Download citation
Download citation
link to html
The crystal structure of the triclinic polymorph of 1-(4-hex­yloxy-3-hy­droxy­phen­yl)ethanone, C14H20O3, differs markedly from that of the ortho­rhom­bic polymorph [Manzano et al. (2015). Acta Cryst. C71, 1022–1027]. The two mol­ecular structures are alike with respect to their bond lengths and angles, but differ in their spatial arrangement. This gives rise to quite different packing schemes, even if built up by similar chains having the hy­droxy–ethanone O—H...O hydrogen-bond synthon in common. Both phases were found to be related by a first-order thermally driven phase transformation at 338–340 K, which is discussed in detail. The relative stabilities of both polymorphs are explained on the basis of both the noncovalent inter­actions operating in each structure and quantum chemical calculations. The polymorphic phase transition has also been studied experimentally by means of differential scanning calorimetry (DSC) experiments, conducted on individual single crystals, Raman spectroscopy and controlled heating under a microscope of individual single crystals, which were further characterized by powder and single-crystal X-ray diffraction.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229617016795/fn3250sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229617016795/fn3250Isup2.hkl
Contains datablock I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229617016795/fn3250sup3.pdf
Raman diagrams

avi

AVI file https://doi.org/10.1107/S2053229617016795/fn3250sup4.avi
A short video of the phase transformation as seen in the heating stage of the microscope

CCDC reference: 1586950

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

1-(4-Hexyloxy-3-hydroxyphenyl)ethanone top
Crystal data top
C14H20O3Z = 2
Mr = 236.30F(000) = 256
Triclinic, P1Dx = 1.225 Mg m3
a = 7.9565 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.5027 (3) ÅCell parameters from 1556 reflections
c = 11.0842 (3) Åθ = 3.6–27.2°
α = 77.857 (3)°µ = 0.09 mm1
β = 76.632 (3)°T = 100 K
γ = 62.158 (4)°Block, colourless
V = 640.51 (4) Å30.25 × 0.18 × 0.12 mm
Data collection top
Oxford Diffraction Xcalibur Eos CCD Gemini
diffractometer
2612 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray SourceRint = 0.046
thick slices scansθmax = 29.2°, θmin = 3.2°
Absorption correction: multi-scan
CrysAlisPro (Oxford Diffraction, 2009)
h = 1010
k = 1111
28336 measured reflectionsl = 1415
3221 independent reflections
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.111 w = 1/[σ2(Fo2) + (0.0631P)2 + 0.1165P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
3221 reflectionsΔρmax = 0.32 e Å3
160 parametersΔρmin = 0.23 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.69662 (12)0.45366 (10)1.22449 (7)0.0278 (2)
O20.71022 (11)0.21100 (10)1.30669 (7)0.02086 (18)
H2'0.711 (2)0.3047 (16)1.2645 (14)0.049 (5)*
O30.74126 (11)0.28644 (9)1.05800 (6)0.02038 (18)
C10.71464 (14)0.18616 (13)1.22687 (9)0.0173 (2)
C20.72667 (15)0.14790 (13)1.09743 (9)0.0193 (2)
H20.72760.22791.05130.023*
C30.73724 (15)0.00817 (13)1.03673 (9)0.0192 (2)
H30.74690.03170.95020.023*
C40.73342 (14)0.12918 (13)1.10527 (9)0.0167 (2)
C50.71911 (14)0.09337 (13)1.23648 (9)0.0163 (2)
C60.71257 (14)0.06435 (13)1.29536 (9)0.0172 (2)
H60.70670.08991.38160.021*
C70.70277 (14)0.35488 (13)1.28766 (9)0.0193 (2)
C80.69610 (16)0.40170 (14)1.42693 (10)0.0236 (2)
H8A0.70070.51881.45060.035*
H8B0.57910.31541.46830.035*
H8C0.80430.40081.45070.035*
C90.75757 (15)0.33686 (13)0.92465 (9)0.0187 (2)
H9A0.64510.35310.89400.022*
H9B0.87110.24620.88180.022*
C100.77289 (15)0.51108 (13)0.90520 (9)0.0186 (2)
H10A0.88690.48970.93640.022*
H10B0.66240.59520.95480.022*
C110.78321 (15)0.59723 (13)0.77035 (9)0.0184 (2)
H11A0.66970.62020.73780.022*
H11B0.89510.51600.71980.022*
C120.79613 (15)0.77313 (13)0.76227 (9)0.0192 (2)
H12A0.68640.85050.81630.023*
H12B0.91110.74760.79420.023*
C130.80149 (15)0.87433 (14)0.63198 (9)0.0215 (2)
H13A0.68820.89850.59860.026*
H13B0.91360.79960.57800.026*
C140.80867 (16)1.05053 (14)0.63071 (10)0.0246 (2)
H14A0.70111.12290.68680.037*
H14B0.80331.11300.54770.037*
H14C0.92611.02670.65680.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0445 (5)0.0198 (4)0.0255 (4)0.0195 (4)0.0064 (3)0.0014 (3)
O20.0347 (4)0.0162 (4)0.0167 (4)0.0148 (3)0.0064 (3)0.0004 (3)
O30.0338 (4)0.0167 (4)0.0149 (3)0.0157 (3)0.0039 (3)0.0010 (3)
C10.0183 (5)0.0147 (5)0.0194 (5)0.0081 (4)0.0029 (4)0.0012 (4)
C20.0248 (5)0.0166 (5)0.0197 (5)0.0108 (4)0.0038 (4)0.0039 (4)
C30.0260 (5)0.0185 (5)0.0148 (4)0.0112 (4)0.0038 (4)0.0010 (4)
C40.0201 (5)0.0138 (5)0.0173 (5)0.0092 (4)0.0030 (4)0.0007 (4)
C50.0181 (5)0.0150 (5)0.0174 (5)0.0078 (4)0.0034 (4)0.0034 (4)
C60.0205 (5)0.0163 (5)0.0149 (4)0.0085 (4)0.0038 (4)0.0003 (4)
C70.0213 (5)0.0154 (5)0.0216 (5)0.0088 (4)0.0032 (4)0.0013 (4)
C80.0316 (6)0.0189 (5)0.0214 (5)0.0139 (4)0.0036 (4)0.0014 (4)
C90.0252 (5)0.0190 (5)0.0136 (5)0.0122 (4)0.0024 (4)0.0003 (4)
C100.0239 (5)0.0175 (5)0.0166 (5)0.0116 (4)0.0033 (4)0.0001 (4)
C110.0219 (5)0.0178 (5)0.0160 (5)0.0101 (4)0.0021 (4)0.0007 (4)
C120.0230 (5)0.0188 (5)0.0172 (5)0.0115 (4)0.0032 (4)0.0008 (4)
C130.0252 (5)0.0223 (5)0.0162 (5)0.0119 (4)0.0014 (4)0.0011 (4)
C140.0253 (5)0.0210 (5)0.0254 (5)0.0114 (4)0.0034 (4)0.0041 (4)
Geometric parameters (Å, º) top
O1—C71.2247 (13)C9—C101.5092 (14)
O2—C51.3589 (12)C9—H9A0.9700
O2—H2'0.836 (9)C9—H9B0.9700
O3—C41.3543 (12)C10—C111.5219 (13)
O3—C91.4429 (11)C10—H10A0.9700
C1—C21.3939 (14)C10—H10B0.9700
C1—C61.3994 (14)C11—C121.5292 (14)
C1—C71.4871 (13)C11—H11A0.9700
C2—C31.3868 (14)C11—H11B0.9700
C2—H20.9300C12—C131.5202 (13)
C3—C41.3877 (14)C12—H12A0.9700
C3—H30.9300C12—H12B0.9700
C4—C51.4109 (14)C13—C141.5227 (15)
C5—C61.3814 (13)C13—H13A0.9700
C6—H60.9300C13—H13B0.9700
C7—C81.5058 (14)C14—H14A0.9600
C8—H8A0.9600C14—H14B0.9600
C8—H8B0.9600C14—H14C0.9600
C8—H8C0.9600
C5—O2—H2'113.3 (12)C10—C9—H9B110.8
C4—O3—C9119.06 (8)H9A—C9—H9B108.9
C2—C1—C6119.09 (9)C9—C10—C11115.00 (8)
C2—C1—C7118.71 (9)C9—C10—H10A108.5
C6—C1—C7122.20 (9)C11—C10—H10A108.5
C3—C2—C1120.73 (9)C9—C10—H10B108.5
C3—C2—H2119.6C11—C10—H10B108.5
C1—C2—H2119.6H10A—C10—H10B107.5
C2—C3—C4119.90 (9)C10—C11—C12110.35 (8)
C2—C3—H3120.0C10—C11—H11A109.6
C4—C3—H3120.0C12—C11—H11A109.6
O3—C4—C3125.89 (9)C10—C11—H11B109.6
O3—C4—C5114.05 (8)C12—C11—H11B109.6
C3—C4—C5120.05 (9)H11A—C11—H11B108.1
O2—C5—C6119.07 (9)C13—C12—C11115.10 (9)
O2—C5—C4121.58 (9)C13—C12—H12A108.5
C6—C5—C4119.35 (9)C11—C12—H12A108.5
C5—C6—C1120.85 (9)C13—C12—H12B108.5
C5—C6—H6119.6C11—C12—H12B108.5
C1—C6—H6119.6H12A—C12—H12B107.5
O1—C7—C1119.89 (9)C12—C13—C14112.55 (9)
O1—C7—C8120.53 (9)C12—C13—H13A109.1
C1—C7—C8119.57 (9)C14—C13—H13A109.1
C7—C8—H8A109.5C12—C13—H13B109.1
C7—C8—H8B109.5C14—C13—H13B109.1
H8A—C8—H8B109.5H13A—C13—H13B107.8
C7—C8—H8C109.5C13—C14—H14A109.5
H8A—C8—H8C109.5C13—C14—H14B109.5
H8B—C8—H8C109.5H14A—C14—H14B109.5
O3—C9—C10104.79 (8)C13—C14—H14C109.5
O3—C9—H9A110.8H14A—C14—H14C109.5
C10—C9—H9A110.8H14B—C14—H14C109.5
O3—C9—H9B110.8
C6—C1—C2—C30.25 (15)C4—C5—C6—C11.77 (15)
C7—C1—C2—C3179.74 (9)C2—C1—C6—C51.06 (15)
C1—C2—C3—C40.82 (16)C7—C1—C6—C5178.42 (9)
C9—O3—C4—C30.85 (15)C2—C1—C7—O12.66 (15)
C9—O3—C4—C5179.52 (8)C6—C1—C7—O1176.81 (10)
C2—C3—C4—O3179.50 (9)C2—C1—C7—C8178.05 (9)
C2—C3—C4—C50.10 (16)C6—C1—C7—C82.48 (15)
O3—C4—C5—O21.30 (14)C4—O3—C9—C10177.13 (8)
C3—C4—C5—O2178.35 (9)O3—C9—C10—C11177.50 (8)
O3—C4—C5—C6179.17 (8)C9—C10—C11—C12179.39 (8)
C3—C4—C5—C61.19 (15)C10—C11—C12—C13178.34 (8)
O2—C5—C6—C1177.78 (9)C11—C12—C13—C14178.39 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O30.84 (1)2.28 (2)2.6758 (10)110 (1)
O2—H2···O1i0.84 (1)1.96 (1)2.7634 (10)160 (2)
Symmetry code: (i) x, y+1, z.
Experimental details for (I) and (II). top
(I) (This work)(II) (Manzano et al., 2015)
Crystal system, space groupTriclinic, P1Orthorhombic, Pbca
Temperature (K)100170
a, b, c (Å)7.9565 (3), 8.5027 (3), 11.0842 (3)19.3847 (10), 9.0716 (4), 30.3953 (12)
α, β, γ (°)77.857 (3), 76.632 (3), 62.158 (4)90, 90, 90
V3)640.51 (4)5345.0 (4)
Z216
µ (mm-1)0.090.08
Crystal size (mm)0.25 × 0.18 × 0.120.32 × 0.26 × 0.18
No. of measured, independent and observed [I > 2σ(I)] reflections28336, 3221, 261218445, 6210, 3357
Rint0.0460.058
R[F2 > 2σ(F2)], wR(F2), S0.040, 0.111, 1.020.065, 0.186, 1.00
No. of reflections32216210
No. of parameters160365
No. of restraints112
Δρmax, Δρmin (e Å-3)0.32, -0.230.32, -0.27
Common to both determinations: Chemical formula: C14H20O3; Mr 236.30; Radiation: Mo Kα; Diffractometer: Oxford Diffraction Xcalibur CCD Eos Gemini; Absorption correction: Multi-scan (CrysAlis PRO; Oxford Diffraction, 2009); H-atom treatment: treated by a mixture of independent and constrained refinement.

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), SHELXTL (Sheldrick, 2008), SHELXL97, PLATON (Spek, 2009).
Selected torsion angles (°) top
(I)(II)Code
C6—C1—C2—C30.25 (15)-1.2 (4)*
C7—C1—C2—C3179.74 (9)177.8 (2)*
C1—C2—C3—C4-0.82 (16)0.6 (4)*
C9—O3—C4—C3-0.85 (15)-0.3 (3)*
C9—O3—C4—C5179.52 (8)179.26 (18)*
C2—C3—C4—O3-179.50 (9)-179.2 (2)*
C2—C3—C4—C50.10 (16)1.3 (3)*
O3—C4—C5—O21.30 (14)0.2 (3)*
C3—C4—C5—O2-178.35 (9)179.8 (2)*
O3—C4—C5—C6-179.17 (8)177.92 (19)*
C3—C4—C5—C61.19 (15)-2.5 (3)*
O2—C5—C6—C1177.78 (9)179.66 (19)*
C4—C5—C6—C1-1.76 (15)1.9 (3)*
C2—C1—C6—C51.06 (15)0.0 (3)*
C7—C1—C6—C5-178.42 (9)-179.0 (2)*
C4—O3—C9—C10-177.13 (8)173.43 (18)**
C9—C10—C11—C12179.39 (8)-171.0 (2)**
C10—C11—C12—C13-178.34 (8)176.9 (2)**
C11—C12—C13—C14178.39 (8)179.7 (2)**
C2—C1—C7—O1-2.66 (15)-169.7 (2)***
C6—C1—C7—O1176.81 (10)9.3 (3)***
C2—C1—C7—C8178.05 (9)11.5 (3)***
C6—C1—C7—C8-2.48 (15)-169.5 (2)***
O3—C9—C10—C11-177.50 (8)-65.7 (3)****
For code definition, see text.
Hydrogen-bond geometry for (I) and (II) (Å, °)
Cg1 is the centroid of the C1–C6 ring.
top
D—H···AD—HH···AD···AD—H···A
(I)O2A—H2OA···O1B0.95 (3)1.83 (3)2.735 (2)157 (2)
O2B—H2OB···O1Ai0.92 (3)1.89 (3)2.779 (2)162 (3)
(II)O2—H2'···O1i0.84 (1)1.96 (1)2.7634 (10)160 (2)
C9—H9B···Cg1ii0.972.853.7422 (13)153
C12—H12A···Cg1iii0.972.863.6436 (13)138
Symmetry code for (I): (i) x, -y+1/2, z-1/2. Symmetry codes for (II): (i) x, y+1, z; (ii) -x+2, -y, -z+2; (iii) -x+1, -y+1, -z+2.
Comaparative thermal expansion of the units cells in (I) and (II) [What is intended for the units of Δ?] top
(I)(II)
100 K295 KΔ (°/°°)170 K295 KΔ (°/°°)
a19.3847 (10)19.8299 (10)237.9565 (3)8.14 (2)24
b9.0716 (4)9.1277 (4)68.5027 (3)8.52 (2)3 *
c30.3953 (12)30.4885 (12)3 *11.0842 (3)11.25 (3)15
α909077.857 (3)76.4 (2)
β909076.632 (3)77.3 (2)
γ909062.158 (4)63.0 (3)
Volume5345.0 (4)5518.5 (4)32640.51 (4)670 (3)46
Note: (*) chain direction.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds