Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, [Cu8(C15H10N3O3S)4Cl4(C3H7NO)2]·2C3H7NO, consisting of eight CuII cations, four trianionic 1-(2-oxidobenzoyl)-2-(2-oxo-2-phenyl­ethane­thioyl)hydrazine-1,2-diide ligands, four chloride ligands and two coordinated and two solvent di­methyl­formamide mol­ecules, crystallizes with the octa­nuclear mol­ecule located on an inversion centre. The two halves of the mol­ecule are connected by two bridging Cl atoms. This is the first example of an octa­nuclear complex based on a thio­semicarbazone-derived ligand.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270113012547/fn3135sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113012547/fn3135Isup2.hkl
Contains datablock I

CCDC reference: 950432

Comment top

Thiosemicarbazides and their derivatives have attracted considerable interest, not only because of their potentially beneficial biological properties, such as antibacterial, antitumour and antiviral activities (Angelusiu et al., 2009; Belicchi-Ferrari et al., 2007; Palaska et al., 2002), but also because of their flexibility, which allows the ligands to bend and rotate freely to accommodate the coordination geometries of various metal centres. Many metal complexes derived from thiosemicarbazone have been structurally characterized and they possess a wide variety of biological activities (Leovac et al., 2009; Hassanien et al., 2008; Latheef et al., 2006; Babb et al., 2003; Simonov et al., 2002; Belicchi-Ferrari et al., 2000). Acylthiosemicarbazide ligands contain O, S and N as potential donor atoms, and can support mono- and multinuclear structural complexes. However, only two complexes have so far been reported by our group based on 1,4-diacylthiosemicarbazone ligands (Wang et al., 2010; Ke et al., 2007), and they refer to an extended structure or a mononuclear complex, respectively.

Recently, much attention has been paid to multinuclear complexes, because of their magnetic properties and theoretical significance (Wei et al., 2012; Pradeep & Leroy, 2007; Moon et al., 2006; Lin et al., 2001). Thiosemicarbazide derivatives contain an N—N segment which can bridge two metal atoms, enabling them to form multinuclear complexes. However, there is no previous report of a multinuclear complex with a 1,4-diacylthiosemicarbazide ligand. In order to obtain such a multinuclear complex, we modified the side group by replacing one of the phenyl groups with a phenol to yield the title copper complex, (I), which represents the first example of a multinuclear complex involving 1-(2-oxidobenzoyl)-2-(2-oxo-2-phenylethanethioyl)hydrazine-1,2-diide (L) ligands.

Compound (I) crystallizes with the octanuclear molecule located on an inversion centre. The asymmetric unit contains four CuII cations, two crystallographically independent L ligands, two chloride ligands and two dimethylformamide (DMF) solvent molecules (Fig. 1). The trianionic L ligand chelates two CuII cations via three O atoms, two hydrazinide N atoms and one S atom, and bridges to a third CuII cation via phenolate atom O3 or O4. Atom Cu1 is four-coordinated in a square-planar geometry by two carbonyl O atoms, one hydrazinide N atom from the L ligand and one chloride ligand. Atom Cu2 has a similar four-coordination and is triply chelated by one phenolate O atom, one hydrazinide N atom and one S atom, with the fourth position occupied by a phenolate O atom from another L ligand. Atom Cu3 has a square-pyramidal coordination environment, having a base similar to Cu2 (triple-chelated by one phenolate O atom, one hydrazinide N atom and one S atom, with the fourth position occupied by a phenolate O atom from another L ligand), with the axial position occupied by atom Cl2i [symmetry code: (i) -x + 1, -y + 1, -z] which bridges to a CuII cation in the symmetry-related moiety. Chelated by two phenolate O atoms and one hydrazinide N atom, atom Cu4 adopts a square-pyramidal coordination environment, with one µ2-bridging Cl atom, one hydrazinide N atom and two carbonyl O atoms forming the base, and with an O atom from a coordinated DMF molecule in the apical position. The asymmetric unit presents a saddle-shaped tetranuclear substructure and two asymmetric units further condense into an X-shaped octanuclear molecule by sharing two chloride anions (Fig. 2).

Interestingly, there is a distinct difference between the conformations of the two crystallographically independent L ligands. One ligand (containing atoms N4–N6 and denoted L1), located at the interior of the X-shaped octanuclear molecule, exhibits coplanar characteristics, the maximum deviation from the least-squares plane being 0.2795 (3) Å [For which atom?]. The other ligand (containing atoms N1–N3 and denoted L2) is contorted and is located at the fringe of the X-shaped octanuclear molecule; the maximum deviation of atom O3 from the least-squares plane is 0.6560 (3) Å, and the dihedral angle between the two rings is 43.38 (2)°. This significant difference between the ligands is because of intermolecular ππ interactions. The dihedral angle between L1 (Cu4/O5/N4–N6/O6 plane) and L2 (Cu1/O1/N1–N3/O2 plane) is 54.98 (9)°. The molecule is buckled at the two µ2-bridging phenol O atoms [Atom numbers?]. The Cu—Cl bond lengths for the bridging Cl atom are 2.2349 (14) and 2.6869 (17) Å, while the bond length for the terminal Cl atom is 2.1793 (16) Å. As expected [Why?], the Cu4—O7 distance [2.396 (4) Å] is notably longer than the common Cu—O distance ([Reference value?]; Bera et al., 2004). Neighbouring Cu···Cu interatomic separations are Cu1···Cu2 = 4.5876 (11), Cu2···Cu3 = 3.0146 (10) and Cu3···Cu4 = 4.6396 (12) Å, with the separation between the CuII cations double-bridged by phenolate O atoms being much shorter than the others.

Details of the hydrogen-bond geometry are given in Table 2. Molecules are connected to free DMF solvent molecules via an N1—H1···O8ii hydrogen bond and are further connected to each other via an N6—H6A···O7iii hydrogen bond (Fig. 3; see Table 2 for symmetry codes). In addition, there is also a C—H···π stacking interaction, with a C4—H4···Cg(-x + 1, -y, -z) separation of 2.959 Å between the molecules, which contributes to the stability of (I).

In a previously reported cobalt complex (Ke et al., 2007), the tridentate thiosemicarbazone ligands coordinate to the CoII cation through one N atom and two carbonyl O atoms in a chelating mode, and the complex has a mononuclear structure. In the previously reported cadmium complex (Wang et al., 2010), the ligands coordinate to the CdII cations via N and S atoms in a bridging motif, and the structure is characterized by a two-dimensional architecture. In the present copper octanuclear complex, (I), each ligand chelates two CuII cations and then, through the O atom of the phenolic hydroxyl group, bridges a third CuII cation, which unites the two dinuclear components and forms the saddle-shaped tetranuclear structure. Compared with the previously reported ligands, one phenol hydroxy group has been added to the phenyl group, resulting in the difference in coordination mode, and this difference shows that the L ligands have various coordination motifs.

Related literature top

For related literature, see: Angelusiu et al. (2009); Babb et al. (2003); Belicchi-Ferrari, Bisceglie, Pelosi, Pinelli & Tarasconi (2007); Belicchi-Ferrari, Fava, Pelosi & Tarasconi (2000); Bera et al. (2004); Hassanien et al. (2008); Ke et al. (2007); Latheef et al. (2006); Leovac et al. (2009); Lin et al. (2001); Moon et al. (2006); Palaska et al. (2002); Pradeep & Leroy (2007); Simonov et al. (2002); Wang et al. (2000, 2010); Wei et al. (2012).

Experimental top

The 2-hydroxy-N'-(2-oxo-2-phenylethanethioyl)benzohydrazide ligand was prepared according to the literature method of Wang et al. (2000). The ligand (0.0315 g, 0.1 mmol) and copper(II) chloride dihydrate (0.0341 g, 0.2 mmol) were dissolved in a mixed solvent of methanol and dimethylformamide (12 ml, 5:1 v/v). Diaminodiphenylmethane (0.0102 g 0.05 mmol) was added and the solution was stirred for 3 h at room temperature. The resulting dark-green mixture was filtered and the filtrate was allowed to evaporate in air at room temperature. Black crystals of (I) were separated from the filtrate after 5 d.

Refinement top

All C- and N-bound H atoms were located in idealized positions using the riding-model approximation, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C), and N—H = 0.86 Å and Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004); data reduction: APEX2 (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), showing the atom-labelling scheme and 30% probability displacement ellipsoids. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. Two asymmetric units of (I), linked by two bridging chloride anions. H atoms have been omitted for clarity and only Cu and Cl atoms are labelled. [Symmetry code: (i) -x + 1, -y + 1, -z.]
[Figure 3] Fig. 3. A packing diagram for (I), showing some of the hydrogen bonds (dashed lines). Most of the H atoms have been omitted, except for those involved in the weak interactions.
Di-µ2-chlorido-dichloridobis(dimethylformamide)tetrakis[µ3-1-(2-oxidobenzoyl)-2-(2-oxo-2-phenylethanethioyl)hydrazine-1,2-diido]octacopper(II) dimethylformamide disolvate top
Crystal data top
[Cu8(C15H10N3O3S)4Cl4(C3H7NO)2]·2C3H7NOF(000) = 2208
Mr = 2191.78Dx = 1.762 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 31053 reflections
a = 9.5672 (19) Åθ = 4.8–37.0°
b = 19.153 (4) ŵ = 2.32 mm1
c = 23.006 (5) ÅT = 298 K
β = 101.53 (3)°Plate, black
V = 4130.6 (14) Å30.48 × 0.46 × 0.08 mm
Z = 2
Data collection top
Bruker APEXII area-detector
diffractometer
7277 independent reflections
Radiation source: fine-focus sealed tube3279 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.102
ϕ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1111
Tmin = 0.324, Tmax = 0.852k = 2222
24190 measured reflectionsl = 2327
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0107P)2]
where P = (Fo2 + 2Fc2)/3
7277 reflections(Δ/σ)max < 0.001
545 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
[Cu8(C15H10N3O3S)4Cl4(C3H7NO)2]·2C3H7NOV = 4130.6 (14) Å3
Mr = 2191.78Z = 2
Monoclinic, P21/cMo Kα radiation
a = 9.5672 (19) ŵ = 2.32 mm1
b = 19.153 (4) ÅT = 298 K
c = 23.006 (5) Å0.48 × 0.46 × 0.08 mm
β = 101.53 (3)°
Data collection top
Bruker APEXII area-detector
diffractometer
7277 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
3279 reflections with I > 2σ(I)
Tmin = 0.324, Tmax = 0.852Rint = 0.102
24190 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.067H-atom parameters constrained
S = 0.97Δρmax = 0.43 e Å3
7277 reflectionsΔρmin = 0.39 e Å3
545 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu30.39336 (7)0.34243 (3)0.05179 (3)0.0466 (2)
Cu20.41792 (7)0.18888 (3)0.02684 (3)0.0484 (2)
Cu10.17175 (7)0.01066 (3)0.05228 (3)0.0534 (2)
C240.2240 (6)0.4713 (2)0.0437 (2)0.0417 (15)
Cu40.27845 (7)0.54031 (3)0.06425 (3)0.0487 (2)
S20.24764 (15)0.40676 (7)0.09695 (6)0.0487 (4)
S10.44019 (16)0.11889 (6)0.04867 (7)0.0562 (5)
Cl10.01911 (17)0.07536 (7)0.08654 (8)0.0805 (6)
O40.4752 (4)0.27899 (14)0.00178 (16)0.0463 (10)
O30.3824 (4)0.24981 (15)0.08936 (16)0.0472 (10)
O10.1750 (4)0.07137 (17)0.01473 (18)0.0612 (12)
O20.2019 (4)0.05524 (17)0.11715 (16)0.0568 (11)
N20.2962 (4)0.0518 (2)0.0232 (2)0.0430 (12)
N30.3299 (4)0.11163 (19)0.0584 (2)0.0458 (13)
N10.3175 (4)0.0055 (2)0.06389 (19)0.0503 (13)
H10.35680.00490.09440.060*
C90.3434 (6)0.0524 (3)0.0253 (3)0.0463 (16)
C10.2345 (6)0.0633 (3)0.0573 (3)0.0523 (18)
C30.3122 (6)0.1253 (3)0.1422 (3)0.0603 (18)
H30.39230.09700.13870.072*
C170.5376 (6)0.2969 (3)0.0433 (3)0.0414 (15)
C110.3081 (5)0.1630 (3)0.1524 (3)0.0424 (15)
C150.3899 (6)0.2765 (3)0.1900 (3)0.0536 (17)
H150.42230.32120.18380.064*
C20.2186 (6)0.1166 (3)0.1047 (3)0.0468 (16)
C100.2760 (6)0.1073 (3)0.1076 (3)0.0426 (15)
C160.3599 (6)0.2303 (3)0.1431 (3)0.0442 (15)
C120.2871 (6)0.1464 (3)0.2093 (3)0.0567 (17)
H120.24910.10310.21570.068*
C130.3207 (6)0.1918 (3)0.2553 (3)0.0612 (18)
H130.30900.17900.29310.073*
C70.0969 (6)0.1573 (3)0.1111 (3)0.077 (2)
H70.03190.15030.08650.092*
C40.2859 (7)0.1770 (3)0.1856 (3)0.0667 (19)
H40.35040.18440.21030.080*
C50.1645 (8)0.2173 (3)0.1920 (3)0.080 (2)
H50.14500.25070.22190.096*
C60.0730 (7)0.2079 (3)0.1541 (4)0.092 (3)
H60.00710.23630.15760.110*
C210.5800 (5)0.3756 (3)0.1198 (2)0.0453 (15)
H210.56410.41820.13950.054*
C200.6698 (6)0.3280 (3)0.1381 (2)0.0547 (17)
H200.71000.33780.17080.066*
C180.6363 (6)0.2520 (2)0.0613 (3)0.0505 (17)
H180.65930.21070.04030.061*
C220.5117 (5)0.3620 (3)0.0726 (2)0.0406 (15)
C190.7004 (6)0.2656 (3)0.1078 (3)0.0540 (17)
H190.76330.23360.11900.065*
C140.3728 (6)0.2576 (3)0.2455 (3)0.0605 (18)
H140.39620.28890.27680.073*
O50.3919 (4)0.46983 (16)0.09307 (15)0.0527 (11)
N50.2816 (4)0.47185 (19)0.00202 (19)0.0395 (12)
N60.1331 (4)0.5261 (2)0.05204 (18)0.0449 (12)
H6A0.08610.52070.07990.054*
N40.3697 (4)0.41427 (19)0.00783 (18)0.0368 (11)
C230.4184 (5)0.4177 (3)0.0580 (3)0.0390 (15)
Cl20.34465 (14)0.62983 (6)0.11493 (6)0.0529 (4)
O70.0657 (4)0.51708 (18)0.13635 (18)0.0640 (12)
O60.1610 (4)0.59854 (16)0.02370 (17)0.0555 (12)
C260.0201 (6)0.6418 (3)0.0416 (3)0.0455 (15)
C250.1106 (6)0.5871 (3)0.0209 (3)0.0456 (16)
N70.0444 (5)0.5541 (3)0.2273 (3)0.0625 (15)
C310.0011 (6)0.7014 (3)0.0087 (3)0.0570 (17)
H310.03260.70500.02640.068*
C300.0744 (7)0.7573 (3)0.0284 (3)0.071 (2)
H300.08920.79830.00630.086*
C290.1230 (6)0.7516 (3)0.0788 (3)0.072 (2)
H290.17100.78900.09170.086*
C320.0193 (6)0.5629 (3)0.1722 (3)0.0552 (18)
H320.03070.60870.15860.066*
C270.0303 (6)0.6356 (3)0.0923 (3)0.070 (2)
H270.01670.59440.11410.084*
C280.1030 (6)0.6918 (3)0.1116 (3)0.078 (2)
H280.13750.68830.14650.093*
C330.0661 (8)0.4853 (3)0.2527 (3)0.147 (4)
H33A0.00810.45480.23310.221*
H33B0.06410.48750.29420.221*
H33C0.15700.46780.24770.221*
C340.1024 (6)0.6121 (3)0.2669 (3)0.089 (2)
H34A0.08850.65520.24530.134*
H34B0.20240.60480.28160.134*
H34C0.05390.61410.29960.134*
N80.4154 (6)0.0589 (3)0.2213 (2)0.0628 (15)
C350.4662 (7)0.0543 (3)0.1726 (3)0.068 (2)
H350.42150.08100.14050.081*
O80.5672 (5)0.0181 (2)0.16552 (18)0.0770 (14)
C370.4734 (7)0.0171 (3)0.2717 (3)0.093 (2)
H37A0.56100.03750.29240.139*
H37B0.40660.01480.29780.139*
H37C0.49160.02920.25900.139*
C360.2939 (7)0.1033 (3)0.2249 (3)0.107 (3)
H36A0.21990.07560.23610.160*
H36B0.32300.13910.25390.160*
H36C0.25880.12440.18690.160*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu30.0628 (5)0.0336 (4)0.0459 (5)0.0005 (4)0.0171 (4)0.0020 (4)
Cu20.0647 (5)0.0325 (4)0.0509 (5)0.0049 (4)0.0185 (4)0.0005 (4)
Cu10.0576 (5)0.0413 (4)0.0616 (6)0.0075 (4)0.0130 (4)0.0029 (4)
C240.044 (4)0.036 (4)0.044 (4)0.015 (3)0.005 (3)0.004 (3)
Cu40.0575 (5)0.0409 (4)0.0492 (5)0.0015 (4)0.0142 (4)0.0059 (4)
S20.0588 (11)0.0424 (9)0.0480 (11)0.0026 (8)0.0179 (9)0.0049 (8)
S10.0813 (13)0.0352 (8)0.0597 (12)0.0083 (8)0.0325 (10)0.0032 (8)
Cl10.0832 (13)0.0662 (11)0.1000 (15)0.0327 (9)0.0376 (11)0.0103 (10)
O40.066 (3)0.025 (2)0.054 (3)0.0012 (18)0.026 (2)0.0009 (19)
O30.075 (3)0.029 (2)0.040 (3)0.0038 (18)0.018 (2)0.0018 (19)
O10.087 (3)0.044 (2)0.056 (3)0.017 (2)0.024 (3)0.005 (2)
O20.074 (3)0.042 (2)0.058 (3)0.019 (2)0.020 (2)0.003 (2)
N20.059 (3)0.032 (3)0.040 (3)0.006 (2)0.014 (3)0.001 (2)
N30.065 (3)0.024 (3)0.049 (4)0.007 (2)0.014 (3)0.004 (2)
N10.063 (3)0.038 (3)0.053 (4)0.003 (3)0.017 (3)0.004 (3)
C90.055 (4)0.031 (3)0.056 (5)0.005 (3)0.018 (4)0.007 (3)
C10.070 (5)0.029 (4)0.053 (5)0.002 (3)0.001 (4)0.000 (4)
C30.059 (5)0.044 (4)0.073 (5)0.007 (3)0.002 (4)0.007 (4)
C170.041 (4)0.032 (3)0.051 (5)0.012 (3)0.011 (3)0.012 (3)
C110.044 (4)0.043 (4)0.039 (4)0.009 (3)0.005 (3)0.003 (3)
C150.071 (5)0.039 (4)0.048 (5)0.006 (3)0.007 (4)0.003 (4)
C20.050 (4)0.036 (4)0.052 (5)0.004 (3)0.008 (4)0.002 (3)
C100.048 (4)0.039 (4)0.040 (4)0.009 (3)0.006 (3)0.012 (3)
C160.052 (4)0.041 (4)0.040 (5)0.007 (3)0.010 (3)0.008 (3)
C120.067 (5)0.052 (4)0.054 (5)0.004 (3)0.016 (4)0.002 (4)
C130.078 (5)0.066 (4)0.048 (5)0.002 (4)0.032 (4)0.004 (4)
C70.062 (5)0.050 (4)0.124 (7)0.013 (4)0.032 (5)0.035 (4)
C40.079 (6)0.062 (4)0.062 (5)0.016 (4)0.019 (4)0.016 (4)
C50.079 (6)0.066 (5)0.085 (6)0.003 (4)0.009 (5)0.025 (4)
C60.076 (6)0.074 (5)0.132 (8)0.015 (4)0.039 (5)0.039 (5)
C210.054 (4)0.045 (4)0.037 (4)0.011 (3)0.009 (3)0.003 (3)
C200.053 (4)0.069 (4)0.047 (4)0.000 (3)0.022 (4)0.005 (4)
C180.063 (5)0.034 (4)0.056 (5)0.012 (3)0.016 (4)0.002 (3)
C220.039 (4)0.044 (4)0.038 (4)0.010 (3)0.007 (3)0.002 (3)
C190.050 (4)0.043 (4)0.070 (5)0.005 (3)0.015 (4)0.008 (4)
C140.073 (5)0.050 (4)0.054 (5)0.007 (3)0.003 (4)0.007 (4)
O50.069 (3)0.043 (2)0.052 (3)0.012 (2)0.026 (2)0.009 (2)
N50.051 (3)0.033 (3)0.037 (3)0.000 (2)0.014 (3)0.003 (2)
N60.051 (3)0.035 (3)0.053 (3)0.001 (2)0.021 (3)0.002 (3)
N40.049 (3)0.030 (3)0.032 (3)0.001 (2)0.009 (3)0.004 (2)
C230.042 (4)0.038 (4)0.038 (4)0.001 (3)0.009 (3)0.006 (3)
Cl20.0584 (10)0.0466 (9)0.0541 (10)0.0054 (7)0.0122 (8)0.0105 (8)
O70.079 (3)0.050 (3)0.058 (3)0.006 (2)0.002 (3)0.005 (2)
O60.073 (3)0.042 (2)0.059 (3)0.011 (2)0.029 (2)0.013 (2)
C260.052 (4)0.031 (4)0.052 (5)0.003 (3)0.006 (4)0.008 (3)
C250.046 (4)0.035 (4)0.052 (5)0.012 (3)0.000 (4)0.006 (3)
N70.064 (4)0.068 (4)0.052 (4)0.003 (3)0.004 (3)0.001 (4)
C310.066 (5)0.048 (4)0.053 (5)0.005 (4)0.000 (4)0.002 (4)
C300.087 (6)0.046 (4)0.075 (6)0.014 (4)0.000 (5)0.004 (4)
C290.065 (5)0.050 (5)0.100 (7)0.007 (4)0.013 (5)0.022 (5)
C320.050 (5)0.070 (5)0.049 (5)0.002 (4)0.017 (4)0.007 (4)
C270.092 (5)0.033 (4)0.098 (6)0.003 (4)0.049 (5)0.001 (4)
C280.077 (5)0.061 (5)0.107 (6)0.002 (4)0.046 (5)0.001 (5)
C330.209 (10)0.091 (6)0.110 (7)0.011 (6)0.047 (6)0.046 (5)
C340.076 (5)0.112 (6)0.074 (5)0.026 (4)0.001 (4)0.031 (5)
N80.077 (4)0.071 (4)0.040 (4)0.001 (3)0.010 (3)0.003 (3)
C350.081 (6)0.065 (5)0.054 (5)0.010 (4)0.008 (5)0.002 (4)
O80.105 (4)0.069 (3)0.066 (3)0.020 (3)0.038 (3)0.008 (2)
C370.161 (7)0.071 (5)0.049 (5)0.005 (5)0.027 (5)0.012 (4)
C360.086 (6)0.157 (7)0.078 (6)0.044 (5)0.020 (5)0.008 (5)
Geometric parameters (Å, º) top
Cu3—N41.924 (4)C5—C61.364 (7)
Cu3—O41.942 (3)C5—H50.9300
Cu3—O31.985 (3)C6—H60.9300
Cu3—S22.2629 (15)C21—C201.375 (6)
Cu3—Cl2i2.6869 (17)C21—C221.400 (6)
Cu3—Cu23.0146 (10)C21—H210.9300
Cu2—N31.916 (4)C20—C191.387 (6)
Cu2—O41.933 (3)C20—H200.9300
Cu2—O31.934 (3)C18—C191.360 (6)
Cu2—S12.2378 (15)C18—H180.9300
Cu1—N21.901 (4)C22—C231.473 (6)
Cu1—O21.932 (3)C19—H190.9300
Cu1—O11.936 (4)C14—H140.9300
Cu1—Cl12.1793 (16)O5—C231.278 (5)
C24—N51.282 (6)N5—N41.410 (5)
C24—N61.401 (5)N6—C251.365 (6)
C24—S21.723 (5)N6—H6A0.8600
Cu4—O51.931 (3)N4—C231.329 (6)
Cu4—N51.937 (4)Cl2—Cu3i2.6869 (17)
Cu4—O61.948 (4)O7—C321.225 (6)
Cu4—Cl22.2349 (14)O6—C251.237 (6)
Cu4—O72.396 (4)C26—C271.353 (7)
S1—C91.723 (5)C26—C311.363 (6)
O4—C171.341 (5)C26—C251.495 (7)
O3—C161.349 (6)N7—C321.305 (6)
O1—C11.238 (6)N7—C331.438 (6)
O2—C101.267 (5)N7—C341.473 (6)
N2—C91.285 (6)C31—C301.404 (7)
N2—N31.403 (5)C31—H310.9300
N3—C101.337 (6)C30—C291.338 (7)
N1—C11.388 (6)C30—H300.9300
N1—C91.410 (6)C29—C281.364 (7)
N1—H10.8600C29—H290.9300
C1—C21.480 (7)C32—H320.9300
C3—C21.372 (6)C27—C281.401 (7)
C3—C41.393 (6)C27—H270.9300
C3—H30.9300C28—H280.9300
C17—C181.400 (6)C33—H33A0.9600
C17—C221.415 (6)C33—H33B0.9600
C11—C121.401 (6)C33—H33C0.9600
C11—C161.412 (6)C34—H34A0.9600
C11—C101.472 (6)C34—H34B0.9600
C15—C141.367 (6)C34—H34C0.9600
C15—C161.381 (6)N8—C351.310 (7)
C15—H150.9300N8—C371.427 (6)
C2—C71.384 (7)N8—C361.455 (6)
C12—C131.358 (6)C35—O81.227 (6)
C12—H120.9300C35—H350.9300
C13—C141.391 (6)C37—H37A0.9600
C13—H130.9300C37—H37B0.9600
C7—C61.372 (7)C37—H37C0.9600
C7—H70.9300C36—H36A0.9600
C4—C51.378 (7)C36—H36B0.9600
C4—H40.9300C36—H36C0.9600
N4—Cu3—O491.67 (16)C5—C4—H4119.9
N4—Cu3—O3160.14 (15)C3—C4—H4119.9
O4—Cu3—O376.21 (13)C6—C5—C4119.5 (7)
N4—Cu3—S286.69 (13)C6—C5—H5120.3
O4—Cu3—S2166.13 (11)C4—C5—H5120.3
O3—Cu3—S2101.28 (11)C5—C6—C7121.3 (6)
N4—Cu3—Cl2i102.02 (12)C5—C6—H6119.4
O4—Cu3—Cl2i90.06 (11)C7—C6—H6119.4
O3—Cu3—Cl2i93.79 (10)C20—C21—C22122.0 (5)
S2—Cu3—Cl2i103.76 (5)C20—C21—H21119.0
N4—Cu3—Cu2124.37 (12)C22—C21—H21119.0
O4—Cu3—Cu238.83 (9)C21—C20—C19120.0 (5)
O3—Cu3—Cu239.11 (10)C21—C20—H20120.0
S2—Cu3—Cu2134.21 (4)C19—C20—H20120.0
Cl2i—Cu3—Cu2101.31 (4)C19—C18—C17123.4 (5)
N3—Cu2—O4167.09 (16)C19—C18—H18118.3
N3—Cu2—O391.61 (17)C17—C18—H18118.3
O4—Cu2—O377.62 (14)C21—C22—C17118.1 (5)
N3—Cu2—S187.08 (14)C21—C22—C23116.2 (5)
O4—Cu2—S1103.10 (11)C17—C22—C23125.8 (5)
O3—Cu2—S1175.38 (11)C18—C19—C20118.6 (5)
N3—Cu2—Cu3128.62 (14)C18—C19—H19120.7
O4—Cu2—Cu339.05 (10)C20—C19—H19120.7
O3—Cu2—Cu340.35 (10)C15—C14—C13120.5 (6)
S1—Cu2—Cu3139.05 (4)C15—C14—H14119.8
N2—Cu1—O281.56 (17)C13—C14—H14119.8
N2—Cu1—O189.25 (17)C23—O5—Cu4112.6 (3)
O2—Cu1—O1169.68 (16)C24—N5—N4115.7 (4)
N2—Cu1—Cl1175.61 (13)C24—N5—Cu4131.8 (4)
O2—Cu1—Cl195.72 (12)N4—N5—Cu4112.4 (3)
O1—Cu1—Cl193.73 (12)C25—N6—C24127.4 (5)
N5—C24—N6119.1 (5)C25—N6—H6A116.3
N5—C24—S2125.0 (4)C24—N6—H6A116.3
N6—C24—S2115.9 (4)C23—N4—N5111.3 (4)
O5—Cu4—N581.59 (16)C23—N4—Cu3129.9 (4)
O5—Cu4—O6169.20 (15)N5—N4—Cu3118.6 (3)
N5—Cu4—O687.64 (16)O5—C23—N4121.8 (5)
O5—Cu4—Cl296.88 (11)O5—C23—C22118.3 (5)
N5—Cu4—Cl2160.15 (13)N4—C23—C22119.8 (5)
O6—Cu4—Cl293.52 (11)Cu4—Cl2—Cu3i101.58 (6)
O5—Cu4—O795.19 (14)C32—O7—Cu4118.4 (4)
N5—Cu4—O7105.76 (15)C25—O6—Cu4130.8 (4)
O6—Cu4—O786.93 (14)C27—C26—C31120.8 (5)
Cl2—Cu4—O794.09 (10)C27—C26—C25122.8 (6)
C24—S2—Cu394.0 (2)C31—C26—C25116.2 (6)
C9—S1—Cu293.5 (2)O6—C25—N6122.7 (5)
C17—O4—Cu2131.0 (3)O6—C25—C26119.1 (5)
C17—O4—Cu3126.3 (3)N6—C25—C26118.2 (5)
Cu2—O4—Cu3102.12 (16)C32—N7—C33121.0 (6)
C16—O3—Cu2126.7 (3)C32—N7—C34123.2 (6)
C16—O3—Cu3132.7 (3)C33—N7—C34115.7 (5)
Cu2—O3—Cu3100.54 (16)C26—C31—C30119.2 (6)
C1—O1—Cu1129.7 (4)C26—C31—H31120.4
C10—O2—Cu1112.5 (4)C30—C31—H31120.4
C9—N2—N3114.5 (4)C29—C30—C31120.0 (6)
C9—N2—Cu1131.6 (4)C29—C30—H30120.0
N3—N2—Cu1113.5 (3)C31—C30—H30120.0
C10—N3—N2110.8 (4)C30—C29—C28120.9 (7)
C10—N3—Cu2129.9 (4)C30—C29—H29119.6
N2—N3—Cu2118.6 (3)C28—C29—H29119.6
C1—N1—C9126.2 (5)O7—C32—N7126.7 (6)
C1—N1—H1116.9O7—C32—H32116.7
C9—N1—H1116.9N7—C32—H32116.7
N2—C9—N1119.5 (5)C26—C27—C28119.4 (6)
N2—C9—S1125.5 (4)C26—C27—H27120.3
N1—C9—S1115.0 (4)C28—C27—H27120.3
O1—C1—N1123.3 (5)C29—C28—C27119.6 (6)
O1—C1—C2120.1 (6)C29—C28—H28120.2
N1—C1—C2116.6 (6)C27—C28—H28120.2
C2—C3—C4119.3 (6)N7—C33—H33A109.5
C2—C3—H3120.3N7—C33—H33B109.5
C4—C3—H3120.3H33A—C33—H33B109.5
O4—C17—C18120.1 (5)N7—C33—H33C109.5
O4—C17—C22122.1 (5)H33A—C33—H33C109.5
C18—C17—C22117.7 (5)H33B—C33—H33C109.5
C12—C11—C16118.0 (5)N7—C34—H34A109.5
C12—C11—C10116.1 (5)N7—C34—H34B109.5
C16—C11—C10125.9 (5)H34A—C34—H34B109.5
C14—C15—C16120.9 (6)N7—C34—H34C109.5
C14—C15—H15119.5H34A—C34—H34C109.5
C16—C15—H15119.5H34B—C34—H34C109.5
C3—C2—C7120.4 (6)C35—N8—C37120.5 (6)
C3—C2—C1124.2 (6)C35—N8—C36121.6 (6)
C7—C2—C1115.3 (6)C37—N8—C36117.8 (5)
O2—C10—N3121.2 (5)O8—C35—N8126.0 (7)
O2—C10—C11119.7 (5)O8—C35—H35117.0
N3—C10—C11119.0 (5)N8—C35—H35117.0
O3—C16—C15119.5 (5)N8—C37—H37A109.5
O3—C16—C11121.1 (5)N8—C37—H37B109.5
C15—C16—C11119.4 (6)H37A—C37—H37B109.5
C13—C12—C11121.9 (5)N8—C37—H37C109.5
C13—C12—H12119.1H37A—C37—H37C109.5
C11—C12—H12119.1H37B—C37—H37C109.5
C12—C13—C14119.3 (6)N8—C36—H36A109.5
C12—C13—H13120.4N8—C36—H36B109.5
C14—C13—H13120.4H36A—C36—H36B109.5
C6—C7—C2119.3 (6)N8—C36—H36C109.5
C6—C7—H7120.4H36A—C36—H36C109.5
C2—C7—H7120.4H36B—C36—H36C109.5
C5—C4—C3120.2 (6)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O8ii0.861.972.814 (6)167
N6—H6A···O7iii0.862.253.089 (6)164
Symmetry codes: (ii) x+1, y, z; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Cu8(C15H10N3O3S)4Cl4(C3H7NO)2]·2C3H7NO
Mr2191.78
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)9.5672 (19), 19.153 (4), 23.006 (5)
β (°) 101.53 (3)
V3)4130.6 (14)
Z2
Radiation typeMo Kα
µ (mm1)2.32
Crystal size (mm)0.48 × 0.46 × 0.08
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.324, 0.852
No. of measured, independent and
observed [I > 2σ(I)] reflections
24190, 7277, 3279
Rint0.102
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.067, 0.97
No. of reflections7277
No. of parameters545
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.39

Computer programs: APEX2 (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cu3—N41.924 (4)Cu1—N21.901 (4)
Cu3—O41.942 (3)Cu1—O21.932 (3)
Cu3—O31.985 (3)Cu1—O11.936 (4)
Cu3—S22.2629 (15)Cu1—Cl12.1793 (16)
Cu3—Cl2i2.6869 (17)Cu4—O51.931 (3)
Cu2—N31.916 (4)Cu4—N51.937 (4)
Cu2—O41.933 (3)Cu4—O61.948 (4)
Cu2—O31.934 (3)Cu4—Cl22.2349 (14)
Cu2—S12.2378 (15)Cu4—O72.396 (4)
N4—Cu3—O491.67 (16)N2—Cu1—O281.56 (17)
O4—Cu3—O376.21 (13)N2—Cu1—O189.25 (17)
N4—Cu3—S286.69 (13)O2—Cu1—Cl195.72 (12)
O4—Cu3—S2166.13 (11)O1—Cu1—Cl193.73 (12)
O3—Cu3—Cl2i93.79 (10)O5—Cu4—N581.59 (16)
N3—Cu2—O391.61 (17)N5—Cu4—O687.64 (16)
O4—Cu2—O377.62 (14)O5—Cu4—Cl296.88 (11)
N3—Cu2—S187.08 (14)O6—Cu4—Cl293.52 (11)
O4—Cu2—S1103.10 (11)O5—Cu4—O795.19 (14)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O8ii0.861.972.814 (6)167.4
N6—H6A···O7iii0.862.253.089 (6)164.2
Symmetry codes: (ii) x+1, y, z; (iii) x, y+1, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds