Download citation
Download citation
link to html
The supra­molecular structural features of organic molecules are very important with regard to their widespread properties in both solids and solutions. Herein, we describe the synthesis of a novel multifunctional 2-pyridone derivative, namely 6-(4-chloro­phen­yl)-5-formyl-4-methyl­sulfanyl-2-oxo-1,2-di­hydro­pyri­dine-3-carbo­nitrile, C14H9ClN2O2S, denoted P1, and its structural features were established through X-ray crystallography. A Hirshfeld surface analysis followed by a two-dimensional fingerprint plot analysis was carried out. A frontier mol­ecular orbital investigation and natural bond orbital (NBO) calculations explored the charge-transfer inter­actions associated with the mol­ecular system. The optical properties of the 2-pyridone derivative were elucidated through UV–Vis absorption and emission spectroscopy, indicating a strong blue emissive nature with a colour purity of 82.5%, a short-lived lifetime and a large Stokes shift. Time-dependent density functional theory (TD-DFT) was used to gain some insight into the absorption behaviour and emissive characteristics of P1.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229618007490/fn3255sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229618007490/fn3255Isup2.hkl
Contains datablock I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229618007490/fn3255sup3.pdf
Second-order perturbation theory analysis of Fock matrix in NBO basis for P1

CCDC reference: 1843857

Computing details top

Data collection: APEX2 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2016 (Sheldrick, 2015b).

6-(4-Chlorophenyl)-5-formyl-4-methylsulfanyl-2-oxo-1,2-dihydropyridine-3-carbonitrile top
Crystal data top
C14H9ClN2O2SF(000) = 624
Mr = 304.74Dx = 1.519 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 15.5215 (13) ÅCell parameters from 2624 reflections
b = 4.1954 (4) Åθ = 3.2–24.6°
c = 20.4883 (16) ŵ = 0.45 mm1
β = 93.139 (6)°T = 293 K
V = 1332.2 (2) Å3Needle, gold
Z = 40.45 × 0.15 × 0.08 mm
Data collection top
Bruker Kappa APEX2 CMOS
diffractometer
1376 reflections with I > 2σ(I)
Radiation source: Sealed tubeRint = 0.141
ω and φ scanθmax = 25.0°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
h = 1818
Tmin = 0.80, Tmax = 0.91k = 44
14529 measured reflectionsl = 2424
2320 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.070 w = 1/[σ2(Fo2) + (0.0237P)2 + 3.3933P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.135(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.24 e Å3
2320 reflectionsΔρmin = 0.24 e Å3
190 parametersExtinction correction: SHELXL2016; Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0027 (10)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8300 (3)0.1560 (13)0.4948 (2)0.0457 (14)
C20.8417 (3)0.0000 (14)0.4371 (2)0.0490 (15)
H20.8968280.0283030.4224930.059*
C30.7711 (3)0.1138 (13)0.4014 (2)0.0425 (14)
H30.7787450.2232950.3626210.041 (13)*
C40.6882 (3)0.0678 (11)0.4222 (2)0.0307 (11)
C50.6791 (3)0.0884 (12)0.4810 (2)0.0367 (13)
H50.6242130.1160690.4962490.035 (13)*
C60.7497 (3)0.2036 (13)0.5173 (2)0.0431 (13)
H60.7428960.3114140.5563440.052*
C70.6109 (3)0.1959 (12)0.3857 (2)0.0323 (12)
C80.5946 (3)0.1942 (12)0.3188 (2)0.0363 (12)
C90.6550 (3)0.0179 (14)0.2793 (2)0.0465 (15)
H90.6888930.1392150.2999200.063 (19)*
C100.5166 (3)0.3366 (12)0.2907 (2)0.0347 (12)
C110.4618 (3)0.4881 (12)0.3322 (2)0.0322 (12)
C120.3868 (3)0.6676 (15)0.3143 (2)0.0447 (14)
C130.4791 (3)0.4863 (12)0.4018 (2)0.0347 (12)
C140.3841 (3)0.3689 (19)0.1895 (3)0.069 (2)
H14A0.3515150.2596030.2211090.062 (17)*
H14B0.3673310.2923650.1464890.09 (2)*
H14C0.3730150.5936020.1917940.12 (3)*
Cl10.91892 (9)0.3044 (4)0.54005 (8)0.0732 (6)
N10.5531 (2)0.3368 (9)0.42389 (17)0.0334 (10)
H10.5640590.3312450.4654780.043 (14)*
N20.3280 (3)0.8321 (14)0.3067 (2)0.0735 (16)
O10.6633 (2)0.0644 (11)0.22181 (16)0.0685 (13)
O20.4329 (2)0.6206 (9)0.44044 (14)0.0476 (10)
S10.49724 (9)0.2960 (4)0.20645 (6)0.0573 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.041 (3)0.044 (4)0.052 (3)0.009 (3)0.009 (2)0.003 (3)
C20.035 (3)0.064 (4)0.050 (3)0.005 (3)0.016 (3)0.003 (3)
C30.045 (3)0.051 (4)0.034 (3)0.007 (3)0.016 (2)0.004 (3)
C40.035 (3)0.026 (3)0.032 (2)0.005 (2)0.011 (2)0.005 (2)
C50.036 (3)0.035 (3)0.041 (3)0.008 (2)0.018 (2)0.003 (3)
C60.048 (3)0.041 (3)0.041 (3)0.000 (3)0.012 (2)0.004 (3)
C70.036 (3)0.030 (3)0.032 (2)0.008 (2)0.015 (2)0.001 (2)
C80.044 (3)0.037 (3)0.031 (2)0.014 (3)0.019 (2)0.010 (2)
C90.051 (3)0.056 (4)0.034 (3)0.006 (3)0.011 (3)0.017 (3)
C100.041 (3)0.033 (3)0.031 (2)0.009 (2)0.010 (2)0.004 (2)
C110.034 (3)0.035 (3)0.028 (3)0.010 (2)0.008 (2)0.002 (2)
C120.042 (3)0.058 (4)0.034 (3)0.001 (3)0.004 (2)0.005 (3)
C130.033 (3)0.042 (3)0.030 (3)0.005 (3)0.007 (2)0.002 (3)
C140.072 (4)0.098 (7)0.036 (3)0.005 (4)0.009 (3)0.008 (4)
Cl10.0528 (9)0.0872 (13)0.0792 (11)0.0193 (9)0.0008 (8)0.0046 (10)
N10.040 (2)0.039 (3)0.022 (2)0.000 (2)0.0101 (17)0.0056 (19)
N20.060 (3)0.094 (5)0.066 (3)0.020 (3)0.000 (3)0.008 (3)
O10.068 (3)0.105 (4)0.034 (2)0.007 (2)0.0202 (18)0.018 (2)
O20.052 (2)0.063 (3)0.0293 (17)0.019 (2)0.0145 (16)0.0045 (18)
S10.0633 (9)0.0820 (13)0.0274 (6)0.0030 (9)0.0088 (6)0.0111 (8)
Geometric parameters (Å, º) top
C1—C61.367 (6)C8—C91.471 (6)
C1—C21.371 (7)C9—O11.208 (6)
C1—Cl11.736 (5)C9—H90.9300
C2—C31.370 (6)C10—C111.388 (6)
C2—H20.9300C10—S11.744 (4)
C3—C41.391 (6)C11—C121.417 (7)
C3—H30.9300C11—C131.438 (6)
C4—C51.385 (6)C12—N21.149 (6)
C4—C71.479 (6)C13—O21.233 (5)
C5—C61.378 (6)C13—N11.364 (6)
C5—H50.9300C14—S11.798 (5)
C6—H60.9300C14—H14A0.9600
C7—N11.357 (5)C14—H14B0.9600
C7—C81.381 (6)C14—H14C0.9600
C8—C101.441 (6)N1—H10.8600
C6—C1—C2121.8 (5)O1—C9—C8124.1 (6)
C6—C1—Cl1118.7 (4)O1—C9—H9118.0
C2—C1—Cl1119.5 (4)C8—C9—H9118.0
C3—C2—C1119.2 (5)C11—C10—C8118.3 (4)
C3—C2—H2120.4C11—C10—S1124.9 (4)
C1—C2—H2120.4C8—C10—S1116.8 (3)
C2—C3—C4120.9 (5)C10—C11—C12127.4 (4)
C2—C3—H3119.6C10—C11—C13121.2 (4)
C4—C3—H3119.6C12—C11—C13111.4 (4)
C5—C4—C3118.3 (4)N2—C12—C11171.9 (6)
C5—C4—C7119.5 (4)O2—C13—N1120.4 (4)
C3—C4—C7122.2 (4)O2—C13—C11123.4 (4)
C6—C5—C4121.2 (4)N1—C13—C11116.1 (4)
C6—C5—H5119.4S1—C14—H14A109.5
C4—C5—H5119.4S1—C14—H14B109.5
C1—C6—C5118.7 (5)H14A—C14—H14B109.5
C1—C6—H6120.7S1—C14—H14C109.5
C5—C6—H6120.7H14A—C14—H14C109.5
N1—C7—C8118.8 (4)H14B—C14—H14C109.5
N1—C7—C4114.3 (4)C7—N1—C13125.5 (4)
C8—C7—C4126.9 (4)C7—N1—H1117.3
C7—C8—C10120.0 (4)C13—N1—H1117.3
C7—C8—C9117.4 (5)C10—S1—C14106.8 (2)
C10—C8—C9122.4 (4)
C6—C1—C2—C30.5 (8)C10—C8—C9—O126.8 (8)
Cl1—C1—C2—C3179.4 (4)C7—C8—C10—C113.4 (7)
C1—C2—C3—C41.2 (8)C9—C8—C10—C11177.6 (5)
C2—C3—C4—C51.8 (7)C7—C8—C10—S1175.1 (4)
C2—C3—C4—C7178.1 (5)C9—C8—C10—S10.9 (7)
C3—C4—C5—C61.7 (7)C8—C10—C11—C12173.6 (5)
C7—C4—C5—C6178.2 (5)S1—C10—C11—C128.0 (8)
C2—C1—C6—C50.5 (8)C8—C10—C11—C134.0 (7)
Cl1—C1—C6—C5179.4 (4)S1—C10—C11—C13174.5 (4)
C4—C5—C6—C11.1 (7)C10—C11—C13—O2179.1 (5)
C5—C4—C7—N141.0 (6)C12—C11—C13—O21.2 (7)
C3—C4—C7—N1135.4 (5)C10—C11—C13—N11.9 (7)
C5—C4—C7—C8141.3 (5)C12—C11—C13—N1176.0 (4)
C3—C4—C7—C842.3 (7)C8—C7—N1—C131.4 (7)
N1—C7—C8—C100.8 (7)C4—C7—N1—C13176.6 (4)
C4—C7—C8—C10178.5 (4)O2—C13—N1—C7176.5 (5)
N1—C7—C8—C9175.3 (4)C11—C13—N1—C70.8 (7)
C4—C7—C8—C97.1 (8)C11—C10—S1—C1417.5 (5)
C7—C8—C9—O1158.9 (5)C8—C10—S1—C14160.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.861.942.782 (4)168
C14—H14C···N20.962.693.245 (8)118
C14—H14A···N2ii0.962.553.439 (9)154
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y1, z.
Calculated TD-DFT singlet excitation energy (EE), wavelength (λ), oscillator strengths (f) and orbital composition of transitions for the most intense transitions of P1 top
Excited State 5: Singlet-A; EE = 34130.95 cm-1; λ = 34130.86 cm-1; f = 0.2757
Nature of the transitionContribution in %
HOMO-3 to LUMO4.55
HOMO-2 to LUMO34.33
HOMO-2 to LUMO+119.03
HOMO-1 to LUMO6.97
HOMO to LUMO+129.17
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds