.7 (3)
Se1—P1—C14—C1534.0 (3)Se2—P2—C33—C3436.6 (3)
C19—C14—C15—C1657.0 (4)C38—C33—C34—C3559.4 (4)
P1—C14—C15—C16176.5 (3)P2—C33—C34—C35173.4 (3)
C14—C15—C16—C1757.5 (5)C33—C34—C35—C3658.1 (4)
C15—C16—C17—C1857.3 (5)C34—C35—C36—C3755.1 (5)
C16—C17—C18—C1956.8 (5)C35—C36—C37—C3853.6 (5)
C15—C14—C19—C1857.0 (4)C36—C37—C38—C3355.0 (5)
P1—C14—C19—C18176.6 (3)C34—C33—C38—C3757.9 (4)
C17—C18—C19—C1457.2 (5)P2—C33—C38—C37174.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···Se10.952.723.332 (4)123
C26—H26···Se20.952.733.338 (4)122
C33—H33···Se11.003.024.001 (4)168
Comparison of the electronic and steric parameters of analogous SePR3 compounds top
CompoundVmin (kcal mol-1)adCP (Å)a1JSe—P (Hz)Se—P (Å)Cone angle (°)Solid angle (%)
SePPh3b-34.811.7847292.111/2.113c161.6/161.0c27.48/27.39c
SeP(o-tol)Ph2d-33.77 (-35.53)e1.778 (1.786)e7142.1196 (7)172.4 (169.2)e29.16 (29.51)e
SePPh2Cyf-38.151.7637252.111 (2)168.530.30
SePPhCy2f-41.631.7497012.126 (8)169.430.59
SeP(o-tol)Cy2c,d-43.13 (-40.74)e1.739 (1.743)e6842.121 (10)/2.118 (10)175.9/175.0 (186.0)e,g33.18/32.85 (38.86)e
SePCy3h-45.241.7366732.108167.731.58
Notes: (a) Se atom removed from the original structure in order to calculate Vmin and dCP values for the phosphorus lone pair; (b) three entries in the CSD, P21/n polymorph (Rheingold, 2011) selected as the collection temperature is similar to those of the title compounds; (c) two entries as z' = 2; (d) this work; (e) values calculated for both gauche and anti conformations; (f) Muller et al. (2008); (g) only one value reported for the gauche conformation was calculated from the optimised structure; (h) Davies et al. (1991).
Selected electronic and steric parameters of complexes of type MX{P(o-tol)R2}Y, where M is any transition metal, X is any type and quantity of other ligand, except P(o-tol)R2 and R is Ph or Cy. top
Compound MX{P(o-tol)R2}Conformation angle (°)ConformationM—P (Å)Crystallographic angle (°)Solid angle (%)CSD refcode
Pd(C10H9N2S2B)(Ph)-49.25/58.02/65.81gauche2.349/2.454/2.427172.7/172.3/173.429.76/29.13/29.23DIFPUGa
CuCl(Ph)-55.42/-52.22gauche2.241/2.256175.7/173.829.9/29.77FOXVIXb
CuBr(Ph)-55.86/-53.29gauche2.240/2.255171.5/172.129.43/29.53FOXVODb
CuI(Ph)56.81gauche2.255175.329.93FOXVUJb
Ir(CO)Cl(Ph)±61.91gauche2.322169.828.5GIHVEZc
PdCl(C9H18N)(Ph)49.94gauche2.298171.429.47GIQGUKd
Cu(C4H8O)(C6H7N)2(Ph)-52.85gauche2.191170.429.11HAXFAQe
Cu(C6H7N)3(Ph)-63.12gauche2.203166.828.23HAXFEUe
[Cu(µ-Cl)(o-CN-C5H5N)(Ph)]2±55.29gauche2.212169.729.35HESZOUf
[Cu(µ-Br)(o-CN-C5H5N)(Ph)]2±52.27gauche2.226165.328.49HESZUAf
[Cu(µ-I)(o-CN-C5H5N)(Ph)]2±51.07gauche2.249171.128.97HETBAJf
RuCl2(CO)2(Ph)-68.04/69.58gauche2.424/2.432162.1/162.927.95/28.31PAXMUXg
RuCp-Cl(Ph)65.61/168.97gauche/anti2.327/2.339163/145.527.71/25.3QIVZAWh
Cr(CO)5(η6-Cr(CO)3)(Ph)71.56gauche2.411162.229.01UHOCEZi
[Cu(µ-Br)(CH3CN)(Ph)]2±44.69gauche2.228173.129.39VEFSOOj
[Pd(µ-Cl)Cl(Ph)]2±62.97gauche2.233170.028.87VILDUQk
PdCl2(Ph)-51.20/45.48gauche2.358/2.334167.5/171.329.31/30.43VILFIGk
RhCl(CO)(Ph)49.80/-48.25gauche2.328/2.327171.1/164.728.87/28.18WUPREEl
Ru(bipy)2(Ph)-166.81anti2.361149.028.87ZUWKILm
[Ir(µ-Cl)Cl(CH2Ph)(Cy)]2±67.13gauche2.324163.729.08HAPTIDn
PdCl2(Cy)±36.09gauche2.327174.932.81HIZKADo
Rh(acac)(CO)(Cy)-38.87gauche2.251175.432.96IQEVOPp
References for CSD refcodes: (a) Iannetelli et al. (2018); (b) Bowmaker et al. (1987); (c) Baratta et al. (2007); (d) Khan et al. (2013); (e) Hasegawa et al. (2017); (f) Bowmaker et al. (1994); (g) Moreno et al. (2005); (h) Baratta et al. (2001); (i) Comte et al. (2003); (j) Engelhardt et al. (1989); (k) Vuoti et al. (2007); (l) Suomalainen et al. (2001); (m) Churchill et al. (1996); (n) Iwai et al. (2012); (o) Vuoti et al. (2008); (p) Riihimäki et al. (2003).
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds