Download citation
Download citation
link to html
Coordination of the anions of benzene­carb­oxy­lic acids with metal cations leads to coordination polymers with various structural features. Very few examples of strontium-based structures have been reported. A new three-dimensional coordination polymer, namely poly[aqua­(μ12-benzene-1,2,4,5-tetra­carboxyl­ato)distrontium(II)], [Sr2(C10H2O8)(H2O)]n, has been synthesized under hydro­thermal conditions and characterized by thermal analysis, vibrational spectroscopy (Raman and IR), single-crystal X-ray diffraction and powder X-ray diffraction. The coordination geometries around the two independent SrII ions can be described as a distorted dodeca­hedron and a distorted monocapped square anti­prism. The compound features a three-dimensional structure con­­taining inorganic motifs, with two-dimensional layers connected through organic linkers, and possesses a topologic structure of a binodal (6,12) connected alb net with the Schläfli symbol {415}2{448.618}. The final product of thermal decomposition is strontium oxide (SrO).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229617003850/fn3228sup1.cif
Contains datablocks CH143, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229617003850/fn3228Isup2.hkl
Contains datablock I

CCDC reference: 1537009

Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: APEX2 (Bruker, 2011); data reduction: APEX2 (Bruker, 2011); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL (Sheldrick, 2008) within WinGX (Farrugia, 2012); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012) and CRYSCAL (T. Roisnel, local program).

Poly[aqua(µ12-benzene-1,2,4,5-tetracarboxylato)distrontium(II)] top
Crystal data top
[Sr2(C10H2O8)(H2O)]F(000) = 848
Mr = 443.37Dx = 2.714 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2975 reflections
a = 8.1694 (3) Åθ = 3.6–29.9°
b = 17.2478 (5) ŵ = 9.88 mm1
c = 7.7689 (2) ÅT = 295 K
β = 97.521 (1)°Cube, colorless
V = 1085.25 (6) Å30.15 × 0.14 × 0.14 mm
Z = 4
Data collection top
Bruker APEXII
diffractometer
1350 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
CCD rotation images, thin slices scansθmax = 30.0°, θmin = 3.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 1111
Tmin = 0.570, Tmax = 0.746k = 2324
5421 measured reflectionsl = 107
1576 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.050H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0232P)2 + 0.9793P]
where P = (Fo2 + 2Fc2)/3
1576 reflections(Δ/σ)max < 0.001
101 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.41 e Å3
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sr10.000000.22191 (1)0.250000.0125 (1)
Sr20.000000.17126 (2)0.250000.0177 (1)
O10.13337 (18)0.12155 (9)0.0374 (2)0.0176 (4)
O1W0.000000.01583 (14)0.250000.0256 (8)
O20.29995 (18)0.16737 (9)0.1860 (2)0.0172 (4)
O30.5143 (2)0.21210 (8)0.0560 (2)0.0177 (4)
O40.7637 (2)0.16316 (9)0.0831 (3)0.0283 (6)
C10.2720 (3)0.12313 (11)0.0560 (3)0.0124 (5)
C20.3962 (2)0.06262 (11)0.0233 (3)0.0115 (5)
C30.3458 (3)0.01361 (11)0.0457 (3)0.0132 (5)
C40.5528 (2)0.07662 (11)0.0234 (3)0.0113 (5)
C50.6158 (3)0.15688 (12)0.0566 (3)0.0144 (6)
H1W0.061 (5)0.009 (2)0.322 (5)0.049 (11)*
H30.241250.022550.076570.0159*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sr10.0141 (1)0.0104 (1)0.0130 (1)0.00000.0016 (1)0.0000
Sr20.0199 (2)0.0114 (1)0.0246 (2)0.00000.0136 (1)0.0000
O10.0148 (7)0.0176 (7)0.0193 (8)0.0055 (6)0.0015 (6)0.0004 (6)
O1W0.0271 (13)0.0181 (12)0.0310 (14)0.00000.0014 (11)0.0000
O20.0147 (7)0.0164 (7)0.0212 (8)0.0004 (6)0.0048 (6)0.0069 (6)
O30.0238 (8)0.0105 (7)0.0192 (8)0.0035 (6)0.0039 (6)0.0009 (6)
O40.0216 (9)0.0179 (8)0.0495 (12)0.0056 (7)0.0200 (8)0.0037 (8)
C10.0133 (9)0.0096 (8)0.0152 (9)0.0000 (7)0.0053 (7)0.0027 (8)
C20.0117 (9)0.0087 (9)0.0138 (9)0.0027 (7)0.0010 (7)0.0009 (7)
C30.0105 (9)0.0119 (9)0.0177 (10)0.0004 (7)0.0036 (7)0.0007 (8)
C40.0113 (9)0.0100 (8)0.0130 (9)0.0011 (7)0.0026 (7)0.0009 (7)
C50.0178 (10)0.0121 (9)0.0145 (10)0.0009 (8)0.0062 (8)0.0012 (8)
Geometric parameters (Å, º) top
Sr1—O12.5378 (15)Sr2—O4i3.022 (2)
Sr1—O4i2.6627 (18)Sr2—O4viii3.022 (2)
Sr1—O1ii2.5378 (15)O1—C11.263 (3)
Sr1—O4iii2.6627 (18)O2—C11.263 (3)
Sr1—O2iv2.5204 (15)O3—C51.263 (3)
Sr1—O3iv2.6520 (15)O4—C51.257 (3)
Sr1—O2v2.5204 (15)O1W—H1Wvi0.82 (4)
Sr1—O3v2.6520 (15)O1W—H1W0.82 (4)
Sr2—O12.7467 (15)C1—C21.500 (3)
Sr2—O1W2.681 (2)C2—C31.395 (3)
Sr2—O22.5642 (15)C2—C41.396 (2)
Sr2—O1vi2.7467 (15)C3—C4ix1.391 (3)
Sr2—O2vi2.5642 (15)C4—C51.511 (3)
Sr2—O3iv2.5073 (15)C3—H30.9300
Sr2—O3vii2.5073 (15)
O1—Sr1—O4i72.56 (5)O1vi—Sr2—O2vi48.96 (5)
O1—Sr1—O1ii93.99 (5)O1vi—Sr2—O3iv138.32 (5)
O1—Sr1—O4iii77.32 (6)O1vi—Sr2—O3vii75.76 (5)
O1—Sr1—O2iv100.16 (5)O1—Sr2—O4i64.30 (4)
O1—Sr1—O3iv76.99 (5)O1vi—Sr2—O4i113.88 (4)
O1—Sr1—O2v149.01 (5)O2vi—Sr2—O3iv99.62 (5)
O1—Sr1—O3v144.16 (5)O2vi—Sr2—O3vii82.82 (5)
O1ii—Sr1—O4i77.32 (6)O2—Sr2—O4i110.62 (5)
O4i—Sr1—O4iii135.26 (5)O2vi—Sr2—O4i69.24 (5)
O2iv—Sr1—O4i133.24 (6)O3iv—Sr2—O3vii73.28 (5)
O3iv—Sr1—O4i66.86 (6)O3iv—Sr2—O3vii73.28 (5)
O2v—Sr1—O4i83.78 (5)O3iv—Sr2—O4i63.14 (5)
O3v—Sr1—O4i136.03 (6)O3vii—Sr2—O4i121.73 (5)
O1ii—Sr1—O4iii72.56 (5)O1W—Sr2—O4i87.35 (3)
O1ii—Sr1—O2iv149.01 (5)Sr1—O1—Sr297.70 (5)
O1ii—Sr1—O3iv144.16 (5)Sr1—O1—C1129.46 (13)
O1ii—Sr1—O2v100.16 (5)Sr2—O1—C186.99 (13)
O1ii—Sr1—O3v76.99 (5)Sr2—O2—C195.37 (14)
O2iv—Sr1—O4iii83.78 (5)Sr1iv—O2—Sr2123.60 (6)
O3iv—Sr1—O4iii136.03 (6)Sr1iv—O2—C1131.33 (14)
O2v—Sr1—O4iii133.24 (6)Sr1iv—O3—C5115.65 (14)
O3v—Sr1—O4iii66.86 (6)Sr2iv—O3—C5125.57 (14)
O2iv—Sr1—O3iv66.52 (5)Sr1iv—O3—Sr2iv100.98 (5)
O2iv—Sr1—O2v81.48 (5)Sr1x—O4—C5152.44 (16)
O2iv—Sr1—O3v75.41 (5)H1W—O1W—H1Wvi117 (4)
O2v—Sr1—O3iv75.41 (5)Sr2—O1W—H1Wvi122 (3)
O3iv—Sr1—O3v129.17 (4)Sr2—O1W—H1W122 (3)
O2v—Sr1—O3v66.52 (5)O2—C1—C2120.0 (2)
O1—Sr2—O1W71.81 (3)O1—C1—C2117.60 (18)
O1—Sr2—O248.96 (5)O1—C1—O2121.8 (2)
O1—Sr2—O1vi143.62 (5)C1—C2—C3114.66 (17)
O1—Sr2—O2vi129.81 (5)C1—C2—C4125.94 (18)
O1—Sr2—O3iv75.76 (5)C3—C2—C4119.40 (18)
O1—Sr2—O3vii138.32 (5)C2—C3—C4ix122.0 (2)
O1W—Sr2—O288.50 (4)C3ix—C4—C5118.22 (18)
O1vi—Sr2—O1W71.81 (3)C2—C4—C5123.18 (17)
O1W—Sr2—O2vi88.50 (4)C2—C4—C3ix118.57 (18)
O1W—Sr2—O3iv143.36 (3)O3—C5—O4125.5 (2)
O1W—Sr2—O3vii143.36 (3)O3—C5—C4116.9 (2)
O1vi—Sr2—O2129.81 (5)O4—C5—C4117.60 (18)
O2—Sr2—O2vi177.00 (5)C2—C3—H3119.00
O2—Sr2—O3iv82.82 (5)C4ix—C3—H3119.00
O2—Sr2—O3vii99.62 (5)
O4i—Sr1—O1—Sr248.46 (5)O3iv—Sr2—O1—Sr122.44 (5)
O1ii—Sr1—O1—Sr2123.84 (5)O3vii—Sr2—O1—Sr165.44 (8)
O4iii—Sr1—O1—Sr2165.04 (6)Sr1—O1—C1—O271.4 (3)
O2iv—Sr1—O1—Sr283.85 (5)Sr2—O1—C1—O226.1 (2)
O3iv—Sr1—O1—Sr221.04 (5)Sr1—O1—C1—C2117.14 (17)
O2v—Sr1—O1—Sr26.49 (12)Sr2—O1—C1—C2145.36 (18)
O3v—Sr1—O1—Sr2162.96 (6)Sr2—O2—C1—O128.2 (2)
O4i—Sr1—O1—C1140.91 (19)Sr1iv—O2—C1—O1117.1 (2)
O1ii—Sr1—O1—C1143.72 (18)Sr2—O2—C1—C2143.05 (17)
O4iii—Sr1—O1—C172.60 (18)Sr1iv—O2—C1—C271.6 (2)
O2iv—Sr1—O1—C18.60 (19)Sr1iv—O3—C5—C489.2 (2)
O3iv—Sr1—O1—C171.41 (18)Sr1iv—O3—C5—O491.1 (3)
O2v—Sr1—O1—C198.93 (19)Sr2iv—O3—C5—O436.0 (3)
O3v—Sr1—O1—C170.5 (2)Sr2iv—O3—C5—C4143.71 (16)
O3—Sr1iv—O2—Sr2137.24 (8)Sr1x—O4—C5—C4138.3 (3)
O3—Sr1iv—O2—C10.03 (18)Sr1x—O4—C5—O341.4 (5)
O2—Sr1iv—O3—C590.66 (15)O1—C1—C2—C360.3 (3)
O1W—Sr2—O1—Sr1140.26 (5)O2—C1—C2—C3111.3 (2)
O2—Sr2—O1—Sr1115.30 (7)O2—C1—C2—C467.7 (3)
O1vi—Sr2—O1—Sr1140.26 (6)O1—C1—C2—C4120.7 (2)
O1W—Sr2—O1—C190.31 (11)C1—C2—C4—C3ix178.8 (2)
O2—Sr2—O1—C114.14 (11)C3—C2—C4—C5177.8 (2)
O1vi—Sr2—O1—C190.31 (13)C1—C2—C3—C4ix178.9 (2)
O2vi—Sr2—O1—C1162.27 (11)C4—C2—C3—C4ix0.2 (3)
O3iv—Sr2—O1—C1106.99 (12)C1—C2—C4—C53.2 (4)
O3vii—Sr2—O1—C163.99 (14)C3—C2—C4—C3ix0.2 (3)
O1—Sr2—O2—C114.18 (11)C2—C3—C4ix—C5ix177.9 (2)
O1W—Sr2—O2—C152.79 (12)C2—C3—C4ix—C2ix0.2 (3)
O1vi—Sr2—O2—C1117.43 (12)C3ix—C4—C5—O48.0 (3)
O3iv—Sr2—O2—C191.54 (12)C2—C4—C5—O36.3 (3)
O3vii—Sr2—O2—C1163.15 (12)C2—C4—C5—O4174.0 (2)
O1—Sr2—O2—Sr1iv135.00 (10)C3ix—C4—C5—O3171.7 (2)
O2vi—Sr2—O1—Sr168.30 (7)
Symmetry codes: (i) x1, y, z; (ii) x, y, z1/2; (iii) x+1, y, z1/2; (iv) x+1/2, y+1/2, z; (v) x1/2, y+1/2, z1/2; (vi) x, y, z+1/2; (vii) x1/2, y+1/2, z+1/2; (viii) x+1, y, z+1/2; (ix) x+1, y, z; (x) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O1xi0.82 (4)2.27 (4)3.010 (2)151 (4)
C3—H3···O4ix0.93002.43002.758 (3)101.00
Symmetry codes: (ix) x+1, y, z; (xi) x, y, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds