Download citation
Download citation
link to html
The crystal structures of five new transition-metal complexes synthesized using thia­zole-2-carb­oxy­lic acid (2-Htza), imidazole-2-carb­oxy­lic acid (2-H2ima) or 1,3-oxazole-4-carb­oxy­lic acid (4-Hoxa), namely di­aqua­bis­(thia­zole-2-carboxyl­ato-κ2N,O)cobalt(II), [Co(C4H2NO2S)2(H2O)2], 1, di­aqua­bis­(thia­zole-2-car­box­yl­ato-κ2N,O)nickel(II), [Ni(C4H2NO2S)2(H2O)2], 2, di­aqua­bis­(thia­zole-2-car­boxyl­ato-κ2N,O)cadmium(II), [Cd(C4H2NO2S)2(H2O)2], 3, di­aqua­bis­(1H-imidazole-2-carboxyl­ato-κ2N3,O)cobalt(II), [Co(C4H2N2O2)2(H2O)2], 4, and di­aqua­bis­(1,3-oxazole-4-carboxyl­ato-κ2N,O4)cobalt(II), [Co(C4H2NO3)2(H2O)2], 5, are reported. The influence of the nature of the heteroatom and the position of the carboxyl group in relation to the heteroatom on the self-assembly process are discussed based upon Hirshfeld surface analysis and used to explain the observed differences in the single-crystal structures and the supra­molecular frameworks and topologies of complexes 15.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229619011525/fn3320sup1.cif
Contains datablocks Co-2tza, Ni-2tza, Cd-2tza, Co-2Hima, Co-4oxa, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229619011525/fn3320Cd-2tzasup2.hkl
Contains datablock Cd-2tza

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229619011525/fn3320Co-2Himasup3.hkl
Contains datablock Co-2Hima

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229619011525/fn3320Co-2tzasup4.hkl
Contains datablock Co-2tza

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229619011525/fn3320Co-4oxasup5.hkl
Contains datablock Co-4oxa

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229619011525/fn3320Ni-2tzasup6.hkl
Contains datablock Ni-2tza

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229619011525/fn3320sup7.pdf
Decomposed 2D fingetprint plots for 1-5

CCDC references: 1940482; 1940481; 1940480; 1940479; 1940478

Computing details top

For all structures, data collection: X-AREA (Stoe & Cie, 2016); cell refinement: X-AREA (Stoe & Cie, 2016); data reduction: SORTAV (Blessing, 1987, 1989). Program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a) for Co-2tza, Ni-2tza, Cd-2tza, Co-2Hima; SHELXS86 (Sheldrick, 2008) for Co-4oxa. For all structures, program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b).

Diaquabis(thiazole-2-carboxylato-κ2N,O)cobalt(II) (Co-2tza) top
Crystal data top
[Co(C4H2NO2S)2(H2O)2]F(000) = 354
Mr = 351.21Dx = 1.948 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 5.0481 (4) ÅCell parameters from 4872 reflections
b = 18.633 (2) Åθ = 2.2–29.6°
c = 6.7533 (6) ŵ = 1.81 mm1
β = 109.517 (7)°T = 150 K
V = 598.73 (10) Å3Block, dark pink
Z = 20.50 × 0.17 × 0.17 mm
Data collection top
Stoe IPDS2
diffractometer
1606 independent reflections
Radiation source: fine-focus sealed tube1382 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.025
ω–scansθmax = 29.2°, θmin = 2.2°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
h = 46
Tmin = 0.677, Tmax = 0.720k = 2522
4040 measured reflectionsl = 99
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022All H-atom parameters refined
wR(F2) = 0.054 w = 1/[σ2(Fo2) + (0.0344P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max < 0.001
1606 reflectionsΔρmax = 0.36 e Å3
98 parametersΔρmin = 0.28 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. X-ray diffraction intensity data of 1</b->-5 were collected in the series of w-scans using Stoe IPDS2 image plate diffractometer operated with Mo Kα radiation at 150 (2) K. The multi-scan absorption corrections were applied for every collected data set (Blessing, 1987; Blessing, 1989). The structures were solved using dual-space methods within SHELXT and full-matrix least squares refinements were carried out within SHELXL-2018/3 via the WinGX program interface (Sheldrick, 2015). All non-hydrogen positions were located in the direct and the difference Fourier maps and refined using anisotropic displacement parameters.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.5000000.5000000.5000000.01262 (8)
S10.68756 (8)0.71302 (2)0.82051 (5)0.01889 (9)
O10.3270 (2)0.52278 (5)0.73902 (14)0.0156 (2)
O30.1516 (2)0.54862 (6)0.27445 (14)0.0173 (2)
O20.3324 (2)0.60882 (6)0.97625 (14)0.0184 (2)
N10.6624 (2)0.60438 (6)0.58708 (15)0.0138 (2)
C40.3988 (3)0.58325 (7)0.82967 (18)0.0136 (3)
C30.5815 (3)0.62785 (7)0.74123 (18)0.0136 (2)
C20.8481 (3)0.71826 (8)0.6352 (2)0.0189 (3)
H20.946 (2)0.7588 (9)0.6121 (5)0.023*
C10.8151 (3)0.65571 (7)0.52517 (19)0.0157 (3)
H10.8902 (14)0.64818 (16)0.416 (2)0.019*
H3A0.188 (5)0.5618 (11)0.179 (3)0.033 (5)*
H3B0.008 (5)0.5279 (13)0.240 (3)0.038 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01306 (13)0.01334 (13)0.01342 (12)0.00155 (10)0.00703 (9)0.00072 (8)
S10.02500 (19)0.01638 (16)0.02084 (16)0.00498 (14)0.01505 (13)0.00464 (11)
O10.0160 (5)0.0157 (4)0.0179 (4)0.0021 (4)0.0093 (4)0.0004 (3)
O30.0155 (5)0.0223 (5)0.0157 (4)0.0021 (4)0.0075 (4)0.0024 (4)
O20.0233 (5)0.0184 (5)0.0185 (4)0.0001 (4)0.0136 (4)0.0005 (4)
N10.0131 (5)0.0152 (5)0.0144 (5)0.0012 (4)0.0064 (4)0.0000 (4)
C40.0118 (6)0.0157 (6)0.0136 (5)0.0016 (5)0.0045 (4)0.0027 (4)
C30.0138 (6)0.0141 (6)0.0139 (5)0.0011 (5)0.0058 (4)0.0002 (4)
C20.0213 (7)0.0178 (7)0.0222 (6)0.0041 (6)0.0135 (5)0.0008 (5)
C10.0170 (6)0.0169 (6)0.0161 (5)0.0009 (5)0.0095 (5)0.0012 (5)
Geometric parameters (Å, º) top
Co1—O32.1082 (10)O3—H3A0.77 (2)
Co1—O3i2.1082 (10)O3—H3B0.85 (3)
Co1—N1i2.1161 (12)O2—C41.2412 (16)
Co1—N12.1162 (12)N1—C31.3138 (17)
Co1—O1i2.1191 (10)N1—C11.3781 (18)
Co1—O12.1191 (10)C4—C31.5052 (19)
S1—C31.7032 (14)C2—C11.3622 (19)
S1—C21.7059 (15)C2—H20.94 (2)
O1—C41.2757 (16)C1—H10.945 (17)
O3—Co1—O3i180.0Co1—O3—H3B119.2 (15)
O3—Co1—N1i92.40 (4)H3A—O3—H3B112 (2)
O3i—Co1—N1i87.59 (4)C3—N1—C1111.28 (11)
O3—Co1—N187.60 (4)C3—N1—Co1109.39 (9)
O3i—Co1—N192.41 (4)C1—N1—Co1139.25 (9)
N1i—Co1—N1180.00 (6)O2—C4—O1127.78 (13)
O3—Co1—O1i89.57 (4)O2—C4—C3117.97 (12)
O3i—Co1—O1i90.43 (4)O1—C4—C3114.24 (11)
N1i—Co1—O1i79.87 (4)N1—C3—C4121.64 (12)
N1—Co1—O1i100.13 (4)N1—C3—S1114.26 (10)
O3—Co1—O190.43 (4)C4—C3—S1124.03 (10)
O3i—Co1—O189.57 (4)C1—C2—S1110.47 (11)
N1i—Co1—O1100.13 (4)C1—C2—H2124.8
N1—Co1—O179.87 (4)S1—C2—H2124.8
O1i—Co1—O1180.00 (4)C2—C1—N1114.03 (12)
C3—S1—C289.96 (7)C2—C1—H1123.0
C4—O1—Co1114.78 (9)N1—C1—H1123.0
Co1—O3—H3A111.7 (16)
Co1—O1—C4—O2178.41 (11)O2—C4—C3—S13.58 (17)
Co1—O1—C4—C32.76 (13)O1—C4—C3—S1175.38 (9)
C1—N1—C3—C4176.82 (11)C2—S1—C3—N10.48 (11)
Co1—N1—C3—C40.53 (15)C2—S1—C3—C4176.63 (11)
C1—N1—C3—S10.37 (15)C3—S1—C2—C10.45 (11)
Co1—N1—C3—S1177.73 (6)S1—C2—C1—N10.35 (16)
O2—C4—C3—N1179.51 (12)C3—N1—C1—C20.01 (17)
O1—C4—C3—N11.54 (18)Co1—N1—C1—C2176.18 (10)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···S1ii0.942.693.3950 (15)132
C2—H2···O2ii0.942.633.3886 (18)138
C1—H1···O3iii0.942.633.4140 (18)140
O3—H3A···O2iv0.77 (2)1.96 (2)2.7158 (14)168 (2)
O3—H3B···O1v0.85 (3)1.91 (3)2.7326 (15)161 (2)
Symmetry codes: (ii) x+1/2, y+3/2, z1/2; (iii) x+1, y, z; (iv) x, y, z1; (v) x, y+1, z+1.
Diaquabis(thiazole-2-carboxylato-κ2N,O)nickel(II) (Ni-2tza) top
Crystal data top
[Ni(C4H2NO2S)2(H2O)2]F(000) = 356
Mr = 350.99Dx = 1.959 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 5.0710 (9) ÅCell parameters from 4959 reflections
b = 18.239 (3) Åθ = 2.3–29.6°
c = 6.8383 (17) ŵ = 2.01 mm1
β = 109.780 (16)°T = 150 K
V = 595.2 (2) Å3Block, blue
Z = 20.46 × 0.11 × 0.10 mm
Data collection top
Stoe IPDS2
diffractometer
1594 independent reflections
Radiation source: fine-focus sealed tube1367 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.036
ω–scansθmax = 29.1°, θmin = 2.2°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
h = 65
Tmin = 0.817, Tmax = 0.823k = 2124
4011 measured reflectionsl = 99
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022All H-atom parameters refined
wR(F2) = 0.057 w = 1/[σ2(Fo2) + (0.0372P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.95(Δ/σ)max = 0.001
1594 reflectionsΔρmax = 0.50 e Å3
98 parametersΔρmin = 0.29 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. X-ray diffraction intensity data of 1</b->-5 were collected in the series of w-scans using Stoe IPDS2 image plate diffractometer operated with Mo Kα radiation at 150 (2) K. The multi-scan absorption corrections were applied for every collected data set (Blessing, 1987; Blessing, 1989). The structures were solved using dual-space methods within SHELXT and full-matrix least squares refinements were carried out within SHELXL-2018/3 via the WinGX program interface (Sheldrick, 2015). All non-hydrogen positions were located in the direct and the difference Fourier maps and refined using anisotropic displacement parameters.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.5000000.5000000.5000000.01278 (9)
S10.31739 (8)0.71461 (2)0.18386 (5)0.01900 (10)
O30.8408 (2)0.54992 (7)0.72103 (16)0.0170 (2)
O10.6774 (2)0.52045 (6)0.26838 (15)0.0159 (2)
O20.6738 (2)0.60702 (6)0.03003 (15)0.0190 (2)
N10.3413 (3)0.60338 (7)0.41318 (17)0.0142 (2)
C40.6066 (3)0.58173 (8)0.1758 (2)0.0137 (3)
C30.4232 (3)0.62756 (8)0.2609 (2)0.0141 (3)
C20.1889 (3)0.65508 (9)0.4749 (2)0.0161 (3)
H20.1120 (14)0.64669 (18)0.584 (2)0.019*
C10.1560 (3)0.71949 (9)0.3671 (2)0.0188 (3)
H10.060 (2)0.7600 (10)0.3898 (6)0.023*
H3A0.811 (5)0.5601 (13)0.818 (3)0.036 (6)*
H3B0.988 (6)0.5304 (14)0.742 (3)0.037 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01260 (14)0.01343 (14)0.01475 (12)0.00166 (10)0.00782 (9)0.00072 (9)
S10.0242 (2)0.0168 (2)0.02135 (17)0.00458 (15)0.01470 (15)0.00453 (13)
O30.0141 (5)0.0222 (6)0.0172 (5)0.0019 (5)0.0084 (4)0.0026 (4)
O10.0160 (5)0.0162 (5)0.0187 (5)0.0016 (4)0.0102 (4)0.0005 (4)
O20.0235 (6)0.0192 (5)0.0196 (5)0.0005 (5)0.0143 (4)0.0010 (4)
N10.0135 (6)0.0155 (6)0.0151 (5)0.0009 (5)0.0068 (4)0.0000 (4)
C40.0113 (7)0.0154 (7)0.0155 (5)0.0014 (5)0.0057 (5)0.0032 (5)
C30.0129 (7)0.0151 (7)0.0150 (5)0.0000 (5)0.0057 (5)0.0000 (5)
C20.0161 (7)0.0175 (7)0.0175 (6)0.0011 (6)0.0095 (5)0.0007 (5)
C10.0200 (7)0.0188 (7)0.0223 (6)0.0035 (6)0.0132 (6)0.0000 (5)
Geometric parameters (Å, º) top
Ni1—N1i2.0572 (13)O3—H3B0.79 (3)
Ni1—N12.0573 (13)O1—C41.2748 (18)
Ni1—O32.0814 (12)O2—C41.2460 (17)
Ni1—O3i2.0814 (12)N1—C31.3207 (18)
Ni1—O12.1029 (11)N1—C21.3728 (19)
Ni1—O1i2.1029 (11)C4—C31.506 (2)
S1—C31.7013 (15)C2—C11.367 (2)
S1—C11.7155 (15)C2—H20.967 (18)
O3—H3A0.75 (2)C1—H10.93 (2)
N1i—Ni1—N1180.0H3A—O3—H3B114 (2)
N1i—Ni1—O392.51 (5)C4—O1—Ni1114.14 (9)
N1—Ni1—O387.49 (5)C3—N1—C2111.89 (13)
N1i—Ni1—O3i87.49 (5)C3—N1—Ni1109.69 (10)
N1—Ni1—O3i92.51 (5)C2—N1—Ni1138.31 (10)
O3—Ni1—O3i180.00 (5)O2—C4—O1127.90 (14)
N1i—Ni1—O198.90 (4)O2—C4—C3118.40 (13)
N1—Ni1—O181.11 (4)O1—C4—C3113.69 (12)
O3—Ni1—O190.43 (5)N1—C3—C4121.29 (13)
O3i—Ni1—O189.57 (5)N1—C3—S1113.92 (11)
N1i—Ni1—O1i81.10 (4)C4—C3—S1124.72 (11)
N1—Ni1—O1i98.89 (4)C1—C2—N1113.80 (13)
O3—Ni1—O1i89.57 (5)C1—C2—H2123.1
O3i—Ni1—O1i90.43 (5)N1—C2—H2123.1
O1—Ni1—O1i180.00 (6)C2—C1—S1110.35 (12)
C3—S1—C190.04 (7)C2—C1—H1124.8
Ni1—O3—H3A112.4 (18)S1—C1—H1124.8
Ni1—O3—H3B115.8 (18)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O3ii0.972.603.4117 (19)142
C1—H1···S1iii0.932.733.4060 (16)131
C1—H1···O2iii0.932.603.346 (2)138
O3—H3A···O2iv0.75 (2)2.00 (2)2.7345 (16)166 (2)
O3—H3B···O1v0.79 (3)1.96 (3)2.7388 (17)168 (2)
Symmetry codes: (ii) x1, y, z; (iii) x1/2, y+3/2, z+1/2; (iv) x, y, z+1; (v) x+2, y+1, z+1.
Diaquabis(thiazole-2-carboxylato-κ2N,O)cadmium(II) (Cd-2tza) top
Crystal data top
[Cd(C4H2NO2S)2(H2O)2]F(000) = 396
Mr = 404.68Dx = 2.158 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 5.0198 (5) ÅCell parameters from 5602 reflections
b = 19.052 (2) Åθ = 2.2–29.6°
c = 6.8982 (7) ŵ = 2.11 mm1
β = 109.281 (7)°T = 150 K
V = 622.71 (11) Å3Block, colourless
Z = 20.40 × 0.27 × 0.08 mm
Data collection top
Stoe IPDS2
diffractometer
1673 independent reflections
Radiation source: fine-focus sealed tube1458 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.032
ω scansθmax = 29.2°, θmin = 2.1°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
h = 65
Tmin = 0.850, Tmax = 0.914k = 2522
4992 measured reflectionsl = 99
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019All H-atom parameters refined
wR(F2) = 0.047 w = 1/[σ2(Fo2) + (0.0313P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
1673 reflectionsΔρmax = 0.89 e Å3
98 parametersΔρmin = 0.84 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. X-ray diffraction intensity data of 1</b->-5 were collected in the series of w-scans using Stoe IPDS2 image plate diffractometer operated with Mo Kα radiation at 150 (2) K. The multi-scan absorption corrections were applied for every collected data set (Blessing, 1987; Blessing, 1989). The structures were solved using dual-space methods within SHELXT and full-matrix least squares refinements were carried out within SHELXL-2018/3 via the WinGX program interface (Sheldrick, 2015). All non-hydrogen positions were located in the direct and the difference Fourier maps and refined using anisotropic displacement parameters.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.5000000.5000000.5000000.01528 (6)
O30.8802 (3)0.55617 (7)0.73796 (17)0.0194 (2)
O10.6482 (3)0.61418 (7)0.00368 (17)0.0201 (2)
O20.6718 (2)0.52899 (6)0.23548 (16)0.0178 (2)
C10.5919 (3)0.58753 (8)0.1499 (2)0.0148 (3)
C20.4098 (3)0.63096 (8)0.2408 (2)0.0140 (3)
C30.1748 (3)0.66018 (9)0.4519 (2)0.0166 (3)
H30.1000 (15)0.65356 (16)0.559 (2)0.020*
C40.1409 (3)0.72058 (9)0.3421 (2)0.0191 (3)
H40.045 (3)0.7595 (10)0.3626 (6)0.023*
N10.3275 (3)0.60944 (7)0.39317 (18)0.0146 (2)
S10.30263 (9)0.71402 (2)0.16011 (6)0.01898 (9)
H3B1.012 (6)0.5294 (17)0.779 (4)0.038 (7)*
H3A0.839 (5)0.5707 (14)0.830 (4)0.036 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.01881 (9)0.01293 (9)0.01618 (8)0.00218 (6)0.00860 (6)0.00253 (5)
O30.0198 (6)0.0220 (6)0.0183 (5)0.0032 (5)0.0091 (4)0.0017 (4)
O10.0282 (6)0.0172 (6)0.0211 (5)0.0008 (5)0.0167 (5)0.0002 (4)
O20.0209 (6)0.0164 (6)0.0197 (5)0.0038 (5)0.0115 (4)0.0016 (4)
C10.0147 (7)0.0152 (7)0.0160 (6)0.0011 (6)0.0071 (5)0.0031 (5)
C20.0148 (7)0.0141 (7)0.0140 (6)0.0007 (6)0.0061 (5)0.0003 (5)
C30.0192 (7)0.0166 (8)0.0172 (6)0.0007 (6)0.0103 (6)0.0020 (5)
C40.0236 (8)0.0165 (8)0.0217 (7)0.0041 (6)0.0136 (6)0.0002 (5)
N10.0166 (6)0.0140 (6)0.0154 (5)0.0010 (5)0.0082 (5)0.0007 (4)
S10.0263 (2)0.01547 (19)0.02063 (17)0.00447 (16)0.01507 (14)0.00441 (14)
Geometric parameters (Å, º) top
Cd1—N12.2845 (14)O2—C11.264 (2)
Cd1—N1i2.2845 (14)C1—C21.514 (2)
Cd1—O32.3267 (13)C2—N11.3153 (18)
Cd1—O3i2.3268 (13)C2—S11.7046 (16)
Cd1—O22.3276 (11)C3—C41.357 (2)
Cd1—O2i2.3277 (11)C3—N11.375 (2)
O3—H3B0.81 (3)C3—H30.944 (19)
O3—H3A0.78 (3)C4—S11.7098 (15)
O1—C11.2422 (18)C4—H40.92 (2)
N1—Cd1—N1i180.00 (7)C1—O2—Cd1115.67 (9)
N1—Cd1—O386.74 (5)O1—C1—O2128.16 (14)
N1i—Cd1—O393.26 (5)O1—C1—C2116.32 (14)
N1—Cd1—O3i93.26 (5)O2—C1—C2115.51 (12)
N1i—Cd1—O3i86.74 (5)N1—C2—C1123.54 (14)
O3—Cd1—O3i180.00 (6)N1—C2—S1113.69 (11)
N1—Cd1—O274.31 (4)C1—C2—S1122.73 (11)
N1i—Cd1—O2105.69 (4)C4—C3—N1114.24 (13)
O3—Cd1—O290.80 (4)C4—C3—H3122.9
O3i—Cd1—O289.20 (4)N1—C3—H3122.9
N1—Cd1—O2i105.69 (4)C3—C4—S1110.22 (12)
N1i—Cd1—O2i74.31 (4)C3—C4—H4124.9
O3—Cd1—O2i89.20 (4)S1—C4—H4124.9
O3i—Cd1—O2i90.80 (4)C2—N1—C3111.66 (13)
O2—Cd1—O2i180.0C2—N1—Cd1110.90 (10)
Cd1—O3—H3B110 (2)C3—N1—Cd1137.32 (10)
Cd1—O3—H3A111.1 (19)C2—S1—C490.19 (8)
H3B—O3—H3A110 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O3ii0.942.663.4543 (19)142
C4—H4···O1iii0.922.583.336 (2)139
C4—H4···S1iii0.922.763.4218 (16)130
O3—H3B···O2iv0.81 (3)1.97 (3)2.7294 (18)157 (3)
O3—H3A···O1v0.78 (3)1.95 (3)2.7106 (17)165 (3)
Symmetry codes: (ii) x1, y, z; (iii) x1/2, y+3/2, z+1/2; (iv) x+2, y+1, z+1; (v) x, y, z+1.
Diaquabis(1H-imidazole-2-carboxylato-κ2N3,O)cobalt(II) (Co-2Hima) top
Crystal data top
[Co(C4H2N2O2)2(H2O)2]F(000) = 322
Mr = 317.13Dx = 1.880 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 5.1145 (7) ÅCell parameters from 2611 reflections
b = 10.6123 (12) Åθ = 2.8–29.5°
c = 10.4179 (13) ŵ = 1.56 mm1
β = 97.858 (10)°T = 150 K
V = 560.14 (12) Å3Block, pale orange
Z = 20.20 × 0.11 × 0.11 mm
Data collection top
Stoe IPDS2
diffractometer
1495 independent reflections
Radiation source: fine-focus sealed tube1078 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.027
ω–scansθmax = 29.2°, θmin = 2.8°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
h = 67
Tmin = 0.944, Tmax = 0.948k = 1314
3303 measured reflectionsl = 1413
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023All H-atom parameters refined
wR(F2) = 0.048 w = 1/[σ2(Fo2) + (0.0227P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.84(Δ/σ)max < 0.001
1495 reflectionsΔρmax = 0.32 e Å3
99 parametersΔρmin = 0.28 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. X-ray diffraction intensity data of 1</b->-5 were collected in the series of w-scans using Stoe IPDS2 image plate diffractometer operated with Mo Kα radiation at 150 (2) K. The multi-scan absorption corrections were applied for every collected data set (Blessing, 1987; Blessing, 1989). The structures were solved using dual-space methods within SHELXT and full-matrix least squares refinements were carried out within SHELXL-2018/3 via the WinGX program interface (Sheldrick, 2015). All non-hydrogen positions were located in the direct and the difference Fourier maps and refined using anisotropic displacement parameters.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.5000000.5000000.5000000.01256 (8)
C20.2691 (3)0.89171 (17)0.42726 (16)0.0202 (4)
H20.1925 (19)0.9647 (17)0.43085 (18)0.024*
O10.7373 (2)0.54766 (10)0.35744 (11)0.0154 (2)
O30.2152 (2)0.44396 (13)0.34702 (12)0.0171 (2)
O20.8152 (2)0.70089 (11)0.22067 (12)0.0210 (3)
N10.3895 (3)0.69131 (12)0.46601 (13)0.0149 (3)
C30.5145 (3)0.73694 (15)0.37229 (15)0.0152 (3)
C40.7044 (3)0.65913 (15)0.31028 (15)0.0143 (3)
C10.2359 (3)0.78838 (15)0.50138 (17)0.0181 (3)
H10.129 (2)0.78431 (18)0.5645 (14)0.022*
N20.4455 (3)0.85818 (13)0.34665 (14)0.0198 (3)
H2A0.5026 (15)0.9055 (12)0.2898 (14)0.024*
H3A0.198 (4)0.368 (2)0.337 (2)0.031 (6)*
H3B0.076 (5)0.474 (2)0.343 (2)0.044 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01397 (13)0.01072 (13)0.01381 (14)0.00019 (14)0.00483 (9)0.00071 (15)
C20.0227 (8)0.0161 (8)0.0230 (9)0.0064 (6)0.0079 (7)0.0020 (7)
O10.0163 (5)0.0121 (5)0.0191 (6)0.0018 (4)0.0071 (4)0.0022 (4)
O30.0152 (6)0.0142 (6)0.0221 (6)0.0018 (5)0.0032 (4)0.0036 (5)
O20.0254 (6)0.0180 (6)0.0224 (6)0.0018 (5)0.0129 (5)0.0035 (5)
N10.0157 (6)0.0134 (7)0.0160 (6)0.0007 (5)0.0040 (5)0.0004 (5)
C30.0158 (7)0.0140 (8)0.0161 (8)0.0001 (6)0.0033 (6)0.0004 (6)
C40.0136 (7)0.0146 (8)0.0149 (8)0.0017 (6)0.0025 (6)0.0011 (6)
C10.0170 (7)0.0186 (8)0.0203 (8)0.0036 (6)0.0084 (6)0.0017 (7)
N20.0264 (7)0.0136 (7)0.0210 (7)0.0026 (5)0.0088 (6)0.0041 (6)
Geometric parameters (Å, º) top
Co1—O32.0931 (11)O3—H3A0.81 (2)
Co1—O3i2.0931 (11)O3—H3B0.78 (2)
Co1—O1i2.1041 (12)O2—C41.239 (2)
Co1—O12.1041 (12)N1—C31.329 (2)
Co1—N1i2.1241 (13)N1—C11.376 (2)
Co1—N12.1242 (13)C3—N21.351 (2)
C2—N21.361 (2)C3—C41.488 (2)
C2—C11.365 (2)C1—H10.91 (2)
C2—H20.87 (2)N2—H2A0.86 (2)
O1—C41.2831 (19)
O3—Co1—O3i180.0Co1—O3—H3A115.5 (14)
O3—Co1—O1i93.48 (5)Co1—O3—H3B117.2 (18)
O3i—Co1—O1i86.52 (5)H3A—O3—H3B109 (2)
O3—Co1—O186.52 (5)C3—N1—C1105.88 (13)
O3i—Co1—O193.48 (5)C3—N1—Co1109.07 (10)
O1i—Co1—O1180.0C1—N1—Co1145.04 (12)
O3—Co1—N1i89.83 (5)N1—C3—N2110.67 (14)
O3i—Co1—N1i90.17 (5)N1—C3—C4121.65 (14)
O1i—Co1—N1i79.55 (5)N2—C3—C4127.67 (15)
O1—Co1—N1i100.45 (5)O2—C4—O1124.67 (15)
O3—Co1—N190.17 (5)O2—C4—C3121.46 (15)
O3i—Co1—N189.83 (5)O1—C4—C3113.87 (14)
O1i—Co1—N1100.45 (5)C2—C1—N1109.28 (15)
O1—Co1—N179.55 (5)C2—C1—H1125.4
N1i—Co1—N1180.0N1—C1—H1125.4
N2—C2—C1106.45 (15)C3—N2—C2107.71 (15)
N2—C2—H2126.8C3—N2—H2A126.1
C1—C2—H2126.8C2—N2—H2A126.1
C4—O1—Co1115.71 (10)
C1—N1—C3—N20.31 (16)N1—C3—C4—O11.3 (2)
Co1—N1—C3—N2179.03 (10)N2—C3—C4—O1177.84 (14)
C1—N1—C3—C4178.99 (14)N2—C2—C1—N10.45 (18)
Co1—N1—C3—C41.67 (16)C3—N1—C1—C20.47 (17)
Co1—O1—C4—O2175.67 (11)Co1—N1—C1—C2178.44 (14)
Co1—O1—C4—C33.72 (15)N1—C3—N2—C20.04 (17)
N1—C3—C4—O2178.08 (14)C4—C3—N2—C2179.21 (14)
N2—C3—C4—O22.8 (2)C1—C2—N2—C30.25 (18)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O2ii0.912.443.347 (2)172
N2—H2A···O1iii0.862.372.9824 (18)129
N2—H2A···O3iii0.862.202.978 (2)151
O3—H3A···O2iv0.81 (2)1.87 (2)2.6731 (18)168 (2)
O3—H3B···O1v0.78 (2)1.92 (3)2.6963 (17)173 (2)
Symmetry codes: (ii) x1, y+3/2, z+1/2; (iii) x+1, y+1/2, z+1/2; (iv) x+1, y1/2, z+1/2; (v) x1, y, z.
Diaquabis(1,3-oxazole-4-carboxylato-κ2N,O4)cobalt(II) (Co-4oxa) top
Crystal data top
[Co(C4H2NO3)2(H2O)2]F(000) = 322
Mr = 319.09Dx = 1.940 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 5.1664 (7) ÅCell parameters from 2467 reflections
b = 10.9879 (15) Åθ = 2.8–29.4°
c = 9.7550 (11) ŵ = 1.61 mm1
β = 99.378 (10)°T = 150 K
V = 546.37 (12) Å3Rod, pink
Z = 20.20 × 0.11 × 0.11 mm
Data collection top
Stoe IPDS2
diffractometer
1458 independent reflections
Radiation source: fine-focus sealed tube1104 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.024
ω–scansθmax = 29.2°, θmin = 2.8°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
h = 76
Tmin = 0.942, Tmax = 0.948k = 1315
2995 measured reflectionsl = 1312
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025All H-atom parameters refined
wR(F2) = 0.052 w = 1/[σ2(Fo2) + (0.0281P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.91(Δ/σ)max < 0.001
1458 reflectionsΔρmax = 0.37 e Å3
98 parametersΔρmin = 0.28 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. X-ray diffraction intensity data of 1</b->-5 were collected in the series of w-scans using Stoe IPDS2 image plate diffractometer operated with Mo Kα radiation at 150 (2) K. The multi-scan absorption corrections were applied for every collected data set (Blessing, 1987; Blessing, 1989). The structures were solved using dual-space methods within SHELXT and full-matrix least squares refinements were carried out within SHELXL-2018/3 via the WinGX program interface (Sheldrick, 2015). All non-hydrogen positions were located in the direct and the difference Fourier maps and refined using anisotropic displacement parameters.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.5000000.5000000.5000000.01187 (9)
O40.2663 (2)0.88157 (11)0.48213 (14)0.0213 (3)
O10.7373 (2)0.56802 (10)0.36309 (13)0.0152 (2)
O30.2083 (2)0.46901 (12)0.32952 (14)0.0172 (3)
O20.8395 (2)0.73459 (11)0.25189 (14)0.0186 (3)
N10.3868 (3)0.68823 (13)0.49404 (15)0.0135 (3)
C30.5207 (3)0.74931 (15)0.40020 (18)0.0141 (3)
C40.7136 (3)0.68066 (14)0.33175 (17)0.0134 (3)
C10.2420 (3)0.77044 (15)0.53788 (19)0.0168 (3)
H10.132 (2)0.7548 (4)0.6016 (14)0.020*
C20.4451 (3)0.86603 (16)0.3935 (2)0.0195 (4)
H20.4986 (14)0.9211 (15)0.3430 (13)0.023*
H3A0.194 (4)0.398 (3)0.303 (3)0.031 (6)*
H3B0.076 (5)0.497 (3)0.334 (3)0.045 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01175 (13)0.01075 (13)0.01405 (16)0.00006 (13)0.00491 (10)0.00083 (16)
O40.0268 (6)0.0159 (6)0.0239 (8)0.0042 (5)0.0124 (5)0.0000 (5)
O10.0144 (5)0.0127 (5)0.0199 (7)0.0010 (4)0.0070 (5)0.0009 (5)
O30.0139 (5)0.0164 (7)0.0213 (7)0.0019 (4)0.0028 (5)0.0044 (5)
O20.0201 (5)0.0178 (6)0.0207 (7)0.0011 (4)0.0111 (5)0.0051 (5)
N10.0138 (6)0.0146 (7)0.0129 (8)0.0009 (5)0.0043 (5)0.0002 (5)
C30.0147 (7)0.0152 (7)0.0131 (9)0.0011 (5)0.0044 (6)0.0008 (6)
C40.0115 (7)0.0154 (7)0.0133 (9)0.0001 (5)0.0019 (6)0.0009 (6)
C10.0174 (7)0.0170 (8)0.0166 (9)0.0001 (6)0.0046 (7)0.0004 (7)
C20.0241 (8)0.0162 (8)0.0209 (10)0.0005 (6)0.0113 (7)0.0021 (7)
Geometric parameters (Å, º) top
Co1—O3i2.0823 (14)O3—H3A0.82 (3)
Co1—O32.0823 (14)O3—H3B0.76 (3)
Co1—O1i2.0928 (11)O2—C41.2434 (19)
Co1—O12.0928 (11)N1—C11.289 (2)
Co1—N12.1476 (14)N1—C31.405 (2)
Co1—N1i2.1476 (14)C3—C21.339 (2)
O4—C11.351 (2)C3—C41.492 (2)
O4—C21.3753 (19)C1—H10.93 (2)
O1—C41.2760 (19)C2—H20.85 (2)
O3i—Co1—O3180.0Co1—O3—H3B115 (2)
O3i—Co1—O1i88.38 (5)H3A—O3—H3B112 (3)
O3—Co1—O1i91.62 (5)C1—N1—C3104.80 (14)
O3i—Co1—O191.62 (5)C1—N1—Co1146.70 (11)
O3—Co1—O188.38 (5)C3—N1—Co1108.47 (10)
O1i—Co1—O1180.00 (4)C2—C3—N1108.59 (14)
O3i—Co1—N191.30 (5)C2—C3—C4132.31 (15)
O3—Co1—N188.71 (5)N1—C3—C4119.08 (14)
O1i—Co1—N1100.13 (4)O2—C4—O1124.94 (13)
O1—Co1—N179.87 (4)O2—C4—C3119.69 (14)
O3i—Co1—N1i88.70 (5)O1—C4—C3115.36 (13)
O3—Co1—N1i91.29 (5)N1—C1—O4113.76 (14)
O1i—Co1—N1i79.87 (5)N1—C1—H1123.1
O1—Co1—N1i100.13 (4)O4—C1—H1123.1
N1—Co1—N1i180.0C3—C2—O4107.97 (15)
C1—O4—C2104.88 (13)C3—C2—H2126.0
C4—O1—Co1117.13 (9)O4—C2—H2126.0
Co1—O3—H3A115.2 (18)
C1—N1—C3—C20.3 (2)C2—C3—C4—O1179.7 (2)
Co1—N1—C3—C2178.36 (13)N1—C3—C4—O11.4 (2)
C1—N1—C3—C4178.41 (16)C3—N1—C1—O40.0 (2)
Co1—N1—C3—C42.98 (17)Co1—N1—C1—O4177.65 (16)
Co1—O1—C4—O2179.81 (13)C2—O4—C1—N10.3 (2)
Co1—O1—C4—C31.07 (18)N1—C3—C2—O40.4 (2)
C2—C3—C4—O20.6 (3)C4—C3—C2—O4177.97 (17)
N1—C3—C4—O2177.72 (16)C1—O4—C2—C30.5 (2)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O2ii0.932.273.1781 (19)166
C2—H2···O3iii0.852.503.238 (2)146
O3—H3A···O2iv0.82 (3)1.88 (3)2.6949 (18)178 (2)
O3—H3B···O1v0.76 (3)1.98 (3)2.7333 (16)175 (3)
Symmetry codes: (ii) x1, y+3/2, z+1/2; (iii) x+1, y+1/2, z+1/2; (iv) x+1, y1/2, z+1/2; (v) x1, y, z.
Table 2 Hydrogen-bond geometry (Å, °) for 15 top
D—H···AD—HH···AD···AD—H···A
1
C2—H2···S1i0.942.693.3950 (15)132
C2—H2···O2i0.942.633.3886 (18)138
C1—H1···O3ii0.942.633.4140 (18)140
O3—H3A···O2iii0.77 (2)1.96 (2)2.7158 (14)168 (2)
O3—H3B···O1iv0.85 (3)1.91 (3)2.7326 (15)161 (2)
2
C2—H2···O3v0.972.603.4117 (19)142
C1—H1···S1vi0.932.733.4060 (16)131
C1—H1···O2vi0.932.603.346 (2)138
O3—H3A···O2vii0.75 (2)2.00 (2)2.7345 (16)166 (2)
O3—H3B···O1viii0.79 (3)1.96 (3)2.7388 (17)168 (2)
3
C3—H3···O3v0.942.663.4543 (19)142
C4—H4···O1vi0.922.583.336 (2)139
C4—H4···S1vi0.922.763.4218 (16)130
O3—H3B···O2viii0.81 (3)1.97 (3)2.7294 (18)157 (3)
O3—H3A···O1vii0.78 (3)1.95 (3)2.7106 (17)165 (3)
4
C1—H1···O2ix0.912.443.347 (2)172
N2—H2A···O1x0.862.372.9824 (18)129
N2—H2A···O3x0.862.202.978 (2)151
O3—H3A···O2xi0.81 (2)1.87 (2)2.6731 (18)168 (2)
O3—H3B···O1v0.78 (2)1.92 (3)2.6963 (17)173 (2)
5
C1—H1···O2ix0.932.273.1781 (19)166
C2—H2···O3x0.852.503.238 (2)146
O3—H3A···O2xi0.82 (3)1.88 (3)2.6949 (18)178 (2)
O3—H3B···O1v0.76 (3)1.98 (3)2.7333 (16)175 (3)
Symmetry codes: (i) x+1/2, -y+3/2, z-1/2; (ii) x+1, y, z; (iii) x, y, z-1; (iv) -x, -y+1, -z+1; (v) x-1, y, z; (vi) x-1/2, -y+3/2, z+1/2; (vii) x, y, z+1; (viii) -x+2, -y+1, -z+1; (ix) x-1, -y+3/2, z+1/2; (x) -x+1, y+1/2, -z+1/2; (xi) -x+1, y-1/2, -z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds