Download citation
Download citation
link to html
The involvement of two different alkali cations in the nona­germanide ammoniate Cs3.2Na0.8Ge9·5.3NH3 [tricaesium sodium nona­germanide-ammonia (1/5.3)] provides insights into the coordination behaviour of ammonia towards sodium and caesium cations within one compound and represents the first mixed-cationic solvate structure of nona­germanide tetra­anions. The compound crystallizes in the monoclinic space group P21/m and, with the presence of pseudomerohedral twinning, mixed-cation sites and disordering of the nona­germanide cage anions, features a combination of crystallographic challenges which could all be resolved during the refinement.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229614021998/fn3177sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614021998/fn3177Isup2.hkl
Contains datablock I

CCDC reference: 1027778

Introduction top

Germanide Zintl phases containing homoatomic nine-atom Ge94- cage anions [A4Ge9 (A = K, Rb, Cs; Ponou & Fässler, 2007; Queneau & Sevov, 1997) and A12Ge17 (A = Na, K, Rb, Cs; Von Schnering et al., 1997; Hoch et al., 2003)] are known to be readily soluble in solutions of ethyl­enedi­amine or liquid ammonia. The involvement of chelating reagents like 18-crown-6 or 2.2.2-cryptand during dissolution results in crystal structures including predominantly the oxidised variants of the cluster anion Ge93- or Ge92- (Belin et al., 1977; Angilella & Belin, 1991; Fässler & Hunziker, 1994; Fässler & Schütz, 1999; Downie et al., 2001). In contrast, the number of known pure solvate structures without further additives is limited to four, viz. two ammoniates, K4Ge9·9NH3 and Rb4Ge9·5NH3 (Suchentrunk et al., 2005), and two ethyl­enedi­amine (en) solvates, Rb4Ge9·en (Somer et al., 1998) and Cs4Ge9·en (Carrillo-Cabrera et al., 2007). Concerning sodium, no solvate-containing nonagermanide anions have been reported at all, which may be attributed to poorly soluble starting materials like Na4Ge4 or Na12Ge17. To investigate the effect of different cations on the solubility and the solvate crystal structures formed, mixed-cation materials (Rb, K) have been used in the past during dissolution experiments yielding new crystal structures of, for example, (K–18-crown-6)(Rb–18-crown-6)2Ge9·6NH3 (Suchentrunk & Korber, 2006) and (K–18-crown-6)2Rb2Ge9·2en (Hauptmann & Fässler, 2003). However, concerning pure solvate structures, no mixed-cationic compound has been reported. We present here the crystal structure of Cs3.2Na0.8Ge9·5.3NH3, which allows for the investigation of the coordination of sodium and caesium cations by ammonia molecules within one nonagermanide compound.

Experimental top

Synthesis and crystallization top

For the synthesis of the starting material Na2Cs2Ge9 (nominal composition), sodium (0.1 g, 4.3 mmol), caesium (0.5 g, 3.8 mmol) and germanium (1.4 g, 19.3 mmol) were placed in a baked-out Duran glass ampoule and sealed under argon. The ampoule was placed in a second quartz glass ampoule for safety and heated to 743.15 K at a rate of 10 K h-1. The temperature was maintained for 72 h. Afterwards, the reaction product was cooled at a rate of 20 K h-1. The grey precursor phase was stored in a glove-box under argon. Na2Cs2Ge9 (0.2 g, 0.2 mmol) and dibenzo-18-crown-6 (0.149 g, 0.4 mmol) were placed in a Schlenk tube which had previously been dried in vacuo. The subsequent condensation of NH3 (approximately 15 ml) onto the mixture yielded a deep-yellow solution. After storage of the reaction mixture for one year at 235.15 K, brown and very temperature- and moisture-labile crystals of Cs3.2Na0.8Ge9·5.3NH3 were obtained. A suitable crystal was isolated in nitro­gen-cooled perflourether oil and mounted on the goniometer of an IPDS diffractometer for data collection at 123 K.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. Indexation of the collected reflections (X-AREA; Stoe & Cie, 2002) at first suggested tetra­gonal or orthorhombic primitive symmetry. The tetra­gonal Laue group was discarded due to very high inter­nal R values and refinement in the orthorhombic crystal system also did not succeed, therefore a monoclinic space group with a monoclinic β angle of 90.06° was applied and analysis of the systematic absences provided the space group P21/m, which was also supported by structure solution using charge-flipping methods (Palatinus & Chapuis, 2007). The refinement of F2 against all reflections for all non-H atoms yielded converging R values, with an R factor of 0.197 and a corresponding wR2 of 0.423 {weighting scheme w = 1/[σ2(Fo2) + (0.0000P)2 + 2487.8052P], where P = (Fo2 + 2Fc2)/3}. Two strong reflections hkl (-12,0,4 and 120) are attributed to readout-head failures of the IPDS diffractometer and were omitted in subsequent refinement. The unsatisfying R values, together with the orthorhombic Laue symmetry suggested at the beginning of the structure solution, implied pseudomerohedral twinning which could be resolved by introducing a twofold rotational axis parallel to the crystallographic c axis (100 010 001), which is not a symmetry element of the monoclinic crystal system but the orthorhombic. The BASF parameter (SHELXL97; Sheldrick, 2008) refined to a value of 0.4358 (8).

The E2 - 1 mean value of 0.792 [expected centrosymmetric = 0.968; noncentrosymmetric = 0.736; X-PREP in WinGX (Farrugia, 2012)] did not exclude a noncentrosymmetric variant in combination with an inversion twin. Therefore, the refinement of the noncentrosymmetric inversion-twinned variant with the applied twin law 100 010 001 and three BASF parameters for the space group P21 was tested, but did not yield a model as good as for the centrosymmetric case (worse R factors, nonpositive definite atoms, many EADP restraints necessary to stabilize the refinement). Therefore, the suggested correct space group for the compund is P21/m. Concerning the resolution of the disorder of the nonagermanide anions (see Results and discussion), a modulation could be excluded due to the absence of a supercell, which was checked by the JANA2006 software (Petříček et al., 2006).

All cation positions were carefully investigated for mixed occupancy due to the presence of two different alkali cations. The final R factors are given in Table 1; they represent the model which takes mixed occupancy and the disordering of the Ge94- cage anions into account.

The H atoms could not be located by difference Fourier synthesis. Construction using a riding model (HFIX) was also not possible, as the ammonia molecules are not exclusively bonded to one cation and the direction of the nitro­gen lone pair could not be determined reliably. The involvement of water for this moisture-sensitive class of materials can be excluded.

Results and discussion top

Cs3.2Na0.8Ge9·5.3NH3 crystallizes in the monoclinic space group P21/m. The asymmetric unit contains nine Cs atoms, four of which are located on special positons (mirror plane, Wyckoff position 2e). One Cs position has shared occupancy with sodium [Cs:Na site-occupancy factor ratio = 0.410 (4):0.590 (4)], and one Na atom is located on a general position (Wyckoff position 4f). The anionic moiety is represented by three Ge94- anions. One anion (Ge1–Ge9) is located on general positions, of which for four atoms (Ge1/Ge1A, Ge3/Ge3A, Ge5/Ge5A and Ge8/Ge8A) disordering could be resolved [0.916 (9):0.084 (9)]. Two nonagermanide clusters are located on the mirror plane of the space group P21/m and two different orientations of the anions could be resolved for both clusters in a 0.50:0.50 ratio implied by the mirror plane. The mirror plane of space group P21/m is not a symmetry element of the two individual Ge9 cage anions but of the the disordered average structure. Fig. 1 shows the disorder of the nonagermanide anions, where Ge22 is the apical atom of the distorted monocapped square anti­prism.

The coordination environments of the Cs cations are occupied by three to four nonagermanide clusters, coordinating via their corners, edges or triangular faces, and additionally by three to six ammonia molecules. This arrangement represents a fair amount of flexibility. In Fig. 2, two examples of the observed coordination modes of the Cs cations are given.

The cationic site which is fully occupied by sodium (Na1) shows a completely different coordination mode, as no direct contacts to cluster anions are present. Here, the first coordination sphere is built by five ammonia molecules in a distorted trigonal–bipyramidal manner. The Na—N distances of the equatorial ammonia molecules (N1, N2 and N3) are significantly shorter than the remaining Na—N distances (N4 and N5) of the complex (Table 2). The low precision in the Na1—N5 distance is due to disordering of atom N5 (Table 2).

Attention must be drawn to the mixed-cation site [Na2:Cs2 = 0.590 (4):0.410 (4)] (Fig. 3). Here, we find four ammonia molecules for the coordination of Cs2, together with five contacts to Ge atoms (Ge1, Ge2, Ge5, Ge6 and Ge11) of three different nonagermanide anions, whereas in the case of sodium Na2, one additional ammonia molecule (N10) is present (same site-occupancy factor as Na2). Consequently, this leads to an increased number of ammonia contacts (five) and a concurrent reduction of germanide coordination to only one Na···Ge contact. This observation demonstrates the applicability of the HSAB [hard and soft (Lewis) acids and bases] principle for this kind of material: the soft Cs cations favour coordination by the soft nonagermanide anions, whereas the hard Na cation is preferentially coordinated by the hard base ammonia. The cation–nitro­gen distances are given in Table 3 and are in perfect agreement with known ammoniate structures. A remarkable observation is the possibility of a chemically plausible exchange of the cation positions Cs2/Na2 in the average structure, while the ammonia positions N6, N7, N8 and N9 stay in their places.

Related literature top

For related literature, see: Angilella & Belin (1991); Belin et al. (1977); Carrillo-Cabrera, Aydemir, Somer, Kircali, Fässler & Hoffmann (2007); Downie et al. (2001); Fässler & Hunziker (1994); Fässler & Schütz (1999); Farrugia (2012); Hauptmann & Fässler (2003); Hoch et al. (2003); Palatinus & Chapuis (2007); Petříček et al. (2006); Ponou & Fässler (2007); Queneau & Sevov (1997); Sheldrick (2008); Somer et al. (1998); Stoe & Cie (2002); Suchentrunk & Korber (2006); Suchentrunk et al. (2005); Von Schnering, Baitinger, Bolle, Carrillo-Cabrera, Curda, Grin, Heinemann, Llanos, Peters, Schmeding & Somer (1997).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-AREA (Stoe & Cie, 2002); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2012); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The disordered Ge94- cage anion resolves into two orientations, where Ge22 is the apical atom of the distorted monocapped square antisprism. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (#11) x, -y+1/3, z.]
[Figure 2] Fig. 2. The coordination modes for the Cs cations in the title germanide ammoniate structure. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (#4) -x+2, -y, -z+2; (#5) x-1, y, z; (#6) -x+2, -y, -z+1; (#9) x-1, -y-0.5, z; (#10) x, -y-0.5, z; (#14 -x+1, y-0.5, -z+2.]
[Figure 3] Fig. 3. The coordination of the mixed-cation position Cs2/Na2 by ammonia and nonagermanide anions. Corresponding distances are given in Table 3. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (#9) x, -y-0.5, z; (#10) -x+2, -y, -z+1; (#12) -x+2, y-0.5, -z+1.]
Tricaesium sodium nonagermanide–ammonia (1/5.3) top
Crystal data top
Cs3.2Na0.8Ge9·5.3NH3Z = 8
Mr = 1187.75F(000) = 4208
Monoclinic, P21/mDx = 3.219 Mg m3
a = 13.535 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 18.982 (5) ŵ = 15.57 mm1
c = 19.080 (5) ÅT = 123 K
β = 90.060 (5)°Needle, brown
V = 4902 (3) Å30.1 × 0.03 × 0.02 mm
Data collection top
Stoe IPDS
diffractometer
8906 independent reflections
Radiation source: fine-focus sealed tube8165 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.110
rotation scansθmax = 25.5°, θmin = 2.1°
Absorption correction: analytical
from crystal shape (X-AREA; Stoe & Cie, 2002)
h = 1515
Tmin = 0.17, Tmax = 0.55k = 2222
47511 measured reflectionsl = 2223
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037H-atom parameters not defined
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.0474P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
8906 reflectionsΔρmax = 1.45 e Å3
424 parametersΔρmin = 1.29 e Å3
0 restraints
Crystal data top
Cs3.2Na0.8Ge9·5.3NH3V = 4902 (3) Å3
Mr = 1187.75Z = 8
Monoclinic, P21/mMo Kα radiation
a = 13.535 (5) ŵ = 15.57 mm1
b = 18.982 (5) ÅT = 123 K
c = 19.080 (5) Å0.1 × 0.03 × 0.02 mm
β = 90.060 (5)°
Data collection top
Stoe IPDS
diffractometer
8906 independent reflections
Absorption correction: analytical
from crystal shape (X-AREA; Stoe & Cie, 2002)
8165 reflections with I > 2σ(I)
Tmin = 0.17, Tmax = 0.55Rint = 0.110
47511 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.091H-atom parameters not defined
S = 1.01Δρmax = 1.45 e Å3
8906 reflectionsΔρmin = 1.29 e Å3
424 parameters
Special details top

Experimental. Data were collected applying an imaging-plate system (Stoe) with the following measurement parameters:

Detector distance (mm) 70 Phi movement mode Oscillation Phi incr. (degrees) 1.0 Number of exposures 285 Irradiation / exposure (min) 6.00

For a detailed description of the method see: Sheldrick, G. M., Paulus, E. Vertesy, L. & Hahn, F. (1995). Acta Cryst. B51, 89–98.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cs80.79113 (6)0.25000.74490 (5)0.02878 (17)
Cs30.68748 (7)0.25000.75859 (5)0.0386 (2)
Cs11.31308 (5)0.12900 (3)0.74631 (5)0.04521 (17)
Cs70.65094 (6)0.03112 (3)0.91258 (4)0.04172 (18)
Cs60.65476 (7)0.03284 (4)0.59538 (4)0.0467 (2)
Cs51.15731 (9)0.25000.89984 (5)0.0430 (2)
Cs90.94377 (5)0.13156 (3)1.04498 (3)0.03086 (14)
Ge180.62383 (13)0.25000.91985 (8)0.0313 (3)
Cs41.13580 (10)0.25000.63261 (6)0.0520 (3)
Ge61.03329 (9)0.09541 (4)0.74882 (7)0.0370 (2)
Ge21.09210 (10)0.02042 (6)0.68909 (6)0.0367 (3)
Ge110.64437 (10)0.18222 (5)0.46390 (6)0.0353 (3)
Ge100.61098 (14)0.25000.57993 (8)0.0333 (4)
Ge190.65823 (9)0.18246 (5)1.03669 (6)0.0301 (2)
Ge40.81928 (8)0.05640 (4)0.76013 (5)0.0288 (2)
Ge140.35832 (16)0.25000.45545 (10)0.0512 (5)
Ge71.10153 (10)0.00959 (5)0.82414 (6)0.0341 (3)
Ge210.37126 (12)0.25001.04350 (8)0.0313 (3)
Ge250.4726 (2)0.17020 (15)0.94963 (18)0.0387 (6)0.50
Ge130.4609 (2)0.15394 (13)0.41330 (16)0.0423 (6)0.50
Ge150.4640 (2)0.16762 (13)0.54767 (16)0.0397 (6)0.50
Ge80.92767 (13)0.03725 (16)0.87139 (10)0.0341 (5)0.916 (10)
Ge50.8990 (2)0.04278 (13)0.66952 (10)0.0386 (6)0.916 (10)
Ge230.4845 (2)0.13453 (12)1.0434 (2)0.0405 (6)0.50
Ge10.93348 (14)0.09102 (15)0.65930 (11)0.0363 (5)0.916 (10)
Ge31.00968 (14)0.12064 (8)0.78015 (17)0.0335 (4)0.916 (10)
Cs21.06415 (17)0.11836 (10)0.54204 (9)0.0408 (8)0.410 (4)
Ge170.4755 (2)0.13244 (11)0.46336 (18)0.0437 (6)0.50
Ge160.4292 (3)0.20199 (16)0.57662 (14)0.0460 (7)0.50
Ge240.4447 (3)0.19788 (18)0.92605 (15)0.0405 (7)0.50
Ge220.4764 (2)0.14963 (14)1.08287 (19)0.0388 (6)0.50
Ge200.5433 (2)0.26798 (10)1.12886 (11)0.0360 (7)0.50
Na21.0011 (7)0.1806 (4)0.5519 (4)0.0450 (19)0.590 (4)
Na11.4428 (3)0.04442 (16)0.7476 (2)0.0346 (8)
Ge120.5275 (2)0.22625 (12)0.37182 (11)0.0393 (6)0.50
N80.8879 (11)0.25000.6294 (8)0.040 (3)
N71.1234 (9)0.25000.6326 (6)0.030 (3)
N61.0923 (13)0.25000.4500 (7)0.045 (3)
N90.8445 (9)0.1223 (4)0.4876 (4)0.042 (3)
N21.5669 (7)0.1375 (4)0.7501 (5)0.0364 (19)
N41.5672 (7)0.0593 (4)0.7494 (6)0.040 (2)
N31.3656 (8)0.0088 (5)0.6332 (5)0.038 (2)
N11.3733 (8)0.0089 (4)0.8620 (5)0.038 (2)
N51.3166 (11)0.1495 (9)0.7517 (13)0.108 (6)
N140.9059 (12)0.25000.9211 (6)0.036 (3)
N131.1792 (9)0.3919 (5)0.9955 (5)0.043 (2)
N121.0970 (13)0.25001.1145 (7)0.041 (3)
N111.1724 (11)0.25000.8096 (7)0.036 (3)
N101.1135 (14)0.0847 (8)0.5282 (8)0.033 (3)0.590 (4)
Ge90.86032 (10)0.07020 (5)0.80071 (6)0.0378 (3)
Ge5A0.867 (2)0.0599 (13)0.6808 (12)0.0386 (6)0.084 (10)
Ge8A0.9203 (18)0.0601 (15)0.8612 (12)0.0341 (5)0.084 (10)
Ge3A1.0157 (18)0.1165 (10)0.7556 (16)0.0335 (4)0.084 (10)
Ge1A0.930 (2)0.0699 (14)0.6469 (13)0.0363 (5)0.084 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cs80.0330 (5)0.0154 (3)0.0379 (4)0.0000.0010 (4)0.000
Cs30.0368 (6)0.0442 (4)0.0350 (4)0.0000.0005 (4)0.000
Cs10.0447 (4)0.0250 (3)0.0659 (4)0.0089 (2)0.0007 (4)0.0060 (3)
Cs70.0453 (5)0.0276 (3)0.0524 (4)0.0094 (3)0.0171 (4)0.0112 (3)
Cs60.0574 (6)0.0344 (3)0.0483 (4)0.0125 (3)0.0116 (4)0.0084 (3)
Cs50.0406 (7)0.0402 (5)0.0482 (5)0.0000.0079 (5)0.000
Cs90.0367 (4)0.0225 (2)0.0334 (3)0.0003 (2)0.0009 (3)0.0010 (2)
Ge180.0309 (10)0.0342 (7)0.0287 (7)0.0000.0034 (6)0.000
Cs40.0522 (8)0.0434 (5)0.0603 (6)0.0000.0042 (6)0.000
Ge60.0422 (7)0.0219 (4)0.0469 (6)0.0116 (4)0.0012 (6)0.0029 (5)
Ge20.0359 (7)0.0380 (5)0.0362 (5)0.0031 (5)0.0098 (5)0.0004 (4)
Ge110.0523 (8)0.0152 (4)0.0385 (5)0.0046 (4)0.0043 (5)0.0016 (4)
Ge100.0404 (11)0.0313 (7)0.0280 (7)0.0000.0041 (6)0.000
Ge190.0377 (7)0.0152 (4)0.0375 (5)0.0033 (4)0.0012 (5)0.0005 (3)
Ge40.0308 (6)0.0173 (4)0.0382 (5)0.0040 (3)0.0039 (4)0.0011 (4)
Ge140.0314 (12)0.0776 (13)0.0444 (9)0.0000.0050 (8)0.000
Ge70.0335 (7)0.0321 (5)0.0367 (5)0.0024 (4)0.0025 (5)0.0014 (4)
Ge210.0246 (9)0.0359 (7)0.0333 (7)0.0000.0014 (6)0.000
Ge250.0404 (18)0.0294 (13)0.0463 (16)0.0040 (12)0.0013 (13)0.0177 (12)
Ge130.0414 (17)0.0283 (10)0.0572 (16)0.0031 (10)0.0061 (12)0.0184 (11)
Ge150.0391 (16)0.0300 (11)0.0498 (14)0.0073 (10)0.0024 (12)0.0186 (11)
Ge80.0365 (8)0.0380 (12)0.0280 (7)0.0001 (7)0.0031 (5)0.0053 (7)
Ge50.0560 (14)0.0247 (8)0.0351 (7)0.0063 (8)0.0117 (8)0.0108 (6)
Ge230.0374 (16)0.0119 (10)0.072 (2)0.0046 (9)0.0031 (16)0.0073 (12)
Ge10.0438 (8)0.0296 (11)0.0356 (8)0.0022 (7)0.0032 (6)0.0081 (7)
Ge30.0378 (8)0.0165 (5)0.0463 (13)0.0044 (4)0.0025 (8)0.0028 (7)
Cs20.0516 (15)0.0358 (12)0.0351 (9)0.0079 (9)0.0014 (8)0.0085 (7)
Ge170.0392 (16)0.0149 (9)0.077 (2)0.0038 (9)0.0047 (14)0.0026 (11)
Ge160.052 (2)0.0490 (15)0.0365 (12)0.0202 (14)0.0049 (12)0.0093 (11)
Ge240.040 (2)0.0455 (16)0.0363 (14)0.0178 (14)0.0076 (12)0.0178 (12)
Ge220.0389 (17)0.0217 (12)0.0559 (17)0.0058 (10)0.0016 (14)0.0170 (12)
Ge200.0365 (15)0.0445 (19)0.0269 (9)0.0071 (9)0.0008 (8)0.0045 (7)
Na20.048 (5)0.040 (4)0.047 (4)0.001 (3)0.001 (4)0.011 (3)
Na10.034 (2)0.0254 (15)0.044 (2)0.0053 (14)0.003 (2)0.0014 (17)
Ge120.0443 (17)0.0475 (13)0.0260 (10)0.0048 (9)0.0012 (9)0.0051 (8)
N80.017 (8)0.045 (7)0.057 (8)0.0000.004 (6)0.000
N70.020 (7)0.050 (7)0.022 (5)0.0000.001 (4)0.000
N60.055 (11)0.039 (6)0.042 (7)0.0000.006 (7)0.000
N90.077 (8)0.027 (4)0.024 (4)0.009 (4)0.002 (5)0.002 (3)
N20.051 (6)0.023 (3)0.035 (4)0.010 (3)0.003 (5)0.002 (4)
N40.035 (5)0.028 (4)0.058 (5)0.001 (3)0.003 (5)0.003 (4)
N30.031 (6)0.038 (5)0.044 (5)0.001 (4)0.008 (4)0.003 (4)
N10.044 (7)0.030 (4)0.039 (5)0.006 (4)0.000 (4)0.003 (4)
N50.040 (9)0.125 (13)0.159 (17)0.037 (8)0.015 (12)0.028 (14)
N140.057 (10)0.022 (5)0.029 (6)0.0000.003 (6)0.000
N130.044 (7)0.036 (5)0.050 (5)0.004 (4)0.003 (5)0.003 (4)
N120.051 (10)0.035 (6)0.036 (7)0.0000.006 (6)0.000
N110.042 (9)0.023 (5)0.041 (6)0.0000.012 (6)0.000
N100.045 (11)0.014 (6)0.038 (8)0.003 (7)0.008 (7)0.003 (5)
Ge90.0426 (8)0.0169 (4)0.0538 (6)0.0013 (4)0.0111 (5)0.0072 (4)
Ge5A0.0560 (14)0.0247 (8)0.0351 (7)0.0063 (8)0.0117 (8)0.0108 (6)
Ge8A0.0365 (8)0.0380 (12)0.0280 (7)0.0001 (7)0.0031 (5)0.0053 (7)
Ge3A0.0378 (8)0.0165 (5)0.0463 (13)0.0044 (4)0.0025 (8)0.0028 (7)
Ge1A0.0438 (8)0.0296 (11)0.0356 (8)0.0022 (7)0.0032 (6)0.0081 (7)
Bond lengths (Å) top
Cs8—Ge103.980 (2)Ge4—Ge12.555 (2)
Cs8—Ge43.7059 (13)Ge4—Ge32.876 (2)
Cs8—Ge4i3.7060 (13)Ge4—Ge92.5851 (14)
Cs8—Ge1i3.936 (3)Ge4—Ge5A2.754 (18)
Cs8—Ge13.936 (3)Ge4—Ge8A2.36 (2)
Cs8—Ge33.902 (2)Ge4—Ge3A2.89 (2)
Cs8—Ge3i3.902 (2)Ge4—Ge1A2.64 (2)
Cs8—N2ii3.712 (8)Ge14—Cs3iv4.130 (2)
Cs8—N2iii3.712 (8)Ge14—Ge132.429 (3)
Cs8—N143.702 (13)Ge14—Ge13i2.430 (3)
Cs8—Ge3Ai3.96 (2)Ge14—Ge15i2.754 (3)
Cs8—Ge3A3.96 (2)Ge14—Ge152.754 (3)
Cs3—Ge14iv4.130 (2)Ge14—Ge17i2.742 (3)
Cs3—Ge21v3.860 (2)Ge14—Ge172.742 (3)
Cs3—Ge22v4.209 (4)Ge14—Ge16i2.663 (3)
Cs3—Ge22vi4.209 (4)Ge14—Ge162.663 (3)
Cs3—Ge20vi3.808 (3)Ge14—Ge122.829 (4)
Cs3—Ge20v3.808 (3)Ge14—Ge12i2.829 (4)
Cs3—Ge12iv3.853 (3)Ge7—Cs9viii3.7140 (14)
Cs3—Ge12vii3.853 (3)Ge7—Ge82.575 (2)
Cs3—N83.667 (14)Ge7—Ge32.587 (2)
Cs3—N12viii3.789 (15)Ge7—Ge8A2.73 (2)
Cs3—Ge94.2145 (16)Ge7—Ge3A2.68 (2)
Cs3—Ge9ix4.2146 (16)Ge21—Cs3v3.860 (2)
Cs1—Ge63.8406 (19)Ge21—Cs5ii3.985 (2)
Cs1—Ge11x4.1767 (17)Ge21—Ge25i2.718 (3)
Cs1—Ge74.1634 (17)Ge21—Ge252.718 (3)
Cs1—Ge20xi3.642 (2)Ge21—Ge232.675 (3)
Cs1—Ge20viii4.050 (3)Ge21—Ge23i2.675 (3)
Cs1—Ge12xii4.159 (3)Ge21—Ge242.645 (3)
Cs1—Ge12x3.627 (3)Ge21—Ge24i2.645 (3)
Cs1—N43.686 (9)Ge21—Ge222.493 (3)
Cs1—N33.465 (9)Ge21—Ge22i2.493 (3)
Cs1—N13.519 (9)Ge21—Ge202.861 (3)
Cs1—N113.219 (10)Ge21—Ge20i2.861 (3)
Cs7—Ge184.1732 (13)Ge25—Ge231.921 (5)
Cs7—Ge193.7241 (14)Ge25—Ge24i2.572 (5)
Cs7—Ge43.7277 (15)Ge25—Ge240.788 (4)
Cs7—Ge253.647 (3)Ge25—Ge222.573 (5)
Cs7—Ge83.830 (2)Ge13—Cs3iv4.255 (3)
Cs7—Ge23v3.736 (3)Ge13—Cs1x4.345 (3)
Cs7—Ge233.895 (4)Ge13—Cs6iv3.879 (3)
Cs7—Ge244.228 (4)Ge13—Ge152.577 (4)
Cs7—Ge22v3.840 (3)Ge13—Ge171.057 (4)
Cs7—N4ii3.730 (11)Ge13—Ge12i2.571 (4)
Cs7—Ge94.0372 (16)Ge13—Ge121.823 (4)
Cs7—Ge8A3.82 (2)Ge15—Ge171.749 (5)
Cs6—Ge113.7884 (14)Ge15—Ge16i2.579 (4)
Cs6—Ge43.8762 (16)Ge15—Ge160.976 (4)
Cs6—Ge13iv3.879 (3)Ge8—Cs9viii3.979 (3)
Cs6—Ge153.746 (3)Ge8—Ge32.602 (2)
Cs6—Ge53.870 (2)Ge8—Ge92.609 (2)
Cs6—Ge173.974 (3)Ge5—Ge12.5896 (19)
Cs6—Ge17iv3.769 (3)Ge5—Ge92.610 (3)
Cs6—N2ii3.752 (9)Ge23—Cs7v3.736 (3)
Cs6—N4ii3.621 (10)Ge23—Ge242.598 (5)
Cs6—Ge5A3.74 (2)Ge23—Ge220.812 (3)
Cs6—Ge1A3.91 (3)Ge23—Ge20i2.591 (4)
Cs5—Ge21xiii3.985 (2)Ge1—Ge32.587 (2)
Cs5—Ge33.902 (3)Cs2—Ge11x4.129 (3)
Cs5—Ge3i3.902 (3)Cs2—N83.837 (11)
Cs5—Ge24xiii4.044 (4)Cs2—N73.142 (7)
Cs5—Ge24xiv4.044 (4)Cs2—N63.078 (9)
Cs5—N143.427 (16)Cs2—N93.149 (13)
Cs5—N133.268 (10)Cs2—Ge5A3.92 (3)
Cs5—N13i3.268 (10)Cs2—Ge1Ax3.72 (2)
Cs5—Ge3Ai4.20 (3)Cs2—Ge53.603 (3)
Cs5—Ge3A4.20 (3)Cs2—Ge1x3.877 (2)
Cs9—Cs9i4.4963 (16)Cs2—Ge23.867 (2)
Cs9—Ge6viii4.0054 (18)Cs2—Ge63.991 (2)
Cs9—Ge193.987 (2)Ge17—Cs6iv3.769 (3)
Cs9—Ge7viii3.7140 (14)Ge17—Ge162.609 (4)
Cs9—Ge8viii3.979 (3)Ge17—Ge122.592 (4)
Cs9—Ge83.7711 (18)Ge16—Cs4ii4.213 (4)
Cs9—N143.301 (9)Ge16—Ge15i2.579 (4)
Cs9—N13i3.353 (11)Ge16—Ge16i1.823 (6)
Cs9—N123.333 (12)Ge24—Cs5ii4.044 (4)
Cs9—Ge9viii4.1279 (17)Ge24—Ge25i2.572 (5)
Cs9—Ge8A3.77 (2)Ge24—Ge24i1.979 (7)
Ge18—Cs7i4.1732 (13)Ge22—Cs3v4.209 (4)
Ge18—Ge192.6130 (17)Ge22—Cs1viii4.345 (3)
Ge18—Ge19i2.6131 (17)Ge22—Cs7v3.840 (3)
Ge18—Ge25i2.610 (3)Ge22—Ge202.576 (4)
Ge18—Ge252.610 (3)Ge22—Ge20i2.009 (4)
Ge18—Ge242.621 (4)Ge20—Cs3v3.808 (3)
Ge18—Ge24i2.621 (4)Ge20—Cs1viii4.050 (3)
Cs4—Ge14.107 (3)Ge20—Cs1xvi3.642 (2)
Cs4—Ge1i4.107 (3)Ge20—Ge19i2.530 (3)
Cs4—Ge3i4.108 (3)Ge20—Ge23i2.591 (4)
Cs4—Ge34.108 (3)Ge20—Ge22i2.009 (4)
Cs4—N6x3.465 (16)Ge20—Ge20i0.683 (4)
Cs4—N9x3.348 (8)Na2—Na2ix2.634 (14)
Cs4—N9xv3.348 (8)Na2—N82.505 (14)
Cs4—N5i3.843 (19)Na2—N72.615 (13)
Cs4—N53.843 (19)Na2—N62.654 (15)
Cs4—Ge3Ai3.82 (2)Na2—N92.688 (15)
Cs4—Ge3A3.82 (2)Na2—N102.42 (2)
Ge6—Cs9viii4.0054 (18)Na2—Ge53.711 (8)
Ge6—Ge22.6017 (16)Na1—N22.439 (8)
Ge6—Ge72.6245 (16)Na1—N42.590 (9)
Ge6—Ge52.566 (2)Na1—N32.511 (11)
Ge6—Cs23.992 (2)Na1—N12.472 (10)
Ge6—Ge92.5875 (19)Na1—N52.63 (2)
Ge6—Ge5A2.69 (3)Ge12—Cs3iv3.853 (3)
Ge2—Ge72.5880 (17)Ge12—Cs1xv4.159 (3)
Ge2—Ge52.900 (4)Ge12—Cs1x3.627 (3)
Ge2—Ge12.593 (2)Ge12—Ge11i2.933 (3)
Ge2—Ge32.808 (3)Ge12—Ge13i2.571 (4)
Ge2—Cs23.867 (2)Ge12—Ge12i0.902 (5)
Ge2—Ge3A2.45 (3)N8—Cs2ix3.837 (11)
Ge2—Ge1A2.52 (3)N8—Na2ix2.505 (14)
Ge11—Cs1x4.1767 (17)N7—Cs2ix3.142 (7)
Ge11—Ge11i2.5732 (19)N7—Na2ix2.615 (13)
Ge11—Ge102.6005 (17)N6—Cs4x3.465 (16)
Ge11—Ge132.717 (3)N6—Cs2ix3.078 (9)
Ge11—Ge152.933 (3)N6—Na2ix2.654 (15)
Ge11—Cs2x4.129 (3)N9—Cs4x3.348 (8)
Ge11—Ge172.474 (3)N2—Cs8xiii3.712 (8)
Ge11—Ge122.506 (3)N2—Cs6xiii3.753 (9)
Ge11—Ge12i2.933 (3)N4—Cs7xiii3.729 (11)
Ge10—Cs6i4.1749 (13)N4—Cs6xiii3.621 (10)
Ge10—Ge11i2.6005 (17)N14—Cs9i3.301 (9)
Ge10—Ge152.604 (3)N13—Cs9i3.353 (11)
Ge10—Ge15i2.604 (3)N12—Cs3viii3.789 (15)
Ge10—Ge16i2.625 (4)N12—Cs9i3.333 (12)
Ge10—Ge162.625 (4)N11—Cs1ix3.219 (10)
Ge19—Cs1viii4.2801 (17)Ge9—Cs9viii4.1279 (17)
Ge19—Ge19i2.5643 (18)Ge9—Ge5A2.30 (2)
Ge19—Ge232.525 (3)Ge9—Ge8A2.85 (2)
Ge19—Ge222.689 (3)Ge5A—Ge1A2.69 (3)
Ge19—Ge20i2.530 (3)Ge8A—Ge3A2.62 (3)
Ge19—Ge202.856 (3)Ge3A—Ge1A2.53 (3)
Ge4—Ge82.605 (3)Ge1A—Cs2x3.72 (2)
Ge4—Ge52.7751 (19)
Symmetry codes: (i) x, y+1/2, z; (ii) x1, y, z; (iii) x1, y+1/2, z; (iv) x+1, y, z+1; (v) x+1, y, z+2; (vi) x+1, y1/2, z+2; (vii) x+1, y1/2, z+1; (viii) x+2, y, z+2; (ix) x, y1/2, z; (x) x+2, y, z+1; (xi) x+2, y1/2, z+2; (xii) x+2, y1/2, z+1; (xiii) x+1, y, z; (xiv) x+1, y+1/2, z; (xv) x+2, y+1/2, z+1; (xvi) x+2, y+1/2, z+2.

Experimental details

Crystal data
Chemical formulaCs3.2Na0.8Ge9·5.3NH3
Mr1187.75
Crystal system, space groupMonoclinic, P21/m
Temperature (K)123
a, b, c (Å)13.535 (5), 18.982 (5), 19.080 (5)
β (°) 90.060 (5)
V3)4902 (3)
Z8
Radiation typeMo Kα
µ (mm1)15.57
Crystal size (mm)0.1 × 0.03 × 0.02
Data collection
DiffractometerStoe IPDS
diffractometer
Absorption correctionAnalytical
from crystal shape (X-AREA; Stoe & Cie, 2002)
Tmin, Tmax0.17, 0.55
No. of measured, independent and
observed [I > 2σ(I)] reflections
47511, 8906, 8165
Rint0.110
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.091, 1.01
No. of reflections8906
No. of parameters424
H-atom treatmentH-atom parameters not defined
Δρmax, Δρmin (e Å3)1.45, 1.29

Computer programs: X-AREA (Stoe & Cie, 2002), SUPERFLIP (Palatinus & Chapuis, 2007), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2012), OLEX2 (Dolomanov et al., 2009).

Na—N distances (Å) in the homoleptic ammine complex Na(NH3)5 top
Na1—N22.439 (8)Na1—N12.472 (10)
Na1—N42.590 (9)Na1—N52.63 (2)
Na1—N32.511 (11)
Distances (Å) of the mixed-cation position Cs2/Na2 to N and Ge atoms, as shown in Fig. 3. top
Cs2—N83.837 (11)Cs2—N63.078 (9)
Cs2—N73.142 (7)Cs2—N93.149 (13)
Cs2—Ge1#103.877 (2)Cs2—Ge63.991 (2)
Cs2—Ge23.867 (2)Cs2—Ge114.129 (3)
Cs2—Ge53.603 (3)
Na2—N82.505 (14)Na2—N92.688 (15)
Na2—N72.615 (13)Na2—N102.42 (2)
Na2—N62.654 (15)
Na2—Ge53.711 (8)
Symmetry code: (#10) -x+2, -y, -z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds