Download citation
Download citation
link to html
Weak inter­actions between organic mol­ecules are important in solid-state structures where the sum of the weaker inter­actions support the overall three-dimensional crystal structure. The sp-C—H...N hydrogen-bonding inter­action is strong enough to promote the deliberate cocrystallization of a series of diynes with a series of di­pyridines. It is also possible that a similar series of cocrystals could be formed between molecules containing a terminal alkyne and molecules which contain carbonyl O atoms as the potential hydrogen-bond acceptor. I now report the crystal structure of two cocrystals that support this hypothesis. The 1:1 cocrystal of 1,4-diethynyl­benzene with 1,3-di­acetyl­benzene, C10H6·C10H10O2, (1), and the 1:1 cocrystal of 1,4-diethynyl­benzene with benzene-1,4-dicarbaldehyde, C10H6·C8H6O2, (2), are presented. In both cocrystals, a strong nonconventional ethyn­yl–carbonyl sp-C—H...O hydrogen bond is observed between the components. In cocrystal (1), the C—H...O hydrogen-bond angle is 171.8 (16)° and the H...O and C...O hydrogen-bond distances are 2.200 (19) and 3.139 (2) Å, respectively. In cocrystal (2), the C—H...O hydrogen-bond angle is 172.5 (16)° and the H...O and C...O hydrogen-bond distances are 2.25 (2) and 3.203 (2) Å, respectively.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229616014972/fn3222sup1.cif
Contains datablocks 1, 2

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229616014972/fn32221sup2.hkl
Contains datablock 1

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229616014972/fn32221sup4.cml
Supplementary material

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229616014972/fn32222sup3.hkl
Contains datablock 2

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229616014972/fn32222sup5.cml
Supplementary material

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229616014972/fn3222sup6.pdf
Scatterplots relating to CSD searches

CCDC references: 1505708; 1505707

Computing details top

For both compounds, data collection: SMART (Bruker, 2012); cell refinement: SMART (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: X-SEED (Barbour, 2001).

(1) 1-(3-Acetylphenyl)ethan-1-one–1,4-diethynylbenzene (1/1) top
Crystal data top
C10H6·C10H10O2F(000) = 608
Mr = 288.33Dx = 1.229 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 19.749 (10) ÅCell parameters from 2546 reflections
b = 7.284 (3) Åθ = 2.6–27.0°
c = 13.374 (7) ŵ = 0.08 mm1
β = 125.890 (13)°T = 173 K
V = 1558.6 (13) Å3Irregular, yellow
Z = 40.43 × 0.33 × 0.32 mm
Data collection top
Bruker APEXII CCD
diffractometer
1741 independent reflections
Radiation source: fine-focus sealed tube1356 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.079
Detector resolution: 8.3660 pixels mm-1θmax = 27.2°, θmin = 2.6°
phi and ω scansh = 2525
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
k = 99
Tmin = 0.492, Tmax = 0.746l = 1717
9573 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.051H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.159 w = 1/[σ2(Fo2) + (0.1007P)2 + 0.1951P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
1741 reflectionsΔρmax = 0.28 e Å3
106 parametersΔρmin = 0.30 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.39785 (6)0.49943 (17)0.42438 (9)0.0420 (4)
C10.50000.7982 (3)0.75000.0418 (5)
H10.50000.92860.75000.050*
C20.46566 (9)0.7038 (2)0.64051 (14)0.0367 (4)
H20.44230.76970.56570.044*
C30.46517 (8)0.5125 (2)0.63941 (12)0.0292 (4)
C40.50000.4185 (3)0.75000.0290 (5)
H40.50000.28810.75000.035*
C50.42691 (9)0.4141 (2)0.51946 (13)0.0314 (4)
C60.42518 (11)0.2082 (2)0.51840 (14)0.0445 (4)
H6A0.39750.16400.43370.067*
H6B0.39440.16500.55060.067*
H6C0.48250.16110.57030.067*
C70.25624 (9)1.4300 (2)0.03752 (13)0.0351 (4)
H70.26061.55370.06320.042*
C80.28409 (9)1.2900 (2)0.12288 (13)0.0343 (4)
H80.30721.31770.20660.041*
C90.27822 (9)1.1082 (2)0.08614 (13)0.0326 (4)
C100.30741 (10)0.9613 (2)0.17345 (14)0.0380 (4)
C110.33131 (11)0.8371 (3)0.24456 (16)0.0472 (5)
H110.3485 (11)0.740 (3)0.3019 (16)0.059 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0521 (7)0.0392 (7)0.0296 (6)0.0050 (5)0.0211 (5)0.0075 (4)
C10.0543 (13)0.0211 (10)0.0487 (13)0.0000.0295 (11)0.000
C20.0454 (9)0.0262 (8)0.0387 (9)0.0034 (6)0.0249 (7)0.0059 (6)
C30.0335 (7)0.0239 (7)0.0307 (8)0.0007 (5)0.0191 (6)0.0018 (5)
C40.0356 (10)0.0215 (10)0.0299 (10)0.0000.0192 (8)0.000
C50.0343 (7)0.0305 (8)0.0275 (7)0.0004 (5)0.0171 (6)0.0019 (5)
C60.0630 (10)0.0305 (8)0.0310 (8)0.0074 (7)0.0226 (8)0.0044 (6)
C70.0419 (8)0.0249 (7)0.0349 (8)0.0028 (6)0.0204 (7)0.0014 (6)
C80.0404 (8)0.0306 (8)0.0291 (7)0.0019 (6)0.0187 (6)0.0006 (5)
C90.0330 (7)0.0304 (8)0.0313 (7)0.0028 (6)0.0171 (6)0.0047 (6)
C100.0422 (8)0.0326 (8)0.0358 (8)0.0020 (6)0.0210 (7)0.0029 (6)
C110.0562 (10)0.0390 (9)0.0386 (9)0.0040 (7)0.0234 (8)0.0097 (7)
Geometric parameters (Å, º) top
O1—C51.2154 (17)C5—C61.500 (2)
C1—C21.383 (2)C7—C81.382 (2)
C1—C2i1.383 (2)C7—C9ii1.398 (2)
C2—C31.394 (2)C8—C91.394 (2)
C3—C41.3915 (17)C9—C7ii1.398 (2)
C3—C51.496 (2)C9—C101.432 (2)
C4—C3i1.3915 (17)C10—C111.192 (2)
C2—C1—C2i120.4 (2)C3—C5—C6118.92 (12)
C1—C2—C3120.29 (15)C8—C7—C9ii120.83 (14)
C4—C3—C2118.99 (14)C7—C8—C9119.97 (14)
C4—C3—C5121.89 (14)C8—C9—C7ii119.20 (13)
C2—C3—C5119.12 (13)C8—C9—C10120.80 (14)
C3i—C4—C3121.06 (19)C7ii—C9—C10120.00 (14)
O1—C5—C3120.58 (14)C11—C10—C9178.91 (17)
O1—C5—C6120.49 (13)
C2i—C1—C2—C30.14 (9)C2—C3—C5—O11.2 (2)
C1—C2—C3—C40.27 (19)C4—C3—C5—C60.77 (18)
C1—C2—C3—C5179.45 (10)C2—C3—C5—C6178.94 (14)
C2—C3—C4—C3i0.14 (9)C9ii—C7—C8—C90.2 (2)
C5—C3—C4—C3i179.58 (13)C7—C8—C9—C7ii0.2 (2)
C4—C3—C5—O1179.06 (11)C7—C8—C9—C10179.46 (13)
Symmetry codes: (i) x+1, y, z+3/2; (ii) x+1/2, y+5/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O10.946 (19)2.200 (19)3.139 (2)171.8 (16)
C8—H8···O1iii0.952.713.607 (3)158
Symmetry code: (iii) x, y+1, z.
(2) Benzene-1,4-dicarbaldehyde–1,4-diethynylbenzene (1/1) top
Crystal data top
C10H6·C8H6O2F(000) = 272
Mr = 260.28Dx = 1.289 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.6207 (11) ÅCell parameters from 1102 reflections
b = 8.5205 (13) Åθ = 3.1–24.9°
c = 10.3361 (15) ŵ = 0.08 mm1
β = 91.762 (3)°T = 100 K
V = 670.83 (17) Å3Cut block, gold
Z = 20.30 × 0.30 × 0.30 mm
Data collection top
Bruker APEXII CCD
diffractometer
1490 independent reflections
Radiation source: fine-focus sealed tube1093 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
Detector resolution: 8.3660 pixels mm-1θmax = 27.2°, θmin = 2.7°
phi and ω scansh = 99
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
k = 1010
Tmin = 0.657, Tmax = 0.746l = 1313
8561 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.129 w = 1/[σ2(Fo2) + (0.0533P)2 + 0.2043P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
1490 reflectionsΔρmax = 0.32 e Å3
95 parametersΔρmin = 0.20 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.69613 (16)0.50487 (14)0.33121 (11)0.0334 (3)
C10.8014 (2)0.49771 (18)0.63352 (16)0.0271 (4)
H10.760 (2)0.496 (2)0.545 (2)0.044 (6)*
C20.85696 (19)0.49781 (17)0.74283 (14)0.0225 (4)
C30.92830 (18)0.49889 (17)0.87346 (14)0.0207 (4)
C40.95879 (19)0.35766 (18)0.94029 (14)0.0228 (4)
H40.93060.26060.89960.027*
C51.02972 (19)0.35893 (18)1.06519 (14)0.0227 (4)
H51.05000.26271.10960.027*
C60.4196 (2)0.38565 (18)0.07825 (15)0.0241 (4)
H60.36430.30840.13170.029*
C70.49060 (19)0.34502 (19)0.04163 (15)0.0245 (4)
H70.48510.23940.07060.029*
C80.57054 (18)0.45918 (19)0.12032 (14)0.0220 (4)
C90.6419 (2)0.4130 (2)0.24911 (14)0.0272 (4)
H90.64570.30430.26930.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0375 (7)0.0406 (8)0.0216 (6)0.0040 (5)0.0072 (5)0.0030 (5)
C10.0314 (9)0.0262 (9)0.0231 (9)0.0011 (7)0.0047 (7)0.0011 (7)
C20.0242 (8)0.0203 (8)0.0228 (8)0.0001 (6)0.0013 (6)0.0014 (6)
C30.0177 (7)0.0263 (8)0.0183 (8)0.0004 (6)0.0002 (6)0.0007 (6)
C40.0247 (8)0.0222 (8)0.0214 (8)0.0010 (6)0.0023 (6)0.0033 (6)
C50.0245 (8)0.0223 (8)0.0212 (8)0.0000 (6)0.0017 (6)0.0015 (6)
C60.0237 (8)0.0259 (8)0.0227 (8)0.0011 (6)0.0007 (6)0.0035 (6)
C70.0261 (8)0.0233 (8)0.0242 (8)0.0000 (6)0.0005 (6)0.0020 (6)
C80.0183 (7)0.0285 (9)0.0192 (8)0.0020 (6)0.0012 (6)0.0006 (6)
C90.0270 (8)0.0327 (10)0.0217 (9)0.0028 (7)0.0008 (7)0.0017 (7)
Geometric parameters (Å, º) top
O1—C91.2173 (19)C5—C3i1.400 (2)
C1—C21.194 (2)C6—C71.381 (2)
C2—C31.440 (2)C6—C8ii1.395 (2)
C3—C5i1.400 (2)C7—C81.396 (2)
C3—C41.403 (2)C8—C6ii1.395 (2)
C4—C51.384 (2)C8—C91.476 (2)
C1—C2—C3178.54 (16)C7—C6—C8ii119.60 (14)
C5i—C3—C4119.14 (14)C6—C7—C8120.01 (15)
C5i—C3—C2120.31 (13)C6ii—C8—C7120.38 (14)
C4—C3—C2120.54 (13)C6ii—C8—C9120.80 (14)
C5—C4—C3120.42 (14)C7—C8—C9118.81 (15)
C4—C5—C3i120.43 (14)O1—C9—C8124.42 (16)
C5i—C3—C4—C50.1 (2)C6—C7—C8—C6ii0.5 (2)
C2—C3—C4—C5179.07 (13)C6—C7—C8—C9178.68 (14)
C3—C4—C5—C3i0.1 (2)C6ii—C8—C9—O17.8 (2)
C8ii—C6—C7—C80.5 (2)C7—C8—C9—O1171.33 (15)
Symmetry codes: (i) x+2, y+1, z+2; (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O10.96 (2)2.25 (2)3.203 (2)172.5 (16)
C7—H7···O1iii0.952.653.502 (2)150
Symmetry code: (iii) x+1, y1/2, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds