Download citation
Download citation
link to html
A new mononuclear europium com­plex incorporating the (+)-di-p-toluoyl-D-tartaric acid (D-H2DTTA) ligand, namely, catena-poly[tris­{μ2-3-carboxy-2,3-bis[(4-methylphenyl)carbonyloxy]propanoato}tris­(methanol)europium(III)], [Eu(C20H17O8)3(CH3OH)3]n, (I), has been synthesized and characterized by IR spectroscopy, elemental analysis, powder X-ray diffraction and single-crystal X-ray diffraction analysis. The structure analysis indicates that com­plex (I) crystallizes in the trigonal space group R3 and exhibits an infinite one-dimensional chain structure, in which the Eu3+ ion is surrounded by six O atoms from six D-HDTTA ligands and three O atoms from three coordinated methanol mol­ecules, thus forming a tricapped trigonal prism geometry. The D-H2DTTA ligand is partially deprotonated and adopts a μ1,6-coordination mode via two carboxyl­ate groups to link adjacent Eu3+ ions, affording an infinite one-dimensional propeller-shaped coordination polymer chain along the c axis, with an Eu...Eu distance of 7.622 (1) Å. Moreover, C—H...π inter­actions lead to the formation of helical chains running along the c axis and the whole structure displays a snowflake pattern in the ab plane. The circular dichroism spectrum confirms the chirality of com­plex (I). The solid-state photoluminescence pro­perties were also investigated at room temperature and (I) exhibits characteristic red emission bands derived from the Eu3+ ion (CIE 0.63, 0.32), with a reasonably long lifetime of 0.394 ms, indicating effective energy transfer from the ligand to the metal centre. In addition, a magnetic investigation reveals single-ion magnetic behaviour. The spin-orbit coupling parameter (λ) between the ground and excited states is fitted to be 360 (2) cm−1 through Zeeman perturbation. Therefore, com­plex (I) may be regarded as a chiral optical-magneto bifunctional material.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S205322961901060X/fn3316sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S205322961901060X/fn3316Isup2.hkl
Contains datablock I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S205322961901060X/fn3316sup3.pdf
The supporting document contains IR spectra, PXRD patterns, TGA plots, solid-state emission spectra, and digital photographs of complex (I) under irradiation of UV light

CCDC reference: 1943541

Computing details top

Data collection: APEX2 (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2015); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

catena-Poly[tris{µ2-3-carboxy-2,3-bis[(4-methylphenyl)carbonyloxy]propanoato}tris(methanol)europium(III)] top
Crystal data top
[Eu(C20H17O8)3(CH4O)3]Dx = 1.433 Mg m3
Mr = 1404.09Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3Cell parameters from 9844 reflections
a = 27.194 (3) Åθ = 2.6–24.6°
c = 7.6221 (8) ŵ = 1.05 mm1
V = 4881.6 (11) Å3T = 298 K
Z = 3Prismatic, colorless
F(000) = 21600.20 × 0.10 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
3375 reflections with I > 2σ(I)
φ and ω scansRint = 0.064
Absorption correction: multi-scanθmax = 24.7°, θmin = 2.6°
Tmin = 0.882, Tmax = 0.901h = 3129
16219 measured reflectionsk = 3031
3630 independent reflectionsl = 88
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.0338P)2 + 0.6232P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.075(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.52 e Å3
3630 reflectionsΔρmin = 0.40 e Å3
283 parametersAbsolute structure: Flack x determined using 1387 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
3 restraintsAbsolute structure parameter: 0.029 (8)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Single-crystal X-ray diffraction patterns for (I) were measured on a Bruker SMART APEXII diffractometer with a CCD area detector and Mo Kα radiation λ = 0.71073 Å) at room temperature. The multi-scan program SADABS was used for absorption correction (Sheldrick. 2008). The structures were solved by direct methods and refined by the full-matrix least squares method on F2 using the SHELXS-2014 (Sheldrick. 2015). All the non-H atoms were refined anisotropically.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Eu10.6666670.3333330.08423 (6)0.02579 (18)
O10.7080 (2)0.4067 (2)0.1191 (6)0.0477 (14)
O20.7547 (2)0.4981 (2)0.0506 (7)0.0505 (15)
O30.7130 (2)0.4055 (2)0.2990 (6)0.0419 (13)
O40.7278 (3)0.4923 (2)0.7373 (7)0.0560 (17)
H40.731 (5)0.493 (4)0.844 (3)0.084*
O50.7905 (3)0.5271 (3)0.3816 (7)0.0415 (16)
O60.8616 (3)0.5203 (3)0.2577 (9)0.073 (2)
O70.6817 (2)0.4877 (2)0.4171 (6)0.0367 (12)
O80.6011 (3)0.4288 (3)0.5527 (10)0.072 (2)
O90.7760 (3)0.3811 (3)0.0988 (8)0.0625 (17)
H9A0.797 (4)0.398 (5)0.189 (10)0.094*
C10.7380 (3)0.4573 (4)0.1532 (10)0.0354 (18)
C20.7544 (4)0.4691 (4)0.3461 (10)0.034 (2)
H20.7733220.4480640.3813400.041*
C30.7024 (3)0.4501 (3)0.4566 (8)0.0353 (18)
H30.6737540.4117120.4201190.042*
C40.7153 (3)0.4486 (3)0.6489 (8)0.0331 (18)
C50.8459 (5)0.5496 (4)0.3239 (13)0.048 (2)
C60.8790 (4)0.6090 (4)0.3589 (12)0.059 (2)
C70.9327 (5)0.6388 (4)0.2902 (13)0.082 (3)
H70.9455180.6204680.2156650.098*
C80.9674 (5)0.6942 (5)0.3289 (15)0.089 (4)
H81.0042350.7129050.2848580.107*
C90.9495 (5)0.7229 (4)0.4305 (14)0.070 (3)
C100.8955 (6)0.6935 (6)0.4989 (17)0.086 (4)
H100.8828310.7121500.5723950.103*
C110.8600 (5)0.6371 (5)0.4609 (17)0.065 (3)
H110.8231580.6182590.5047020.078*
C120.9885 (5)0.7856 (5)0.4682 (17)0.101 (4)
H12A0.9945520.8070120.3622680.121*
H12B1.0242780.7915340.5110870.121*
H12C0.9714350.7979430.5549380.121*
C130.6286 (5)0.4718 (5)0.4678 (13)0.047 (3)
C140.6102 (4)0.5102 (5)0.4034 (13)0.052 (2)
C150.6470 (5)0.5604 (5)0.3258 (13)0.068 (3)
H150.6852110.5714860.3162810.081*
C160.6275 (6)0.5951 (5)0.2609 (15)0.095 (4)
H160.6532150.6296530.2101360.114*
C170.5720 (7)0.5802 (7)0.2694 (19)0.098 (5)
C180.5362 (8)0.5294 (11)0.350 (3)0.130 (8)
H180.4978020.5177920.3584380.156*
C190.5545 (6)0.4964 (7)0.4169 (18)0.097 (4)
H190.5289550.4630950.4742160.117*
C200.5518 (8)0.6182 (8)0.194 (2)0.164 (8)
H20A0.5774670.6568230.2270550.197*
H20B0.5145270.6068300.2377550.197*
H20C0.5504740.6151980.0680750.197*
C210.8217 (4)0.3927 (5)0.0165 (15)0.079 (3)
H21A0.8375490.4305880.0618210.095*
H21B0.8504670.3893240.0464260.095*
H21C0.8080070.3660950.1118120.095*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Eu10.0309 (2)0.0309 (2)0.0156 (2)0.01543 (12)0.0000.000
O10.062 (4)0.040 (4)0.028 (3)0.016 (3)0.001 (2)0.015 (2)
O20.069 (4)0.042 (3)0.025 (3)0.016 (3)0.003 (3)0.002 (3)
O30.056 (4)0.038 (3)0.030 (3)0.023 (3)0.011 (2)0.014 (2)
O40.097 (5)0.047 (4)0.020 (3)0.033 (4)0.009 (3)0.002 (3)
O50.048 (4)0.041 (4)0.029 (3)0.018 (4)0.004 (3)0.004 (3)
O60.066 (5)0.074 (5)0.076 (5)0.031 (4)0.017 (4)0.005 (4)
O70.039 (3)0.044 (3)0.030 (3)0.023 (3)0.001 (2)0.004 (2)
O80.063 (5)0.074 (5)0.075 (5)0.030 (4)0.021 (4)0.022 (5)
O90.050 (4)0.080 (5)0.047 (4)0.025 (4)0.002 (3)0.006 (3)
C10.039 (5)0.037 (5)0.029 (4)0.018 (4)0.004 (4)0.010 (4)
C20.043 (5)0.034 (5)0.024 (4)0.019 (5)0.002 (4)0.002 (3)
C30.051 (5)0.036 (5)0.021 (3)0.023 (4)0.005 (3)0.003 (3)
C40.047 (5)0.026 (4)0.021 (4)0.014 (4)0.008 (3)0.003 (3)
C50.064 (7)0.041 (6)0.036 (5)0.022 (6)0.003 (5)0.003 (5)
C60.062 (7)0.056 (7)0.046 (5)0.020 (6)0.003 (5)0.003 (5)
C70.078 (8)0.060 (7)0.073 (7)0.008 (6)0.025 (6)0.002 (5)
C80.087 (8)0.058 (7)0.090 (8)0.013 (7)0.026 (7)0.000 (6)
C90.078 (8)0.044 (6)0.071 (7)0.018 (6)0.005 (6)0.003 (5)
C100.091 (11)0.071 (10)0.090 (9)0.036 (9)0.011 (8)0.023 (8)
C110.054 (7)0.042 (8)0.088 (9)0.016 (7)0.005 (6)0.007 (7)
C120.094 (9)0.063 (8)0.108 (9)0.011 (7)0.001 (7)0.017 (7)
C130.050 (7)0.060 (8)0.033 (5)0.028 (6)0.002 (5)0.001 (5)
C140.052 (7)0.066 (8)0.049 (6)0.038 (6)0.006 (5)0.002 (5)
C150.067 (7)0.074 (8)0.079 (7)0.048 (7)0.003 (6)0.009 (6)
C160.103 (10)0.110 (10)0.110 (10)0.081 (9)0.014 (8)0.029 (8)
C170.101 (12)0.138 (14)0.099 (10)0.093 (12)0.009 (9)0.003 (9)
C180.082 (13)0.22 (2)0.141 (14)0.116 (15)0.011 (10)0.034 (15)
C190.077 (10)0.131 (14)0.103 (10)0.066 (10)0.012 (7)0.025 (9)
C200.183 (17)0.25 (2)0.167 (16)0.186 (17)0.027 (13)0.012 (14)
C210.063 (7)0.086 (8)0.079 (8)0.030 (7)0.016 (6)0.012 (7)
Geometric parameters (Å, º) top
Eu1—O1i2.324 (5)C7—C81.352 (14)
Eu1—O1ii2.324 (5)C7—H70.9300
Eu1—O12.324 (5)C8—C91.352 (15)
Eu1—O32.376 (5)C8—H80.9300
Eu1—O3i2.376 (5)C9—C101.375 (17)
Eu1—O3ii2.376 (5)C9—C121.519 (14)
Eu1—O9i2.585 (6)C10—C111.374 (16)
Eu1—O9ii2.585 (6)C10—H100.9300
Eu1—O92.585 (6)C11—H110.9300
O1—C11.227 (9)C12—H12A0.9600
O2—C11.243 (9)C12—H12B0.9600
O3—C4iii1.209 (8)C12—H12C0.9600
O4—C41.256 (9)C13—C141.451 (15)
O4—H40.821 (15)C14—C151.360 (14)
O5—C51.383 (12)C14—C191.369 (15)
O5—C21.406 (11)C15—C161.383 (14)
O6—C51.189 (11)C15—H150.9300
O7—C131.341 (11)C16—C171.353 (18)
O7—C31.424 (8)C16—H160.9300
O8—C131.212 (12)C17—C181.37 (2)
O9—C211.423 (11)C17—C201.509 (18)
O9—H9A0.860 (15)C18—C191.33 (2)
C1—C21.523 (10)C18—H180.9300
C2—C31.499 (11)C19—H190.9300
C2—H20.9800C20—H20A0.9600
C3—C41.513 (9)C20—H20B0.9600
C3—H30.9800C20—H20C0.9600
C5—C61.426 (14)C21—H21A0.9600
C6—C111.361 (16)C21—H21B0.9600
C6—C71.371 (14)C21—H21C0.9600
O1i—Eu1—O1ii80.4 (2)O4—C4—C3116.9 (7)
O1i—Eu1—O180.4 (2)O6—C5—O5121.0 (10)
O1ii—Eu1—O180.4 (2)O6—C5—C6127.1 (10)
O1i—Eu1—O3133.38 (19)O5—C5—C6111.9 (9)
O1ii—Eu1—O3140.35 (18)C11—C6—C7118.5 (10)
O1—Eu1—O385.48 (18)C11—C6—C5122.7 (11)
O1i—Eu1—O3i85.48 (18)C7—C6—C5118.7 (10)
O1ii—Eu1—O3i133.38 (19)C8—C7—C6121.3 (10)
O1—Eu1—O3i140.35 (18)C8—C7—H7119.4
O3—Eu1—O3i77.78 (19)C6—C7—H7119.4
O1i—Eu1—O3ii140.34 (18)C7—C8—C9121.1 (11)
O1ii—Eu1—O3ii85.48 (18)C7—C8—H8119.4
O1—Eu1—O3ii133.38 (19)C9—C8—H8119.4
O3—Eu1—O3ii77.78 (19)C8—C9—C10118.0 (10)
O3i—Eu1—O3ii77.78 (19)C8—C9—C12120.3 (11)
O1i—Eu1—O9i69.9 (2)C10—C9—C12121.7 (11)
O1ii—Eu1—O9i69.92 (19)C11—C10—C9121.3 (12)
O1—Eu1—O9i140.64 (19)C11—C10—H10119.4
O3—Eu1—O9i133.77 (18)C9—C10—H10119.4
O3i—Eu1—O9i63.50 (18)C6—C11—C10119.7 (12)
O3ii—Eu1—O9i70.46 (19)C6—C11—H11120.1
O1i—Eu1—O9ii140.64 (19)C10—C11—H11120.1
O1ii—Eu1—O9ii69.9 (2)C9—C12—H12A109.5
O1—Eu1—O9ii69.92 (19)C9—C12—H12B109.5
O3—Eu1—O9ii70.46 (19)H12A—C12—H12B109.5
O3i—Eu1—O9ii133.78 (18)C9—C12—H12C109.5
O3ii—Eu1—O9ii63.50 (18)H12A—C12—H12C109.5
O9i—Eu1—O9ii119.82 (2)H12B—C12—H12C109.5
O1i—Eu1—O969.92 (19)O8—C13—O7120.6 (10)
O1ii—Eu1—O9140.64 (19)O8—C13—C14127.4 (10)
O1—Eu1—O969.9 (2)O7—C13—C14111.9 (9)
O3—Eu1—O963.50 (18)C15—C14—C19117.7 (11)
O3i—Eu1—O970.46 (19)C15—C14—C13121.7 (9)
O3ii—Eu1—O9133.78 (18)C19—C14—C13120.6 (11)
O9i—Eu1—O9119.82 (2)C14—C15—C16120.0 (10)
O9ii—Eu1—O9119.82 (2)C14—C15—H15120.0
C1—O1—Eu1150.3 (5)C16—C15—H15120.0
C4iii—O3—Eu1141.0 (5)C17—C16—C15121.8 (12)
C4—O4—H4123 (8)C17—C16—H16119.1
C5—O5—C2115.5 (7)C15—C16—H16119.1
C13—O7—C3117.1 (7)C16—C17—C18116.6 (14)
C21—O9—Eu1138.0 (6)C16—C17—C20120.7 (15)
C21—O9—H9A97 (8)C18—C17—C20122.8 (16)
Eu1—O9—H9A125 (9)C19—C18—C17122.3 (16)
O1—C1—O2127.6 (7)C19—C18—H18118.9
O1—C1—C2113.6 (7)C17—C18—H18118.9
O2—C1—C2118.8 (8)C18—C19—C14121.6 (15)
O5—C2—C3106.8 (6)C18—C19—H19119.2
O5—C2—C1112.9 (7)C14—C19—H19119.2
C3—C2—C1110.1 (7)C17—C20—H20A109.5
O5—C2—H2109.0C17—C20—H20B109.5
C3—C2—H2109.0H20A—C20—H20B109.5
C1—C2—H2109.0C17—C20—H20C109.5
O7—C3—C2106.1 (6)H20A—C20—H20C109.5
O7—C3—C4113.8 (6)H20B—C20—H20C109.5
C2—C3—C4111.2 (6)O9—C21—H21A109.5
O7—C3—H3108.5O9—C21—H21B109.5
C2—C3—H3108.5H21A—C21—H21B109.5
C4—C3—H3108.5O9—C21—H21C109.5
O3iv—C4—O4126.8 (6)H21A—C21—H21C109.5
O3iv—C4—C3116.4 (6)H21B—C21—H21C109.5
Eu1—O1—C1—O214.8 (16)C5—C6—C7—C8175.4 (10)
Eu1—O1—C1—C2166.6 (8)C6—C7—C8—C92.9 (19)
C5—O5—C2—C3165.8 (6)C7—C8—C9—C102.4 (19)
C5—O5—C2—C173.1 (10)C7—C8—C9—C12178.2 (12)
O1—C1—C2—O5177.7 (7)C8—C9—C10—C112 (2)
O2—C1—C2—O53.5 (11)C12—C9—C10—C11178.4 (13)
O1—C1—C2—C363.1 (9)C7—C6—C11—C102.8 (18)
O2—C1—C2—C3115.7 (8)C5—C6—C11—C10175.6 (11)
C13—O7—C3—C2164.8 (7)C9—C10—C11—C62 (2)
C13—O7—C3—C472.5 (9)C3—O7—C13—O84.4 (13)
O5—C2—C3—O754.1 (8)C3—O7—C13—C14173.6 (7)
C1—C2—C3—O768.8 (8)O8—C13—C14—C15172.7 (11)
O5—C2—C3—C470.2 (9)O7—C13—C14—C159.6 (14)
C1—C2—C3—C4167.0 (7)O8—C13—C14—C198.3 (18)
O7—C3—C4—O3iv154.3 (6)O7—C13—C14—C19169.4 (10)
C2—C3—C4—O3iv86.0 (9)C19—C14—C15—C161.2 (16)
O7—C3—C4—O426.4 (10)C13—C14—C15—C16177.9 (10)
C2—C3—C4—O493.4 (9)C14—C15—C16—C171.2 (18)
C2—O5—C5—O63.9 (12)C15—C16—C17—C182 (2)
C2—O5—C5—C6177.6 (7)C15—C16—C17—C20178.5 (14)
O6—C5—C6—C11168.8 (11)C16—C17—C18—C190 (3)
O5—C5—C6—C119.6 (13)C20—C17—C18—C19179.7 (17)
O6—C5—C6—C79.7 (15)C17—C18—C19—C142 (3)
O5—C5—C6—C7172.0 (9)C15—C14—C19—C183 (2)
C11—C6—C7—C83.1 (17)C13—C14—C19—C18176.2 (16)
Symmetry codes: (i) x+y+1, x+1, z; (ii) y+1, xy, z; (iii) x, y, z1; (iv) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9A···O8v0.86 (2)2.14 (6)2.930 (10)153 (12)
O4—H4···O2iv0.82 (2)1.68 (3)2.480 (7)165 (12)
C8—H8···Cgvi0.932.563.444 (6)160
Symmetry codes: (iv) x, y, z+1; (v) x+y+1, x+1, z1; (vi) x+y+5/3, x+4/3, z2/3.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds