Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The identity of the major product of Ru-catalysed alkene metathesis of two polyene substrates has been determined using density functional theory (DFT) NMR prediction, a 1H–1H Total Correlated Spectroscopy (TOCSY) NMR experiment and ultimately by single-crystal X-ray crystallography. The substrates were designed as those that would potentially allow expedient access to the trans-deca­lin skeleton of the natural product (−)-euonyminol, but the product was found to be a bis-cyclo­pentenyl-β-cyano­hydrin [1-(1-hy­droxy­cyclo­pent-3-en-1-yl)cyclo­pent-3-ene-1-carbo­nitrile, C11H13NO] rather than the trans-2,3,6,7-de­hydro­deca­lin-β-cyano­hydrin.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827011302492X/fn3151sup1.cif
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827011302492X/fn3151Isup2.hkl
Contains datablock I

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S010827011302492X/fn3151Isup3.cml
Supplementary material

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S010827011302492X/fn3151sup4.pdf
Supplementary material

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008).

1-(1-Hydroxycyclopent-3-en-1-yl)cyclopent-3-ene-1-carbonitrile top
Crystal data top
C11H13NOF(000) = 752
Mr = 175.22Dx = 1.242 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
a = 6.2966 (6) ÅCell parameters from 3592 reflections
b = 25.416 (4) Åθ = 3.8–78.0°
c = 11.7111 (13) ŵ = 0.63 mm1
β = 90.162 (8)°T = 100 K
V = 1874.2 (4) Å3Needle, colourless
Z = 80.50 × 0.06 × 0.06 mm
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
3793 independent reflections
Radiation source: SuperNova (Cu) X-ray Source3151 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.032
Detector resolution: 10.5598 pixels mm-1θmax = 74.4°, θmin = 9.2°
ω scansh = 76
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 3129
Tmin = 0.822, Tmax = 1.000l = 1414
8275 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.141 w = 1/[σ2(Fo2) + (0.0775P)2 + 0.5P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
3793 reflectionsΔρmax = 0.30 e Å3
281 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2001), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0013 (4)
Special details top

Experimental. CrysAlisPro, Agilent Technologies, Version 1.171.35.19 (release 27-10-2011 CrysAlis171 .NET) (compiled Oct 27 2011,15:02:11) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O1A0.76628 (16)0.44288 (4)0.15537 (9)0.0276 (2)
H1A0.677 (4)0.4435 (10)0.096 (2)0.056 (7)*
N1A0.4874 (2)0.55946 (5)0.04558 (11)0.0297 (3)
C1A0.7478 (2)0.53532 (5)0.21184 (12)0.0238 (3)
C2A0.9832 (2)0.54423 (6)0.17483 (13)0.0284 (3)
H2AA1.06110.51050.17030.034*
H2AB0.99060.56210.09980.034*
C3A1.0710 (2)0.57836 (6)0.26749 (15)0.0339 (4)
H3AA1.21640.58810.27250.041*
C4A0.9268 (2)0.59361 (6)0.34137 (14)0.0328 (3)
H4AA0.95730.61510.40580.039*
C5A0.7094 (2)0.57357 (6)0.31326 (12)0.0279 (3)
H5AA0.61400.60270.29060.034*
H5AB0.64670.55490.37920.034*
C6A0.7035 (2)0.47709 (5)0.24580 (11)0.0241 (3)
C7A0.8317 (2)0.45963 (6)0.35194 (13)0.0295 (3)
H7AA0.95090.43630.33010.035*
H7AB0.88880.49040.39370.035*
C8A0.6719 (3)0.43061 (6)0.42280 (13)0.0326 (3)
H8AA0.70680.41140.48980.039*
C9A0.4767 (3)0.43481 (6)0.38147 (13)0.0310 (3)
H9AA0.35590.41880.41530.037*
C10A0.4676 (2)0.46748 (6)0.27596 (12)0.0267 (3)
H10A0.39320.50110.29030.032*
H10B0.39380.44850.21360.032*
C11A0.6035 (2)0.54883 (5)0.11749 (12)0.0234 (3)
O1B1.1375 (3)0.38377 (8)0.1252 (4)0.0291 (6)0.617 (7)
H1B1.014 (5)0.3970 (11)0.142 (3)0.073 (8)*0.617 (7)
N1B1.0975 (2)0.19591 (5)0.14071 (13)0.0390 (3)0.617 (7)
C1B1.0986 (4)0.29643 (17)0.2025 (2)0.0267 (7)0.617 (7)
C2B0.8870 (2)0.31141 (7)0.26723 (14)0.0337 (4)0.617 (7)
H2BA0.83290.34600.24160.040*0.617 (7)
H2BB0.77570.28450.25450.040*0.617 (7)
C3B0.9526 (3)0.31317 (7)0.39052 (15)0.0387 (4)0.617 (7)
H3BA0.85530.31530.45220.046*0.617 (7)
C4B1.1596 (3)0.31135 (7)0.40352 (14)0.0393 (4)0.617 (7)
H4BA1.22860.31200.47580.047*0.617 (7)
C5B1.2751 (2)0.30814 (6)0.29232 (14)0.0335 (3)0.617 (7)
H5BA1.38190.27960.29390.040*0.617 (7)
H5BB1.34750.34180.27510.040*0.617 (7)
C6B1.1280 (4)0.32994 (14)0.0936 (2)0.0271 (8)0.617 (7)
C7B1.3381 (3)0.31425 (8)0.03349 (16)0.0428 (4)0.617 (7)
H7BA1.45230.33990.05060.051*0.617 (7)
H7BB1.38500.27880.05760.051*0.617 (7)
C8B1.2818 (4)0.31502 (8)0.09020 (17)0.0506 (5)0.617 (7)
H8BA1.38330.31470.15010.061*0.617 (7)
C9B1.0756 (4)0.31619 (7)0.10667 (15)0.0512 (5)0.617 (7)
H9BA1.01150.31660.18020.061*0.617 (7)
C10B0.9514 (3)0.31683 (7)0.00239 (15)0.0406 (4)0.617 (7)
H10C0.88520.28220.01750.049*0.617 (7)
H10D0.83980.34420.00080.049*0.617 (7)
C11B1.1002 (4)0.24021 (12)0.1708 (4)0.0286 (7)0.617 (7)
O1C1.1255 (5)0.38036 (13)0.1839 (6)0.0287 (9)0.383 (7)
H1C1.014 (5)0.3970 (11)0.142 (3)0.073 (8)*0.383 (7)
N1C1.0975 (2)0.19591 (5)0.14071 (13)0.0390 (3)0.383 (7)
C1C1.0978 (6)0.3259 (3)0.2061 (3)0.0257 (11)0.383 (7)
C2C0.8870 (2)0.31141 (7)0.26723 (14)0.0337 (4)0.383 (7)
H2CA0.77390.33740.25060.040*0.383 (7)
H2CB0.83730.27590.24500.040*0.383 (7)
C3C0.9526 (3)0.31317 (7)0.39052 (15)0.0387 (4)0.383 (7)
H3CA0.85530.31530.45220.046*0.383 (7)
C4C1.1596 (3)0.31135 (7)0.40352 (14)0.0393 (4)0.383 (7)
H4CA1.22860.31200.47580.047*0.383 (7)
C5C1.2751 (2)0.30814 (6)0.29232 (14)0.0335 (3)0.383 (7)
H5CA1.32360.27180.27640.040*0.383 (7)
H5CB1.39850.33220.29070.040*0.383 (7)
C6C1.1177 (6)0.2962 (2)0.0917 (3)0.0262 (13)0.383 (7)
C7C1.3381 (3)0.31425 (8)0.03349 (16)0.0428 (4)0.383 (7)
H7CA1.38220.34950.06040.051*0.383 (7)
H7CB1.45320.28870.04940.051*0.383 (7)
C8C1.2818 (4)0.31502 (8)0.09020 (17)0.0506 (5)0.383 (7)
H8CA1.38330.31470.15010.061*0.383 (7)
C9C1.0756 (4)0.31619 (7)0.10667 (15)0.0512 (5)0.383 (7)
H9CA1.01150.31660.18020.061*0.383 (7)
C10C0.9514 (3)0.31683 (7)0.00239 (15)0.0406 (4)0.383 (7)
H10E0.82650.29330.00230.049*0.383 (7)
H10F0.90330.35280.02150.049*0.383 (7)
C11C1.1009 (7)0.23852 (18)0.1137 (6)0.0282 (11)0.383 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0314 (5)0.0243 (5)0.0272 (5)0.0067 (4)0.0062 (4)0.0050 (4)
N1A0.0337 (6)0.0250 (6)0.0303 (6)0.0025 (5)0.0055 (5)0.0023 (5)
C1A0.0239 (6)0.0234 (7)0.0241 (6)0.0024 (5)0.0032 (5)0.0015 (5)
C2A0.0235 (7)0.0285 (7)0.0332 (7)0.0017 (5)0.0002 (5)0.0017 (6)
C3A0.0257 (7)0.0282 (7)0.0477 (9)0.0000 (6)0.0086 (6)0.0024 (7)
C4A0.0331 (8)0.0283 (7)0.0370 (8)0.0027 (6)0.0114 (6)0.0078 (6)
C5A0.0307 (7)0.0280 (7)0.0251 (7)0.0025 (5)0.0023 (5)0.0062 (5)
C6A0.0261 (7)0.0233 (7)0.0231 (6)0.0024 (5)0.0032 (5)0.0012 (5)
C7A0.0309 (7)0.0295 (7)0.0282 (7)0.0030 (6)0.0078 (6)0.0003 (6)
C8A0.0421 (8)0.0312 (8)0.0245 (7)0.0040 (6)0.0037 (6)0.0015 (6)
C9A0.0355 (8)0.0288 (7)0.0287 (7)0.0006 (6)0.0006 (6)0.0007 (6)
C10A0.0259 (7)0.0259 (7)0.0283 (7)0.0001 (5)0.0043 (5)0.0010 (6)
C11A0.0249 (6)0.0196 (6)0.0257 (6)0.0011 (5)0.0012 (5)0.0021 (5)
O1B0.0266 (9)0.0182 (9)0.0425 (17)0.0001 (6)0.0024 (10)0.0024 (10)
N1B0.0450 (8)0.0254 (7)0.0468 (8)0.0000 (5)0.0131 (6)0.0016 (6)
C1B0.0273 (12)0.0227 (19)0.0303 (12)0.0003 (10)0.0030 (9)0.0028 (11)
C2B0.0293 (7)0.0368 (8)0.0349 (8)0.0018 (6)0.0075 (6)0.0006 (6)
C3B0.0530 (10)0.0313 (8)0.0318 (8)0.0028 (7)0.0121 (7)0.0004 (6)
C4B0.0580 (11)0.0291 (8)0.0307 (8)0.0048 (7)0.0047 (7)0.0014 (6)
C5B0.0320 (8)0.0311 (8)0.0374 (8)0.0031 (6)0.0044 (6)0.0039 (6)
C6B0.0310 (12)0.0192 (19)0.0310 (12)0.0017 (9)0.0036 (9)0.0039 (9)
C7B0.0399 (9)0.0454 (10)0.0431 (9)0.0014 (7)0.0180 (7)0.0001 (8)
C8B0.0782 (14)0.0358 (9)0.0380 (9)0.0019 (9)0.0223 (9)0.0013 (8)
C9B0.0953 (17)0.0294 (8)0.0289 (8)0.0054 (9)0.0014 (9)0.0006 (7)
C10B0.0476 (9)0.0393 (9)0.0347 (8)0.0011 (7)0.0077 (7)0.0001 (7)
C11B0.0276 (12)0.0260 (14)0.0323 (18)0.0012 (9)0.0043 (12)0.0031 (13)
O1C0.0264 (15)0.0183 (14)0.041 (3)0.0011 (10)0.0009 (15)0.0021 (16)
N1C0.0450 (8)0.0254 (7)0.0468 (8)0.0000 (5)0.0131 (6)0.0016 (6)
C1C0.0259 (18)0.022 (3)0.029 (2)0.0023 (16)0.0009 (13)0.0029 (17)
C2C0.0293 (7)0.0368 (8)0.0349 (8)0.0018 (6)0.0075 (6)0.0006 (6)
C3C0.0530 (10)0.0313 (8)0.0318 (8)0.0028 (7)0.0121 (7)0.0004 (6)
C4C0.0580 (11)0.0291 (8)0.0307 (8)0.0048 (7)0.0047 (7)0.0014 (6)
C5C0.0320 (8)0.0311 (8)0.0374 (8)0.0031 (6)0.0044 (6)0.0039 (6)
C6C0.0272 (19)0.022 (3)0.0299 (19)0.0032 (14)0.0056 (14)0.0006 (15)
C7C0.0399 (9)0.0454 (10)0.0431 (9)0.0014 (7)0.0180 (7)0.0001 (8)
C8C0.0782 (14)0.0358 (9)0.0380 (9)0.0019 (9)0.0223 (9)0.0013 (8)
C9C0.0953 (17)0.0294 (8)0.0289 (8)0.0054 (9)0.0014 (9)0.0006 (7)
C10C0.0476 (9)0.0393 (9)0.0347 (8)0.0011 (7)0.0077 (7)0.0001 (7)
C11C0.030 (2)0.023 (2)0.032 (3)0.0017 (14)0.004 (2)0.004 (2)
Geometric parameters (Å, º) top
O1A—C6A1.4270 (17)N1B—C11B1.180 (4)
O1A—H1A0.90 (3)C1B—C11B1.476 (6)
N1A—C11A1.146 (2)C1B—C6B1.545 (5)
C1A—C11A1.4693 (18)C1B—C5B1.556 (3)
C1A—C5A1.5543 (19)C1B—C2B1.581 (3)
C1A—C6A1.5579 (19)C2B—C3B1.501 (2)
C1A—C2A1.5624 (19)C2B—H2BA0.9900
C2A—C3A1.494 (2)C2B—H2BB0.9900
C2A—H2AA0.9900C3B—C4B1.313 (3)
C2A—H2AB0.9900C3B—H3BA0.9500
C3A—C4A1.314 (2)C4B—C5B1.495 (2)
C3A—H3AA0.9500C4B—H4BA0.9500
C4A—C5A1.496 (2)C5B—H5BA0.9900
C4A—H4AA0.9500C5B—H5BB0.9900
C5A—H5AA0.9900C6B—C7B1.552 (3)
C5A—H5AB0.9900C6B—C10B1.575 (3)
C6A—C7A1.5453 (18)C7B—C8B1.490 (3)
C6A—C10A1.5472 (19)C7B—H7BA0.9900
C7A—C8A1.500 (2)C7B—H7BB0.9900
C7A—H7AA0.9900C8B—C9B1.313 (3)
C7A—H7AB0.9900C8B—H8BA0.9500
C8A—C9A1.324 (2)C9B—C10B1.499 (3)
C8A—H8AA0.9500C9B—H9BA0.9500
C9A—C10A1.490 (2)C10B—H10C0.9900
C9A—H9AA0.9500C10B—H10D0.9900
C10A—H10A0.9900O1C—C1C1.418 (9)
C10A—H10B0.9900O1C—H1B0.95 (3)
O1B—C6B1.419 (4)O1C—H1C0.95 (3)
O1B—H1B0.87 (3)C1C—C6C1.543 (7)
O1B—H1C0.87 (3)C6C—C11C1.492 (7)
C6A—O1A—H1A113.3 (16)C11B—C1B—C5B110.5 (2)
C11A—C1A—C5A109.36 (11)C6B—C1B—C5B111.4 (3)
C11A—C1A—C6A107.66 (11)C11B—C1B—C2B111.1 (2)
C5A—C1A—C6A111.77 (12)C6B—C1B—C2B111.5 (3)
C11A—C1A—C2A110.05 (12)C5B—C1B—C2B103.36 (19)
C5A—C1A—C2A105.72 (11)C3B—C2B—C1B103.77 (15)
C6A—C1A—C2A112.28 (11)C3B—C2B—H2BA111.0
C3A—C2A—C1A103.41 (12)C1B—C2B—H2BA111.0
C3A—C2A—H2AA111.1C3B—C2B—H2BB111.0
C1A—C2A—H2AA111.1C1B—C2B—H2BB111.0
C3A—C2A—H2AB111.1H2BA—C2B—H2BB109.0
C1A—C2A—H2AB111.1C4B—C3B—C2B112.39 (15)
H2AA—C2A—H2AB109.0C4B—C3B—H3BA123.8
C4A—C3A—C2A113.25 (14)C2B—C3B—H3BA123.8
C4A—C3A—H3AA123.4C3B—C4B—C5B112.70 (15)
C2A—C3A—H3AA123.4C3B—C4B—H4BA123.7
C3A—C4A—C5A112.82 (13)C5B—C4B—H4BA123.7
C3A—C4A—H4AA123.6C4B—C5B—C1B104.53 (15)
C5A—C4A—H4AA123.6C4B—C5B—H5BA110.8
C4A—C5A—C1A103.72 (12)C1B—C5B—H5BA110.8
C4A—C5A—H5AA111.0C4B—C5B—H5BB110.8
C1A—C5A—H5AA111.0C1B—C5B—H5BB110.8
C4A—C5A—H5AB111.0H5BA—C5B—H5BB108.9
C1A—C5A—H5AB111.0O1B—C6B—C1B108.7 (3)
H5AA—C5A—H5AB109.0O1B—C6B—C7B109.3 (2)
O1A—C6A—C7A106.07 (11)C1B—C6B—C7B109.7 (2)
O1A—C6A—C10A109.96 (11)O1B—C6B—C10B114.2 (2)
C7A—C6A—C10A105.71 (11)C1B—C6B—C10B110.9 (2)
O1A—C6A—C1A109.83 (11)C7B—C6B—C10B103.82 (18)
C7A—C6A—C1A112.63 (11)C8B—C7B—C6B103.69 (17)
C10A—C6A—C1A112.38 (11)C8B—C7B—H7BA111.0
C8A—C7A—C6A103.67 (12)C6B—C7B—H7BA111.0
C8A—C7A—H7AA111.0C8B—C7B—H7BB111.0
C6A—C7A—H7AA111.0C6B—C7B—H7BB111.0
C8A—C7A—H7AB111.0H7BA—C7B—H7BB109.0
C6A—C7A—H7AB111.0C9B—C8B—C7B112.06 (16)
H7AA—C7A—H7AB109.0C9B—C8B—H8BA124.0
C9A—C8A—C7A112.44 (14)C7B—C8B—H8BA124.0
C9A—C8A—H8AA123.8C8B—C9B—C10B113.14 (17)
C7A—C8A—H8AA123.8C8B—C9B—H9BA123.4
C8A—C9A—C10A112.44 (14)C10B—C9B—H9BA123.4
C8A—C9A—H9AA123.8C9B—C10B—C6B102.19 (16)
C10A—C9A—H9AA123.8C9B—C10B—H10C111.3
C9A—C10A—C6A104.05 (11)C6B—C10B—H10C111.3
C9A—C10A—H10A110.9C9B—C10B—H10D111.3
C6A—C10A—H10A110.9C6B—C10B—H10D111.3
C9A—C10A—H10B110.9H10C—C10B—H10D109.2
C6A—C10A—H10B110.9N1B—C11B—C1B176.9 (4)
H10A—C10A—H10B109.0C1C—O1C—H1B115.9 (18)
N1A—C11A—C1A178.51 (15)C1C—O1C—H1C115.9 (18)
C6B—O1B—H1B113.3 (19)O1C—C1C—C6C108.0 (5)
C6B—O1B—H1C113.3 (19)C11C—C6C—C1C109.0 (5)
C11B—C1B—C6B108.9 (3)
C11A—C1A—C2A—C3A127.62 (13)C6B—C1B—C2B—C3B136.6 (2)
C5A—C1A—C2A—C3A9.63 (15)C5B—C1B—C2B—C3B16.8 (3)
C6A—C1A—C2A—C3A112.49 (13)C1B—C2B—C3B—C4B11.1 (2)
C1A—C2A—C3A—C4A5.79 (18)C2B—C3B—C4B—C5B0.1 (2)
C2A—C3A—C4A—C5A0.8 (2)C3B—C4B—C5B—C1B11.5 (2)
C3A—C4A—C5A—C1A7.08 (18)C11B—C1B—C5B—C4B102.0 (2)
C11A—C1A—C5A—C4A128.51 (13)C6B—C1B—C5B—C4B136.8 (2)
C6A—C1A—C5A—C4A112.38 (13)C2B—C1B—C5B—C4B17.0 (3)
C2A—C1A—C5A—C4A10.06 (15)C11B—C1B—C6B—O1B177.0 (2)
C11A—C1A—C6A—O1A67.25 (14)C5B—C1B—C6B—O1B54.9 (3)
C5A—C1A—C6A—O1A172.64 (11)C2B—C1B—C6B—O1B60.0 (3)
C2A—C1A—C6A—O1A54.03 (14)C11B—C1B—C6B—C7B57.5 (3)
C11A—C1A—C6A—C7A174.77 (11)C5B—C1B—C6B—C7B64.6 (4)
C5A—C1A—C6A—C7A54.66 (15)C2B—C1B—C6B—C7B179.54 (19)
C2A—C1A—C6A—C7A63.95 (15)C11B—C1B—C6B—C10B56.6 (3)
C11A—C1A—C6A—C10A55.50 (15)C5B—C1B—C6B—C10B178.76 (19)
C5A—C1A—C6A—C10A64.61 (14)C2B—C1B—C6B—C10B66.3 (4)
C2A—C1A—C6A—C10A176.78 (11)O1B—C6B—C7B—C8B100.8 (2)
O1A—C6A—C7A—C8A104.46 (13)C1B—C6B—C7B—C8B140.0 (2)
C10A—C6A—C7A—C8A12.29 (15)C10B—C6B—C7B—C8B21.4 (3)
C1A—C6A—C7A—C8A135.37 (12)C6B—C7B—C8B—C9B14.4 (3)
C6A—C7A—C8A—C9A7.82 (18)C7B—C8B—C9B—C10B0.4 (2)
C7A—C8A—C9A—C10A0.30 (19)C8B—C9B—C10B—C6B13.5 (2)
C8A—C9A—C10A—C6A8.30 (17)O1B—C6B—C10B—C9B98.0 (2)
O1A—C6A—C10A—C9A101.58 (13)C1B—C6B—C10B—C9B138.7 (2)
C7A—C6A—C10A—C9A12.50 (14)C7B—C6B—C10B—C9B20.9 (2)
C1A—C6A—C10A—C9A135.74 (12)O1C—C1C—C6C—C11C176.9 (3)
C11B—C1B—C2B—C3B101.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1A—H1A···N1Ai0.90 (3)1.95 (3)2.8410 (16)173 (2)
O1B—H1B···O1A0.87 (3)1.95 (3)2.802 (2)164 (3)
O1C—H1C···O1A0.95 (3)1.95 (3)2.783 (3)144 (3)
Symmetry code: (i) x+1, y+1, z.
Parameters for comparison of experimental 1H and 13C NMR data for compounds (9) and (10), with predicted data at the DFT-B3LYP/6-31G(**) level using the GIAO method (p.p.m.) top
1H NMR13C NMR
cis-Decalin, (9)Bis-cyclopentene, (10)cis-Decalin, (9)Bis-cyclopentene, (10)
ATE1.570.8150.7320.23
MAE0.260.137.252.89
SD0.240.111.833.28
RMS0.290.177.473.31
Max0.430.0010.946.64
Min-0.15-0.255.10-3.22
Range0.590.265.839.86
LCE0.99650.99700.99790.9976
CMAE0.160.091.261.62
DP40.460.540.620.38
Baye's CMAE0.360.640.560.44
Notes: ATE = absolute total error, MAE = mean absolute error, SD = standard deviation, RMS = root-mean-square error, Max/Min = the largest and smallest errors, Range = Max - Min (all in p.p.m.). LCE = linear correlation coefficient, CMAE = corrected mean absolute error, DP4 = Goodman and Smith's DP4 probability parameter (Smith & Goodman, 2010), and Bayes' CMAE = Bayes' theorem probability of the two CMAE values {e.g. 1-[A/(A+B)]}. All values are in p.p.m. with the exception of LCE (unitless) and the probabilities; DP4 and Bayes' theorem values (unitless fraction out of 1).
Bond lengths of the C—O and C—C(N) bonds vicinal to the central C—C bond in bis-cyclopentenyl-β-cyanohydrin 10; evidence for a σCO σ*CC(N) anomeric effect in the anti conformers. top
ConformerBond lengths (Å)
C—OC—C(N)
gauche1.427 (2)1.469 (2)
anti (1)1.419 (4)1.476 (6)
anti (2)1.418 (9)1.492 (7)
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds