Download citation
Download citation
link to html
Caesium manganese hexa­hydrate phosphate, CsMn(H2O)6(PO4), was synthesized under hydro­thermal conditions. Its crystal structure was determined from single-crystal X-ray diffraction data. The novel phase crystallizes in the hexa­gonal space group P63mc and represents the first manganese member in the struvite morphotropic series, AM(H2O)6(TO4). Its crystal structure is built from Mn(H2O)6 octa­hedra and PO4 tetra­hedra linked into a framework via hydrogen bonding. The large Cs atoms are encapsulated in the framework cubocta­hedral cavities. It is shown that the size of the A+ ionic radius within the morphotropic series AM(H2O)6(XO4) results is certain types of crystal structures and affects the values of the unit-cell parameters. Structural relationships with Na(H2O)Mg(H2O)6(PO4) and the mineral hazenite, KNa(H2O)2Mg2(H2O)12(PO4)2, are discussed.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229618009798/fn3263sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229618009798/fn3263Isup2.hkl
Contains datablock I

CCDC reference: 1854647

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXT (Sheldrick, 2015a) within WinGX (Farrugia, 2012); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b) within WinGX (Farrugia, 2012); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXT (Sheldrick, 2015a) within WinGX (Farrugia, 2012).

Caesium manganese hexahydrate phosphate top
Crystal data top
CsMn(H2O)6(PO4)Dx = 2.558 Mg m3
Mr = 390.92Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P63mcCell parameters from 3866 reflections
a = 6.9809 (7) Åθ = 3.4–32.5°
c = 12.0270 (9) ŵ = 5.02 mm1
V = 507.59 (11) Å3T = 293 K
Z = 2Hexagonal prism, colourless
F(000) = 3740.12 × 0.08 × 0.06 mm
Data collection top
Agilent Xcalibur Sapphire3
diffractometer
737 independent reflections
Radiation source: Enhance X-ray Source687 reflections with I > 2σ(I)
Detector resolution: 16.0630 pixels mm-1Rint = 0.045
ω scansθmax = 32.5°, θmin = 3.4°
Absorption correction: gaussian
Numerical absorption correction based on gaussian integration over a multifaceted crystal model
h = 1010
Tmin = 0.380, Tmax = 0.658k = 1010
9705 measured reflectionsl = 1817
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033All H-atom parameters refined
wR(F2) = 0.066 w = 1/[σ2(Fo2) + (0.020P)2 + 0.8P]
where P = (Fo2 + 2Fc2)/3
S = 1.16(Δ/σ)max < 0.001
737 reflectionsΔρmax = 0.76 e Å3
41 parametersΔρmin = 0.79 e Å3
4 restraintsAbsolute structure: Flack x determined using 283 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.015 (18)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cs10.6666670.3333330.43938 (17)0.0518 (3)
Mn10.3333330.6666670.31642 (19)0.0238 (4)
P10.0000000.0000000.6603 (2)0.0185 (4)
O10.1198 (3)0.2396 (6)0.6191 (5)0.0269 (8)
O20.0000000.0000000.7891 (6)0.030 (2)
O30.1816 (4)0.3632 (9)0.4103 (3)0.0496 (16)
O40.4834 (6)0.5166 (6)0.2141 (5)0.0507 (17)
H10.126 (3)0.252 (6)0.374 (5)0.06 (3)*
H20.387 (9)0.413 (7)0.182 (4)0.05 (2)*
H30.168 (8)0.337 (15)0.4755 (16)0.07 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cs10.0498 (4)0.0498 (4)0.0558 (6)0.0249 (2)0.0000.000
Mn10.0256 (6)0.0256 (6)0.0202 (8)0.0128 (3)0.0000.000
P10.0214 (6)0.0214 (6)0.0127 (9)0.0107 (3)0.0000.000
O10.0336 (14)0.0221 (17)0.0212 (17)0.0110 (9)0.0022 (10)0.004 (2)
O20.040 (3)0.040 (3)0.011 (3)0.0199 (15)0.0000.000
O30.083 (4)0.026 (2)0.021 (2)0.0128 (12)0.0016 (11)0.003 (2)
O40.033 (2)0.033 (2)0.071 (4)0.006 (3)0.0201 (16)0.0201 (16)
Geometric parameters (Å, º) top
Cs1—O4i3.500 (8)Mn1—O3iii2.154 (5)
Cs1—O4ii3.500 (8)Mn1—O32.154 (5)
Cs1—O43.501 (8)Mn1—O4ix2.192 (5)
Cs1—O3iii3.5125 (6)Mn1—O4iii2.192 (5)
Cs1—O3iv3.5126 (6)Mn1—O42.192 (5)
Cs1—O33.5126 (6)P1—O1x1.531 (4)
Cs1—O3ii3.5126 (6)P1—O1iv1.531 (4)
Cs1—O3i3.5126 (6)P1—O11.531 (4)
Cs1—O3v3.5126 (6)P1—O21.550 (8)
Cs1—O4vi3.769 (8)O3—H10.8000 (15)
Cs1—O4vii3.769 (8)O3—H30.8000 (15)
Cs1—O4viii3.769 (8)O4—H20.8000 (15)
Mn1—O3ix2.154 (5)O4—H2xi0.8000 (15)
O4i—Cs1—O4ii66.50 (13)O4vi—Cs1—O4viii49.27 (14)
O4i—Cs1—O466.50 (13)O4vii—Cs1—O4viii49.27 (14)
O4ii—Cs1—O466.50 (13)O3ix—Mn1—O3iii95.04 (19)
O4i—Cs1—O3iii116.84 (10)O3ix—Mn1—O395.04 (19)
O4ii—Cs1—O3iii87.45 (9)O3iii—Mn1—O395.04 (19)
O4—Cs1—O3iii50.35 (10)O3ix—Mn1—O4ix86.67 (16)
O4i—Cs1—O3iv50.35 (10)O3iii—Mn1—O4ix177.5 (3)
O4ii—Cs1—O3iv116.84 (10)O3—Mn1—O4ix86.67 (16)
O4—Cs1—O3iv87.45 (9)O3ix—Mn1—O4iii86.67 (16)
O3iii—Cs1—O3iv119.02 (3)O3iii—Mn1—O4iii86.67 (16)
O4i—Cs1—O387.45 (9)O3—Mn1—O4iii177.5 (3)
O4ii—Cs1—O3116.84 (10)O4ix—Mn1—O4iii91.6 (3)
O4—Cs1—O350.35 (10)O3ix—Mn1—O4177.5 (3)
O3iii—Cs1—O353.79 (17)O3iii—Mn1—O486.67 (16)
O3iv—Cs1—O365.56 (17)O3—Mn1—O486.67 (16)
O4i—Cs1—O3ii116.84 (10)O4ix—Mn1—O491.6 (3)
O4ii—Cs1—O3ii50.35 (10)O4iii—Mn1—O491.6 (3)
O4—Cs1—O3ii87.45 (9)O3ix—Mn1—Cs1128.24 (15)
O3iii—Cs1—O3ii65.56 (17)O3iii—Mn1—Cs154.527 (13)
O3iv—Cs1—O3ii167.14 (15)O3—Mn1—Cs154.528 (13)
O3—Cs1—O3ii119.02 (3)O4ix—Mn1—Cs1125.580 (11)
O4i—Cs1—O3i50.35 (10)O4iii—Mn1—Cs1125.580 (11)
O4ii—Cs1—O3i87.45 (9)O4—Mn1—Cs154.3 (2)
O4—Cs1—O3i116.84 (10)O3ix—Mn1—Cs1xii54.528 (14)
O3iii—Cs1—O3i167.14 (15)O3iii—Mn1—Cs1xii54.529 (13)
O3iv—Cs1—O3i53.78 (17)O3—Mn1—Cs1xii128.24 (15)
O3—Cs1—O3i119.02 (3)O4ix—Mn1—Cs1xii125.578 (11)
O3ii—Cs1—O3i119.02 (3)O4iii—Mn1—Cs1xii54.3 (2)
O4i—Cs1—O3v87.45 (9)O4—Mn1—Cs1xii125.580 (11)
O4ii—Cs1—O3v50.35 (10)Cs1—Mn1—Cs1xii108.79 (2)
O4—Cs1—O3v116.84 (10)O3ix—Mn1—Cs1xiii54.528 (14)
O3iii—Cs1—O3v119.02 (3)O3iii—Mn1—Cs1xiii128.24 (15)
O3iv—Cs1—O3v119.02 (3)O3—Mn1—Cs1xiii54.528 (14)
O3—Cs1—O3v167.14 (15)O4ix—Mn1—Cs1xiii54.3 (2)
O3ii—Cs1—O3v53.78 (17)O4iii—Mn1—Cs1xiii125.578 (11)
O3i—Cs1—O3v65.56 (17)O4—Mn1—Cs1xiii125.580 (11)
O4i—Cs1—O4vi146.19 (4)Cs1—Mn1—Cs1xiii108.79 (2)
O4ii—Cs1—O4vi146.19 (4)Cs1xii—Mn1—Cs1xiii108.78 (2)
O4—Cs1—O4vi111.95 (2)O1x—P1—O1iv110.1 (2)
O3iii—Cs1—O4vi70.16 (11)O1x—P1—O1110.1 (2)
O3iv—Cs1—O4vi96.43 (8)O1iv—P1—O1110.1 (2)
O3—Cs1—O4vi70.16 (11)O1x—P1—O2108.9 (2)
O3ii—Cs1—O4vi96.43 (8)O1iv—P1—O2108.9 (2)
O3i—Cs1—O4vi119.28 (10)O1—P1—O2108.9 (2)
O3v—Cs1—O4vi119.28 (10)Mn1—O3—Cs195.51 (8)
O4i—Cs1—O4vii146.19 (4)Mn1—O3—Cs1xiii95.51 (8)
O4ii—Cs1—O4vii111.95 (2)Cs1—O3—Cs1xiii167.14 (15)
O4—Cs1—O4vii146.19 (4)Mn1—O3—H1115 (5)
O3iii—Cs1—O4vii96.43 (8)Cs1—O3—H190.7 (6)
O3iv—Cs1—O4vii119.28 (10)Cs1xiii—O3—H190.7 (6)
O3—Cs1—O4vii119.28 (10)Mn1—O3—H3133 (7)
O3ii—Cs1—O4vii70.16 (11)Cs1—O3—H383.8 (2)
O3i—Cs1—O4vii96.43 (8)Cs1xiii—O3—H383.8 (2)
O3v—Cs1—O4vii70.16 (11)H1—O3—H3112 (8)
O4vi—Cs1—O4vii49.27 (14)Mn1—O4—Cs195.1 (2)
O4i—Cs1—O4viii111.95 (2)Mn1—O4—Cs1xiv95.4 (2)
O4ii—Cs1—O4viii146.19 (4)Cs1—O4—Cs1xiv169.50 (16)
O4—Cs1—O4viii146.19 (4)Mn1—O4—H2108 (6)
O3iii—Cs1—O4viii119.28 (10)Cs1—O4—H2110 (5)
O3iv—Cs1—O4viii70.16 (11)Cs1xiv—O4—H266 (5)
O3—Cs1—O4viii96.43 (8)Mn1—O4—H2xi108 (6)
O3ii—Cs1—O4viii119.28 (10)Cs1—O4—H2xi110 (5)
O3i—Cs1—O4viii70.16 (11)Cs1xiv—O4—H2xi66 (5)
O3v—Cs1—O4viii96.43 (8)H2—O4—H2xi122 (9)
Symmetry codes: (i) y+1, xy, z; (ii) x+y+1, x+1, z; (iii) y+1, xy+1, z; (iv) x+y, x, z; (v) x+1, y, z; (vi) x+1, y+1, z+1/2; (vii) xy+1, x, z+1/2; (viii) y, x+y, z+1/2; (ix) x+y, x+1, z; (x) y, xy, z; (xi) y+1, x+1, z; (xii) x, y+1, z; (xiii) x1, y, z; (xiv) x+1, y+1, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1···O2xv0.80 (1)1.84 (1)2.636 (7)179 (7)
O4—H2···O1xvi0.80 (1)1.93 (3)2.676 (4)155 (8)
O3—H3···O10.80 (1)1.83 (2)2.620 (7)173 (10)
Symmetry codes: (xv) x, y, z1/2; (xvi) y, x+y, z1/2.
Bond-valance data for CsMn(H2O)6(PO4) top
CsMnPH1H2H3Σ
O11.28×3\downarrow0.24×2?0.282.04
O21.170.27×31.98
O30.087×6\downarrow×20.348×3\downarrow0.730.721.97
O40.086×3\downarrow, 0.075×3\downarrow0.318×3\downarrow0.76×22.00
Σ125111
Algorithm and empirical parameters for calculations were used from (Pyatenko, 1972). The symbols \downarrow and indicate a multiplication of the corresponding contribution in the columns or rows by symmetry.
Crystallographic characteristics for compounds of the struvite morphotropic series, AM(H2O)6[XO4] (A = K, NH4, Rb, H2O, Cs, Tl; M = Mn, Fe, Co, Ni, Mg; X = P, As) and related phosphates top
CompoundUnit-cell parameters a, b, c (Å)rA (Å)<dA—O> (Å)Reference
Orthorhombic (space group Pmn21, Z = 2)The sequence of layers (Abc)
Struvite-K, KMg(H2O)6(PO4)6.903 (3), 6.174 (2), 11.146 (3)1.593.27Mathew et al. (1979)
Struvite, NH4Mg(H2O)6(PO4)6.955 (1), 6.142 (1), 11.218 (2)1.603.31Ferraris et al. (1986)
NH4Ni(H2O)6(PO4)6.9240 (14) , 6.1040 (12), 11.166 (2)1.603.29Blachnik et al. (1997)
NH4Co(H2O)6(PO4)6.946 (2), 6.157 (2), 11.172 (6)1.603.30El Bali et al. (2005)
(H2O)Ni(H2O)6[HPO4]6.9160 (3), 6.1032 (3), 11.1679 (6)3.30Wang et al. (2005)
RbMg(H2O)6(PO4)6.8381 (9), 6.1407 (9), 11.2454 (19)1.653.31Weil (2008b)
TlMg(H2O)6(PO4)6.8129 (8), 6.1148 (10), 11.2769 (16)1.663.30Weil (2008b)
KMg(H2O)6[AsO4]6.99 (3), 6.22 (2), 11.26 (4)1.593.32Abdija et al. (2014)
NH4Mg(H2O)6[AsO4]7.054 (4), 6.205 (3), 11.368 (6)1.603.35Ferraris et al. (1973)
RbMg(H2O)6[AsO4]6.9310 (9), 6.2054 (7), 11.3991 (7)1.653.35Weil (2008b)
TlMg(H2O)6[AsO4]6.9591 (7), 6.1937 (5), 11.4306 (6)1.663.34Weil (2008b)
Hexagonal (space group P63mc, Z = 2)The sequence of layers (AbγA'cβ)
CsMg(H2O)6(PO4)6.8827 (8), 11.9188 (16)1.883.54Weil (2008a)
CsMn(H2O)6(PO4)6.9809 (7), 12.0270 (9)1.883.57This work
Cubic (space group F43m, Z = 4)The sequence of layers (AbγBcαCaβ)
CsMg(H2O)6(PO4)10.0308 (14)1.883.57Massa et al. (2003)
CsFe(H2O)6(PO4)10.06024 (5)1.883.58Carver et al. (2006)
CsFe(D2O)6(PO4)10.02420 (9)1.883.58Carver et al. (2006)
CsMg(H2O)6[AsO4]10.1609 (5)1.883.62Weil (2009)
Related structures: tetragonal (space group P42/mmc, Z = 2) and orthorhombic (space group Pmnb, Z = 4)
Na(H2O)Mg(H2O)6 (PO4)6.731 (2), 10.982 (4)1.022.50Mathew et al. (1982)
Hazenite, KNa(H2O)2Mg2(H2O)12(PO4)26.9349 (4), 25.174 (2), 11.2195 (8)1.59, 1.023.29 2.49Yang et al. (2011)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds