Download citation
Download citation
link to html
The reaction between 2-[2-(amino­eth­yl)amino]­ethanol and pyridine-2-carbaldehyde in a 1:2 molar ratio affords a mixture containing 2-({2-[(pyridin-2-yl­methyl­idene)amino]­eth­yl}amino)­ethanol (PMAE) and 2-[2-(pyridin-2-yl)oxazolidin-3-yl]-N-(pyridin-2-yl­methyl­idene)ethanamine (POPME). Treatment of this mixture with copper(II) chloride or cadmium(II) chloride gave tri­chlorido­[(2-hy­droxy­eth­yl)({2-[(pyridin-2-yl­methyl­idene)amino]­eth­yl})aza­nium]copper(II) monohydrate, [Cu(C10H16N3O)Cl3]·H2O or [Cu(HPMAE)Cl3]·H2O, 1, and di­chlorido­{2-[2-(pyridin-2-yl)oxazolidin-3-yl]-N-(pyridin-2-yl­methyl­idene)ethanamine}­cadmium(II), [CdCl2(C16H18N4O)] or [CdCl2(POPME)], 2, which were characterized by elemental analysis, FT–IR, Raman and 1H NMR spec­troscopy and single-crystal X-ray diffraction. PMAE is potentially a tetra­dentate N3O-donor ligand but coordinates to copper here as an N2 donor. In the structure of 1, the geometry around the Cu atom is distorted square pyramidal. In 2, the Cd atom has a distorted octa­hedral geometry. In addition to the hydrogen bonds, there are π–π stacking inter­actions between the pyridine rings in the crystal packing of 1 and 2. The ability of PMAE, POPME and 1 to inter­act with ten selected biomolecules (BRAF kinase, CatB, DNA gyrase, HDAC7, rHA, RNR, TrxR, TS, Top II and B-DNA) was investigated by docking studies and compared with doxorubicin.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229619008258/fn3313sup1.cif
Contains datablocks km42, zk1, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229619008258/fn3313km42sup2.hkl
Contains datablock km42

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229619008258/fn3313zk1sup3.hkl
Contains datablock zk1

CCDC references: 981062; 939160

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012) for km42; CrysAlis PRO (Agilent, 2013) for zk1. Cell refinement: CrysAlis PRO (Agilent, 2012) for km42; CrysAlis PRO (Agilent, 2013) for zk1. Data reduction: CrysAlis PRO (Agilent, 2012) for km42; CrysAlis PRO (Agilent, 2013) for zk1. For both structures, program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015). Molecular graphics: OLEX2 (Dolomanov et al., 2009), ORTEP-3 (Farrugia, 2012), DIAMOND (Bergerhoff et al.., 1996) and Mercury (Macrae et al., 2008) for km42; OLEX2 (Dolomanov et al., 2009), ORTEP-3 (Farrugia, 2012) and DIAMOND (Bergerhoff et al.., 1996) for zk1. For both structures, software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Trichlorido[(2-hydroxyethyl)({2-[(pyridin-2-ylmethylidene)amino]ethyl})azanium]copper(II) monohydrate (km42) top
Crystal data top
[Cu(C10H16N3O)Cl3]·H2OF(000) = 780
Mr = 382.16Dx = 1.715 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.1296 (2) ÅCell parameters from 3732 reflections
b = 6.9197 (3) Åθ = 2.9–29.2°
c = 30.0061 (11) ŵ = 2.02 mm1
β = 91.066 (3)°T = 150 K
V = 1480.10 (9) Å3Block, green
Z = 40.08 × 0.07 × 0.06 mm
Data collection top
Agilent Xcalibur Eos Gemini ultra
diffractometer
3419 independent reflections
Radiation source: Enhance (Mo) X-ray Source3199 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 16.2705 pixels mm-1θmax = 29.2°, θmin = 2.9°
ω scansh = 89
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 58
Tmin = 0.908, Tmax = 1.000l = 3933
6897 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.068H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.146 w = 1/[σ2(Fo2) + (0.0128P)2 + 11.3982P]
where P = (Fo2 + 2Fc2)/3
S = 1.38(Δ/σ)max < 0.001
3419 reflectionsΔρmax = 0.91 e Å3
181 parametersΔρmin = 0.79 e Å3
2 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Suitable crystals of 1 and 2 were mounted in oil and diffraction data was collected at 150 K using a Rigaku Oxford Diffraction Xcalibur Gemini Ultra diffractometer fitted with a Mo source emitting graphite-monochromated Mo Kα radiation (λ = 0.71073 Å). Data integration, scaling and empirical absorption correction was carried out using the CrysAlis PRO program package. The structure was solved using direct methods SHELXS (Sheldrick, 1990) and refined by full-matrix least-squares against F2 using SHELXL (Sheldrick, 1990). The non-H atoms were refined anisotropically and H atoms were placed at idealized positions and refined using a riding model. All calculations were carried out using the program OLEX2 (Dolomanov et al.., 2009). Diagrams of the molecular structures and unit cells were created using ORTEP-3 (Farrugia, 1997) and DIAMOND (Bergerhoff et al.., 1996) software.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.20878 (9)0.23132 (10)0.38743 (2)0.01491 (18)
Cl10.35986 (19)0.3746 (2)0.32813 (5)0.0193 (3)
Cl20.09932 (18)0.0913 (2)0.36009 (4)0.0191 (3)
Cl30.0783 (2)0.5160 (2)0.40924 (5)0.0203 (3)
N10.2317 (6)0.1284 (7)0.45117 (15)0.0164 (9)
N20.3408 (6)0.0219 (7)0.37536 (15)0.0152 (9)
O10.0961 (6)0.6030 (7)0.28176 (14)0.0250 (9)
H10.0972970.6772870.3038990.037*
C100.1836 (8)0.4253 (9)0.2928 (2)0.0211 (12)
H10A0.3054090.4140370.2766860.025*
H10B0.2074150.4212080.3252240.025*
N30.1053 (6)0.2490 (7)0.31210 (15)0.0174 (10)
H3A0.1575930.3683450.3150400.021*
H3B0.0635400.2126710.3393200.021*
C20.1917 (8)0.1099 (10)0.52984 (19)0.0208 (12)
H20.1547510.1710830.5566280.025*
C50.3035 (7)0.0538 (8)0.45260 (18)0.0149 (11)
O20.3733 (7)0.4831 (8)0.5851 (2)0.0389 (13)
C80.2534 (8)0.1097 (9)0.29789 (18)0.0185 (11)
H8A0.3053070.1527300.2691730.022*
H8B0.1964360.0194260.2932700.022*
C60.3678 (7)0.1252 (9)0.40979 (19)0.0174 (11)
H60.4287060.2469080.4077290.021*
C70.4111 (7)0.0949 (9)0.33252 (18)0.0167 (11)
H7A0.5093390.0067800.3215210.020*
H7B0.4683390.2239020.3371190.020*
C30.2595 (8)0.0769 (10)0.53068 (19)0.0226 (13)
H30.2666240.1468660.5578990.027*
C90.0588 (8)0.2616 (9)0.28035 (18)0.0191 (11)
H9A0.0136350.2812330.2496790.023*
H9B0.1304480.1391350.2809510.023*
C10.1780 (8)0.2083 (9)0.48930 (19)0.0187 (11)
H1A0.1288660.3359000.4888640.022*
C40.3172 (8)0.1611 (9)0.49131 (19)0.0181 (11)
H40.3647610.2893490.4909830.022*
H2A0.251 (5)0.452 (17)0.585 (4)0.09 (4)*
H2B0.42 (2)0.45 (3)0.612 (3)0.21 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0162 (3)0.0122 (3)0.0164 (3)0.0026 (3)0.0016 (2)0.0002 (3)
Cl10.0210 (6)0.0148 (7)0.0222 (7)0.0010 (5)0.0056 (5)0.0019 (5)
Cl20.0146 (6)0.0210 (7)0.0216 (7)0.0003 (5)0.0013 (5)0.0033 (5)
Cl30.0229 (7)0.0143 (7)0.0237 (7)0.0041 (5)0.0041 (5)0.0013 (5)
N10.013 (2)0.018 (2)0.019 (2)0.0004 (19)0.0016 (17)0.0017 (19)
N20.011 (2)0.015 (2)0.019 (2)0.0015 (18)0.0009 (17)0.0006 (18)
O10.028 (2)0.020 (2)0.027 (2)0.0023 (19)0.0019 (18)0.0003 (18)
C100.014 (3)0.027 (3)0.022 (3)0.002 (2)0.002 (2)0.001 (2)
N30.019 (2)0.016 (2)0.017 (2)0.000 (2)0.0006 (17)0.0005 (19)
C20.017 (3)0.027 (3)0.018 (3)0.006 (2)0.001 (2)0.003 (2)
C50.009 (2)0.016 (3)0.019 (3)0.003 (2)0.0024 (19)0.001 (2)
O20.026 (3)0.033 (3)0.058 (4)0.009 (2)0.004 (2)0.006 (3)
C80.024 (3)0.017 (3)0.015 (3)0.002 (2)0.003 (2)0.000 (2)
C60.008 (2)0.017 (3)0.026 (3)0.003 (2)0.000 (2)0.000 (2)
C70.012 (2)0.017 (3)0.021 (3)0.001 (2)0.002 (2)0.003 (2)
C30.018 (3)0.032 (4)0.018 (3)0.003 (3)0.000 (2)0.005 (2)
C90.024 (3)0.017 (3)0.016 (3)0.000 (2)0.003 (2)0.001 (2)
C10.016 (3)0.017 (3)0.023 (3)0.002 (2)0.000 (2)0.001 (2)
C40.014 (2)0.017 (3)0.023 (3)0.001 (2)0.001 (2)0.002 (2)
Geometric parameters (Å, º) top
Cu1—Cl12.3196 (15)C2—C31.380 (9)
Cu1—Cl22.5239 (15)C2—C11.396 (8)
Cu1—Cl32.2796 (15)C5—C61.458 (8)
Cu1—N12.045 (5)C5—C41.381 (8)
Cu1—N22.025 (5)O2—H2A0.90 (2)
N1—C51.361 (8)O2—H2B0.90 (2)
N1—C11.334 (7)C8—H8A0.9900
N2—C61.268 (7)C8—H8B0.9900
N2—C71.477 (7)C8—C71.520 (7)
O1—H10.8400C6—H60.9500
O1—C101.421 (8)C7—H7A0.9900
C10—H10A0.9900C7—H7B0.9900
C10—H10B0.9900C3—H30.9500
C10—C91.492 (8)C3—C41.386 (8)
N3—H3A0.9100C9—H9A0.9900
N3—H3B0.9100C9—H9B0.9900
N3—C81.497 (7)C1—H1A0.9500
N3—C91.498 (7)C4—H40.9500
C2—H20.9500
Cl1—Cu1—Cl2109.18 (5)N1—C5—C4123.1 (5)
Cl3—Cu1—Cl192.80 (6)C4—C5—C6122.7 (5)
Cl3—Cu1—Cl293.88 (5)H2A—O2—H2B106 (10)
N1—Cu1—Cl1146.75 (13)N3—C8—H8A109.3
N1—Cu1—Cl2102.96 (13)N3—C8—H8B109.3
N1—Cu1—Cl393.35 (15)N3—C8—C7111.4 (4)
N2—Cu1—Cl190.49 (14)H8A—C8—H8B108.0
N2—Cu1—Cl290.83 (13)C7—C8—H8A109.3
N2—Cu1—Cl3173.04 (14)C7—C8—H8B109.3
N2—Cu1—N180.58 (19)N2—C6—C5118.8 (5)
C5—N1—Cu1112.1 (4)N2—C6—H6120.6
C1—N1—Cu1129.7 (4)C5—C6—H6120.6
C1—N1—C5118.1 (5)N2—C7—C8111.1 (4)
C6—N2—Cu1114.0 (4)N2—C7—H7A109.4
C6—N2—C7117.9 (5)N2—C7—H7B109.4
C7—N2—Cu1128.2 (4)C8—C7—H7A109.4
C10—O1—H1109.5C8—C7—H7B109.4
O1—C10—H10A109.8H7A—C7—H7B108.0
O1—C10—H10B109.8C2—C3—H3120.4
O1—C10—C9109.4 (5)C2—C3—C4119.2 (6)
H10A—C10—H10B108.2C4—C3—H3120.4
C9—C10—H10A109.8C10—C9—N3110.3 (5)
C9—C10—H10B109.8C10—C9—H9A109.6
H3A—N3—H3B107.7C10—C9—H9B109.6
C8—N3—H3A108.8N3—C9—H9A109.6
C8—N3—H3B108.8N3—C9—H9B109.6
C8—N3—C9113.8 (4)H9A—C9—H9B108.1
C9—N3—H3A108.8N1—C1—C2121.9 (6)
C9—N3—H3B108.8N1—C1—H1A119.0
C3—C2—H2120.3C2—C1—H1A119.0
C3—C2—C1119.4 (6)C5—C4—C3118.2 (6)
C1—C2—H2120.3C5—C4—H4120.9
N1—C5—C6114.2 (5)C3—C4—H4120.9
Dichlorido{2-[2-(pyridin-2-yl)oxazolidin-3-yl]-N-(pyridin-2-ylmethylidene)ethanamine}cadmium(II) (zk1) top
Crystal data top
[CdCl2(C16H18N4O)]F(000) = 928
Mr = 465.64Dx = 1.827 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 14.0924 (3) ÅCell parameters from 3581 reflections
b = 7.7111 (2) Åθ = 2.6–28.8°
c = 15.5819 (4) ŵ = 1.62 mm1
β = 90.317 (3)°T = 150 K
V = 1693.21 (8) Å3Plate, colourless
Z = 40.12 × 0.07 × 0.02 mm
Data collection top
Agilent Xcalibur Eos Gemini ultra
diffractometer
3937 independent reflections
Radiation source: Enhance (Mo) X-ray Source3468 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 16.2705 pixels mm-1θmax = 29.2°, θmin = 2.6°
ω scansh = 1917
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
k = 1010
Tmin = 0.843, Tmax = 1.000l = 2020
7994 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.054 w = 1/[σ2(Fo2) + (0.0182P)2 + 0.5445P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.002
3937 reflectionsΔρmax = 0.40 e Å3
217 parametersΔρmin = 0.40 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Suitable crystals of 1 and 2 were mounted in oil and diffraction data was collected at 150 K using a Rigaku Oxford Diffraction Xcalibur Gemini Ultra diffractometer fitted with a Mo source emitting graphite-monochromated Mo Kα radiation (λ = 0.71073 Å). Data integration, scaling and empirical absorption correction was carried out using the CrysAlis PRO program package. The structure was solved using direct methods SHELXS (Sheldrick, 1990) and refined by full-matrix least-squares against F2 using SHELXL (Sheldrick, 1990). The non-H atoms were refined anisotropically and H atoms were placed at idealized positions and refined using a riding model. All calculations were carried out using the program OLEX2 (Dolomanov et al.., 2009). Diagrams of the molecular structures and unit cells were created using ORTEP-3 (Farrugia, 1997) and DIAMOND (Bergerhoff et al.., 1996) software.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.72322 (2)0.77644 (2)0.39286 (2)0.01457 (6)
Cl10.69652 (4)0.54339 (7)0.27381 (4)0.02331 (13)
Cl20.80606 (4)0.58248 (8)0.49548 (4)0.02552 (14)
O10.92207 (12)1.1591 (2)0.26533 (10)0.0219 (4)
N10.57343 (14)0.7700 (2)0.46709 (12)0.0167 (4)
N30.80051 (13)0.9556 (2)0.28314 (11)0.0149 (4)
C130.93979 (17)1.2066 (3)0.44397 (15)0.0192 (5)
H130.9787341.2708890.4079640.023*
N40.81023 (13)1.0105 (2)0.45978 (12)0.0165 (4)
N20.60811 (13)0.9484 (2)0.32241 (12)0.0176 (4)
C20.46469 (17)0.6640 (3)0.57199 (16)0.0237 (5)
H20.4552090.6083170.6241970.028*
C50.49914 (16)0.8322 (3)0.42215 (15)0.0176 (5)
C10.55591 (17)0.6888 (3)0.54096 (15)0.0207 (5)
H10.6068920.6470730.5730010.025*
C160.82574 (17)1.0119 (3)0.54507 (15)0.0198 (5)
H160.7876280.9432110.5797740.024*
C30.38868 (18)0.7225 (3)0.52470 (17)0.0261 (6)
H30.3269400.7041180.5433950.031*
C110.84039 (16)1.1186 (3)0.31545 (14)0.0160 (5)
H110.7932621.2107080.3074160.019*
C150.89576 (17)1.1110 (3)0.58327 (15)0.0235 (5)
H150.9030371.1123240.6426190.028*
C60.52171 (16)0.9310 (3)0.34342 (15)0.0189 (5)
H60.4736050.9792490.3100370.023*
C120.86610 (16)1.1084 (3)0.41011 (14)0.0150 (5)
C70.63678 (16)1.0547 (3)0.25001 (15)0.0198 (5)
H7A0.6452551.1738480.2684190.024*
H7B0.5878961.0522340.2059570.024*
C40.40591 (17)0.8099 (3)0.44832 (17)0.0227 (5)
H40.3558970.8525220.4153490.027*
C140.95479 (17)1.2081 (3)0.53170 (16)0.0231 (5)
H141.0037591.2733930.5555630.028*
C90.88601 (16)0.8642 (3)0.25202 (15)0.0185 (5)
H9A0.8696610.7796120.2083150.022*
H9B0.9188230.8061160.2987360.022*
C80.72977 (16)0.9848 (3)0.21379 (14)0.0189 (5)
H8A0.7177580.8764280.1840150.023*
H8B0.7550341.0668450.1726430.023*
C100.94624 (17)1.0093 (3)0.21502 (15)0.0216 (5)
H10A1.0132670.9825860.2204920.026*
H10B0.9311981.0279720.1549040.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.01251 (9)0.01589 (9)0.01528 (9)0.00011 (6)0.00260 (6)0.00226 (6)
Cl10.0278 (3)0.0191 (3)0.0230 (3)0.0044 (2)0.0026 (3)0.0031 (2)
Cl20.0244 (3)0.0246 (3)0.0275 (3)0.0028 (2)0.0079 (3)0.0081 (3)
O10.0256 (9)0.0207 (8)0.0194 (8)0.0070 (7)0.0072 (7)0.0016 (7)
N10.0167 (10)0.0165 (10)0.0170 (10)0.0003 (8)0.0016 (8)0.0016 (8)
N30.0161 (10)0.0149 (9)0.0137 (9)0.0001 (8)0.0033 (8)0.0017 (8)
C130.0198 (12)0.0162 (11)0.0217 (12)0.0007 (10)0.0001 (10)0.0034 (10)
N40.0157 (10)0.0177 (10)0.0161 (9)0.0013 (8)0.0019 (8)0.0002 (8)
N20.0175 (10)0.0171 (10)0.0180 (10)0.0014 (8)0.0036 (8)0.0008 (8)
C20.0265 (14)0.0197 (12)0.0249 (13)0.0025 (11)0.0083 (11)0.0028 (10)
C50.0156 (11)0.0144 (11)0.0227 (12)0.0011 (9)0.0010 (10)0.0059 (10)
C10.0206 (12)0.0211 (12)0.0204 (12)0.0004 (10)0.0014 (10)0.0014 (10)
C160.0204 (12)0.0227 (12)0.0165 (11)0.0047 (10)0.0004 (10)0.0010 (10)
C30.0191 (13)0.0224 (13)0.0369 (15)0.0020 (10)0.0107 (12)0.0082 (11)
C110.0153 (11)0.0138 (11)0.0190 (11)0.0011 (9)0.0016 (9)0.0015 (9)
C150.0287 (14)0.0258 (13)0.0158 (12)0.0080 (11)0.0058 (11)0.0063 (10)
C60.0176 (12)0.0185 (12)0.0207 (12)0.0033 (9)0.0072 (10)0.0037 (10)
C120.0150 (11)0.0148 (11)0.0152 (11)0.0045 (9)0.0009 (9)0.0013 (9)
C70.0204 (12)0.0211 (12)0.0177 (11)0.0024 (10)0.0090 (10)0.0033 (10)
C40.0135 (12)0.0212 (13)0.0335 (14)0.0014 (10)0.0022 (11)0.0095 (11)
C140.0194 (12)0.0241 (13)0.0256 (13)0.0024 (10)0.0051 (11)0.0100 (11)
C90.0177 (12)0.0178 (12)0.0200 (12)0.0015 (10)0.0007 (10)0.0011 (10)
C80.0216 (12)0.0226 (12)0.0125 (11)0.0017 (10)0.0037 (9)0.0000 (10)
C100.0206 (12)0.0214 (12)0.0228 (12)0.0009 (10)0.0037 (10)0.0009 (10)
Geometric parameters (Å, º) top
Cd1—Cl12.6085 (6)C5—C41.389 (3)
Cd1—Cl22.4772 (6)C1—H10.9300
Cd1—N12.4132 (19)C16—H160.9300
Cd1—N32.4573 (18)C16—C151.380 (3)
Cd1—N42.4153 (19)C3—H30.9300
Cd1—N22.3610 (19)C3—C41.390 (4)
O1—C111.429 (3)C11—H110.9800
O1—C101.438 (3)C11—C121.519 (3)
N1—C51.345 (3)C15—H150.9300
N1—C11.335 (3)C15—C141.380 (3)
N3—C111.465 (3)C6—H60.9300
N3—C91.480 (3)C7—H7A0.9700
N3—C81.483 (3)C7—H7B0.9700
C13—H130.9300C7—C81.528 (3)
C13—C121.387 (3)C4—H40.9300
C13—C141.382 (3)C14—H140.9300
N4—C161.346 (3)C9—H9A0.9700
N4—C121.340 (3)C9—H9B0.9700
N2—C61.270 (3)C9—C101.520 (3)
N2—C71.453 (3)C8—H8A0.9700
C2—H20.9300C8—H8B0.9700
C2—C11.389 (3)C10—H10A0.9700
C2—C31.373 (4)C10—H10B0.9700
C5—C61.480 (3)
Cl2—Cd1—Cl196.24 (2)C2—C3—C4118.6 (2)
N1—Cd1—Cl1101.74 (5)C4—C3—H3120.7
N1—Cd1—Cl295.08 (5)O1—C11—N3107.95 (17)
N1—Cd1—N3137.50 (6)O1—C11—H11108.6
N1—Cd1—N4104.58 (6)O1—C11—C12110.70 (18)
N3—Cd1—Cl187.44 (4)N3—C11—H11108.6
N3—Cd1—Cl2125.41 (5)N3—C11—C12112.23 (18)
N4—Cd1—Cl1153.21 (5)C12—C11—H11108.6
N4—Cd1—Cl286.34 (5)C16—C15—H15120.6
N4—Cd1—N369.78 (6)C16—C15—C14118.7 (2)
N2—Cd1—Cl187.72 (5)C14—C15—H15120.6
N2—Cd1—Cl2163.60 (5)N2—C6—C5118.6 (2)
N2—Cd1—N168.52 (6)N2—C6—H6120.7
N2—Cd1—N370.54 (6)C5—C6—H6120.7
N2—Cd1—N497.30 (6)C13—C12—C11121.0 (2)
C11—O1—C10108.46 (17)N4—C12—C13121.9 (2)
C5—N1—Cd1115.06 (15)N4—C12—C11116.89 (19)
C1—N1—Cd1126.13 (16)N2—C7—H7A109.8
C1—N1—C5118.0 (2)N2—C7—H7B109.8
C11—N3—Cd1114.46 (13)N2—C7—C8109.30 (18)
C11—N3—C9102.10 (17)H7A—C7—H7B108.3
C11—N3—C8112.05 (17)C8—C7—H7A109.8
C9—N3—Cd1108.97 (13)C8—C7—H7B109.8
C9—N3—C8112.24 (17)C5—C4—C3118.8 (2)
C8—N3—Cd1107.06 (13)C5—C4—H4120.6
C12—C13—H13120.3C3—C4—H4120.6
C14—C13—H13120.3C13—C14—H14120.6
C14—C13—C12119.4 (2)C15—C14—C13118.8 (2)
C16—N4—Cd1120.79 (15)C15—C14—H14120.6
C12—N4—Cd1118.04 (14)N3—C9—H9A111.1
C12—N4—C16118.2 (2)N3—C9—H9B111.1
C6—N2—Cd1118.56 (16)N3—C9—C10103.38 (18)
C6—N2—C7122.1 (2)H9A—C9—H9B109.1
C7—N2—Cd1118.96 (14)C10—C9—H9A111.1
C1—C2—H2120.4C10—C9—H9B111.1
C3—C2—H2120.4N3—C8—C7111.02 (17)
C3—C2—C1119.2 (2)N3—C8—H8A109.4
N1—C5—C6116.4 (2)N3—C8—H8B109.4
N1—C5—C4122.5 (2)C7—C8—H8A109.4
C4—C5—C6121.0 (2)C7—C8—H8B109.4
N1—C1—C2122.7 (2)H8A—C8—H8B108.0
N1—C1—H1118.6O1—C10—C9104.47 (17)
C2—C1—H1118.6O1—C10—H10A110.9
N4—C16—H16118.6O1—C10—H10B110.9
N4—C16—C15122.8 (2)C9—C10—H10A110.9
C15—C16—H16118.6C9—C10—H10B110.9
C2—C3—H3120.7H10A—C10—H10B108.9
Selected bond lengths (Å) and angles (°) for 1 and 2 top
Bond lengthsAngles
Complex 1Cu1—N12.045 (5)N1—Cu1—N280.58 (19)
Cu1—N22.025 (5)N2—Cu1—Cl190.49 (14)
Cu1—Cl12.3196 (15)Cl1—Cu1—Cl2109.18 (5)
Cu1—Cl22.5239 (15)Cl2—Cu1—Cl393.88 (5)
Cu1—Cl32.2796 (15)Cl3—Cu1—N193.35 (15)
Cl3—Cu1—Cl192.80 (6)
Complex 2Cd1—Cl12.6085 (6)Cl2—Cd1—Cl196.24 (2)
Cd1—Cl22.4772 (6)N1—Cd1—Cl1101.74 (5)
Cd1—N12.4132 (19)N1—Cd1—Cl295.08 (5)
Cd1—N32.4573 (18)N1—Cd1—N3137.50 (6)
Cd1—N42.4153 (19)N1—Cd1—N4104.58 (6)
Cd1—N22.3610 (19)N3—Cd1—Cl187.44 (4)
Hydrogen-bond geometyr (Å and °) in 1 and 2 top
D—H···AD—HH···AD—H···AD···ASymmetry code on A atom
Complex 1
N3—H3A···Cl10.9202.309164.83.206 (5)x, y+1, z
N3—H3B···Cl20.9192.482128.23.134 (5)x, y, z
O1—H1···Cl20.8402.325174.23.163 (5)x, y+1, z
O2–H2A···Cl30.902.401553.235 (5)-x, -y, -z+1
O2—H2B···Cl10.902.401613.283 (6)-x+1, -y, -z+1
C6—H6···O20.9502.349166.83.281 (8)-x+1, -y+1, -z+1
Complex 2
C6—H6···Cl10.9302.7685164.23.672 (2)-x+1, y+1/2, -z+1/2
C15—H15···O10.9302.613138.23.364 (3)x, -y+5/2, z+1/2
C10—H10A···O10.9702.664122.63.290 (3)-x+2, y-1/2, -z+1/2
C9—H9B···O10.9702.708108.03.146 (3)-x+2, y-1/2, -z+1/2
ππ stacking interactions dimensions (Å and °) in complexes 1 and 2 top
Centroid–centroid distanceAngle between the planesPerpendicular distanceSlippageType
13.5920.003.2901.442π(py)···π(py)
3.6580.003.2661.647π(py)···π(py)
23.7290.003.3821.571π(py)···π(py)
The calculated fitness values for PMAE and POPME ligands and complex 1 along with doxorubicin top
B-DNAs/MinBRAF-KinaseCatBDNA-GyraseHDAC7RhaTrxRRNRTSTop II
PMAE51.1635.0029.1940.3845.9537.8535.5740.0535.4838.62
POPME57.7944.4935.2750.0156.8848.2043.1649.4547.3749.13
Complex 157.5838.927.8838.7449.5440.7239.0347.7044.5942.41
Doxorubicin83.1054.2125.9552.9750.7350.1049.1866.7053.3459.05
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds