Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The structures of the Mg, Ca, Sr and Ba salts of 1-naphthoic acid are examined and compared with analogous structures of salts of benzoate derivatives. It is shown that catena-poly[[[diaqua­bis­(1-naphtho­ato-κO)magnesium(II)]-μ-aqua] dihydrate], {[Mg(C11H7O2)2(H2O)3]·2H2O}n, exists as a one-dimensional coordination polymer that propagates only through Mg—OH2—Mg inter­actions along the crystallographic b direction. In contrast with related benzoate salts, the naphthalene systems are large enough to prevent inorganic chain-to-chain inter­actions, and thus species with inorganic channels rather than layers are formed. The Ca, Sr and Ba salts all have metal centres that lie on a twofold axis (Z′ = 1 \over 2) and all have the common name catena-poly[[diaqua­metal(II)]-bis­(μ-1-naphtho­ato)-κ3O,O′:O3O:O,O′], [M(C11H7O2)2(H2O)2]n, where M = Ca, Sr or Ba. The Ca and Sr salts are essentially isostructural, and all three species form one-dimensional coordination polymers through a carboxyl­ate group that forms three M—O bonds. The polymeric chains propagate via c-glide planes and through MOMO four-membered rings. Again, inorganic channel structures are formed rather than layered structures, and the three structures are similar to those found for Ca and Sr salicylates and other substituted benzoates.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270112030399/fn3109sup1.cif
Contains datablocks global, MgNPH, CaNPH, SrNPH, BaNPH

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112030399/fn3109MgNPHsup2.hkl
Contains datablock MgNPH

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112030399/fn3109CaNPHsup3.hkl
Contains datablock CaNPH

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112030399/fn3109SrNPHsup4.hkl
Contains datablock SrNPH

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112030399/fn3109BaNPHsup5.hkl
Contains datablock BaNPH

CCDC references: 899055; 899056; 899057; 899058

Comment top

Salt forms of active pharmaceutical ingregients (APIs) are commonly investigated as a simple route to altering the physicochemical properties of the API (Stahl & Wermuth, 2002) whilst, it is hoped, not changing its fundamental underlying biological activity [see Zhao et al. (2010) for an example of possible unforeseen consequences resulting from salt choice]. Many of the performance-critical properties of an API (such as solubility, melting point and hygroscopicity) are dependant upon its solid-state structure, and thus a true understanding of structure–property relationships should allow the most appropriate counterion to be chosen for any given desired property. However, structure–property relationships of this type are poorly understood, and thus salt selection of API forms is currently undertaken using time-consuming trial-and-error methods (Stahl & Wermuth, 2002). One reason for our lack of understanding is a general dearth of large groups of systematically related crystal structures of salt forms with associated phase-specific physicochemical data. Some such studies do exist (for example, Collier et al., 2006; Black et al., 2007; Kennedy et al., 2011) but they are relatively uncommon. As a contribution to this field, Arlin et al. (2011) showed that Mg, Ca and Sr (but not Ba) salt forms of a set of simple benzoate-derived anions could be systematically structurally classified, and that these structural features helped to rationalize comparative aqueous solubility data. This work was later extended to phenylacetic acid (Arlin et al., 2012). A major aim of this earlier work was to use the lessons learned from simple model compounds to predict behaviour in larger commercial APIs with similar functionality. Many APIs have carboxylate groups and six-membered aryl rings (e.g. profens, aspirin), as do the reported model benzoate structures. However, several important drug classes (e.g. naproxens, fluoroquinolones) have larger fused aromatic groups and this structural feature was not included in the model data set. To help fill this gap, the Mg, Ca, Sr and Ba complexes of 1-naphthoate (NPH) have now been investigated in order to investigate what effects the extra bulk of the aromatic region has on crystal stucture, and the results are presented here (Mg-, Ca-, Sr and BaNPH). Naphthalene derivatives with multiple carboxylate groups have been structurally examined (see, for example, Fitzgerald & Gerkin, 1994; Senkovska, 2006), but the only such simple Group 2 metal salt with a monocarboxylate naphthoate to have been structurally characterized to date is the Mg salt of 1-hydroxy-2-naphthoic acid (Huang & Song, 2008).

MgNPH is found to be [Mg(NPH)2(H2O)3].2H2O (Fig. 1), which has an approximately octahedral metal centre. The NPH ligands are mutually cis [O3—Mg—O1 = 87.58 (8)°] and each bonds to Mg through only one of its carboxylate O atoms, with the other O atom taking part only in hydrogen-bonding interactions. The C—O distances involving the non-metal-bound O atoms are approximately 0.02 Å shorter than those of the metal-bound O atoms (Table 1). Such large variations in C—O bond lengths are not found for the Ca, Sr or Ba salts (see below), which all have η2 rather than η1-COO bonding modes. Two of the water ligands are also terminal but the third, O1W, acts as a bridge between metal centres. Table 1 shows that the bridging Mg—O bonds are approximately 0.17 Å longer than the terminal bonds. The bridging water ligands are trans to one another [O1—Mg—O1Wi = 177.47 (5)°; symmetry code: (i) -x, y - 1/2, -z + 1/2] and this results in a one-dimensional coordination chain based on Mg—OH2—Mg units which propagates along the crystallographic b direction (Fig. 2). In contrast, the Mg salt of 1-hydroxy-2-naphthoic acid reported by Huang & Song (2008) is a discrete [Mg(L)2(H2O)4] complex.

Previous work has shown that a common motif for magnesium salts of carboxylate ions with no good hydrogen-bonding substituents (e.g. benzoate, halobenzoates and phenylacetate) is a one-dimensional coordination polymer that packs to give alternating inorganic layers and organic bilayers (Arlin et al., 2011, 2012). Although also a one-dimensional polymer, the structure of MgNPH differs from those of these smaller anions in significant ways. Firstly, for the benzene-based species the carboxylate group is found to be the bridging ligand, not water as in MgNPH. Indeed, a search of the Cambridge Structural Database (Version?; Allen, 2002) found no other structure of an Mg salt of an aryl carboxylate anion that bridges through water and not through the carboxylate group. Secondly, as shown in Fig. 3, the structure of MgNPH does not contain an inorganic layer. Instead, the one-dimensional chains are isolated from each other by the organic groups. With smaller anions, the inorganic layers tend to be formed by hydrogen bonding between the inorganic chains. Here, the larger naphthalene group seems to have a fundamental effect on the packing structure by separating out these chains. The presence of large nonpolar groups may also explain why two of the H atoms of the water molecules do not act as traditional hydrogen-bond donors (Table 2).

The structures of CaNPH and SrNPH were found to be essentially isostructural, with the composition [M(NPH)2(H2O)2] (Figs. 4 and 5). This reflects the structures of the benzoate and phenylacetate derivatives, where the Ca and Sr structures were found to have similar structural types and even (for salicylate, 4-aminosalicylate, 4-aminobenzoate and phenylacetate) to form isostructural pairs. In both CaNPH and SrNPH, the metal centre lies on a twofold axis and is formally eight-coordinate though, as Cotton & Bergman (1964) classically showed, if each chelated group is assigned to one coordination site rather than two, then the structures can be described as distorted octahedral (Tables 3 and 5). The water ligands are terminal and are trans to the chelated carboxylate groups [O1WM···C1 = 168.66 (5) and 167.13 (8)° for CaNPH and SrNPH, respectively]. The NPH anions use both their O atoms to chelate to one metal centre, and one O atom of each ligand then bridges to a further metal centre. Thus, it is this coordination mode of the carboxylate (and not water as in MgNPH) that leads to propagation of a one-dimensional coordination polymer based on perfectly planar MOMO rings along the c-glide plane (Fig. 6). The aromatic rings form dihedral angles of 46.68 (5) and 44.59 (10)° with the CaOCaO and SrOSrO rings, respectively.

As with MgNPH above, the one-dimensional polymers in the Ca and Sr salts do not interact to form the two-dimensional sheets seen for the equivalent benzoate and phenylacetate structures (Senkovska & Thewalt, 2005; Arlin et al., 2011, 2012). However, both the geometry of the coordination polymer and the packing motif with inorganic channels shown in Fig. 7 are the same as those found in a second class of Ca and Sr salt structures of benzoate derivatives, but oddly this class of structure was observed previously only with benzoates containing hydrogen-bonding substituents, especially salicylate and 2-nitrobenzoate (Debuyst et al., 1979; Arlin et al., 2011).

Crystals of BaNPH formed as very thin plates (approximately 0.005 mm) which required the use of synchrotron radiation to characterize them. It was found to have the same [M(NPH)2(H2O)2] composition, and indeed the same coordination geometry (Table 7), the same polymeric one-dimensional coordination arrangement and the same packing mode featuring inorganic channels, as the Ca and Sr salts, though it is not isostructural with them. The dihedral angle between the MOMO plane and the aromatic plane [39.48 (9) °] is slightly less than in the Ca or Sr salts. The Ba ions again lie on a twofold rotation axis and the coordination polymer propagates along the crystallographic c direction. The similarity of the structure of BaNPH to the structures of CaNPH and SrNPH is somewhat unusual as, of the nine families of Group 2 metal salts of benzoate anions described by Arlin et al., (2011), only the Ba salt of 4-chlorobenzoate had a structure that was somewhat similar to its lighter analogues. All other Ba salts were found to be structurally varied and distinct. Finally, it is noted that each water molecule in the Ca, Sr and Ba salt structures uses only one H atom as a hydrogen-bond donor (Tables 4, 6 and 8).

In summary, whereas phenylacetate, with its additional Csp3 atom between the aryl and –COO groups, was found to have Mg, Ca and Sr salt structures that were closely related to those found for analogous benzoate and halobenzoate salts (Arlin et al., 2011, 2012), adding a larger aromatic fragment in the shape of naphthalene was found to give different structural types. The structure of MgNPH has an unusual motif based on Mg—OH2—Mg bridging and a change to the packing structure that can be understood in terms of the large nonpolar parts of the naphthoate anions preventing the polar/inorganic chains from hydrogen bonding to each other. The Ca, Sr and Ba salts of naphthoate all have similar one-dimensional polymeric coordination structures and similar packing modes. Again, the large size of the naphthoate fragments appears to prevent the one-dimensional inorganic chains from aggregating, but intruigingly the resulting structues are now of a type previously seen for Ca and Sr salts of salicylate and other benzoate derivatives with extra (rather than fewer) polar or hydrogen-bond-forming substituents.

Related literature top

For related literature, see: Allen (2002); Arlin et al. (2011, 2012); Black et al. (2007); Collier et al. (2006); Cotton & Bergman (1964); Debuyst et al. (1979); Fitzgerald & Gerkin (1994); Huang & Song (2008); Kennedy et al. (2011); Senkovska (2006); Senkovska & Thewalt (2005); Stahl & Wermuth (2002); Zhao (2010).

Experimental top

All samples were prepared by slowly adding a slight excess of an aqueous solution of the appropriate metal carbonate to a stirred aqueous slurry of 1-naphthoic acid. The solutions were gently heated to give complete dissolution of the solids. The volumes of the resulting clear solutions were reduced until white precipitates were deposited; these were collected by filtration. Colourless crystals suitable for single-crystal diffraction studies were obtained by recrystallization of the samples from warm water.

Refinement top

Water H atoms were positioned as found by difference syntheses and were refined with restraints such that the O—H and H···H distances approximated 0.88 and 1.33 Å, respectively; Uiso(H) vales were set at 1.5Ueq(O). This introduced 15 restraints for the Mg salt and three restraints for each of the other salts. H atoms bonded to C atoms were positioned geometrically and refined in riding mode, with C—H = 0.95 Å and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 1998) for MgNPH, CaNPH, SrNPH; APEX2 (Bruker, 2007) for BaNPH. Cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 1998) for MgNPH, CaNPH, SrNPH; SAINT (Bruker, 2007) for BaNPH. Data reduction: DENZO (Otwinowski & Minor, 1997) for MgNPH, CaNPH, SrNPH; SAINT (Bruker, 2007) for BaNPH. For all compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008). Molecular graphics: ORTEP-3 (Farrugia, 1997) and X-SEED (Barbour, 2001) for MgNPH, CaNPH; ORTEP-3 (Farrugia, 1997) for SrNPH, BaNPH. For all compounds, software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The contents of the asymmetric unit of MgNPH, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level.
[Figure 2] Fig. 2. Part of the one-dimensional coordination polymer found in MgNPH. The polymer chain is parallel to the crystallographic b direction. The noncoordinating water molecules are not shown.
[Figure 3] Fig. 3. The packing mode of MgNPH, viewed down b, showing that each hydrophilic inorganic chain is separated from the others by hydrophobic organic groups.
[Figure 4] Fig. 4. The contents of the asymmetric unit of CaNPH, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level.
[Figure 5] Fig. 5. The contents of the asymmetric unit of SrNPH, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level.
[Figure 6] Fig. 6. Part of the one-dimensional coordination polymer found in CaNPH. The polymer propagates in the crystallographic c direction. SrNPH is isostructural.
[Figure 7] Fig. 7. The packing structure of CaNPH, viewed along the length of the coordination polymer. SrNPH is isostructural. H atoms have been omitted for clarity.
[Figure 8] Fig. 8. The contents of the asymmetric unit of BaNPH, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level.
(MgNPH) catena-poly[[[diaquabis(1-naphthoato-κO)magnesium(II)]-µ-aqua] dihydrate] top
Crystal data top
[Mg(C11H7O2)2(H2O)3]·2H2OF(000) = 960
Mr = 456.72Dx = 1.401 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5287 reflections
a = 12.8896 (4) Åθ = 1.0–27.5°
b = 8.0048 (2) ŵ = 0.13 mm1
c = 24.5300 (5) ÅT = 123 K
β = 121.190 (1)°Plate, colourless
V = 2165.13 (10) Å30.15 × 0.13 × 0.03 mm
Z = 4
Data collection top
Nonius KappaCCD area-detector
diffractometer
2744 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.078
Graphite monochromatorθmax = 27.5°, θmin = 2.7°
ϕ and ω scansh = 1616
8977 measured reflectionsk = 1010
4968 independent reflectionsl = 3131
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0616P)2 + 1.1013P]
where P = (Fo2 + 2Fc2)/3
4968 reflections(Δ/σ)max < 0.001
319 parametersΔρmax = 0.31 e Å3
15 restraintsΔρmin = 0.43 e Å3
Crystal data top
[Mg(C11H7O2)2(H2O)3]·2H2OV = 2165.13 (10) Å3
Mr = 456.72Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.8896 (4) ŵ = 0.13 mm1
b = 8.0048 (2) ÅT = 123 K
c = 24.5300 (5) Å0.15 × 0.13 × 0.03 mm
β = 121.190 (1)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
2744 reflections with I > 2σ(I)
8977 measured reflectionsRint = 0.078
4968 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05915 restraints
wR(F2) = 0.150H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.31 e Å3
4968 reflectionsΔρmin = 0.43 e Å3
319 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mg10.00172 (8)0.76819 (11)0.24870 (4)0.0177 (2)
O10.10496 (17)0.6870 (2)0.34203 (8)0.0231 (5)
O20.20189 (19)0.9184 (2)0.39368 (9)0.0316 (5)
O1W0.08195 (16)1.0194 (2)0.27487 (8)0.0182 (4)
H1W0.1309 (19)1.001 (4)0.3160 (5)0.027*
H2W0.1338 (18)1.036 (4)0.2627 (11)0.027*
O30.12473 (17)0.8492 (2)0.27004 (9)0.0232 (5)
O2W0.13182 (19)0.6868 (2)0.23202 (9)0.0241 (5)
H3W0.134 (3)0.718 (3)0.1986 (10)0.036*
H4W0.136 (3)0.5784 (12)0.2308 (13)0.036*
O40.21291 (17)0.6144 (2)0.27392 (9)0.0268 (5)
O3W0.09957 (19)0.8507 (2)0.15824 (9)0.0256 (5)
H5W0.105 (3)0.9587 (13)0.1520 (13)0.038*
H6W0.116 (3)0.813 (3)0.1212 (8)0.038*
O4W0.1462 (2)0.3629 (3)0.35837 (11)0.0382 (6)
H7W0.191 (3)0.443 (3)0.3324 (14)0.057*
H8W0.192 (3)0.332 (4)0.3731 (15)0.057*
O5W0.1341 (2)1.1675 (3)0.44229 (11)0.0499 (7)
H9W0.177 (3)1.088 (4)0.4373 (16)0.075*
H10W0.187 (3)1.190 (5)0.4833 (7)0.075*
C10.1754 (3)0.7674 (4)0.39284 (13)0.0230 (7)
C20.2250 (3)0.6739 (3)0.45441 (12)0.0216 (7)
C30.3512 (3)0.6791 (3)0.50196 (13)0.0228 (7)
C40.4398 (3)0.7619 (4)0.49337 (15)0.0324 (8)
H40.41580.81760.45440.039*
C50.5587 (3)0.7612 (5)0.54091 (17)0.0438 (9)
H50.61660.81770.53470.053*
C60.5974 (3)0.6789 (5)0.59874 (17)0.0473 (10)
H60.68080.68000.63120.057*
C70.5165 (3)0.5982 (4)0.60841 (15)0.0394 (9)
H70.54350.54320.64790.047*
C80.3909 (3)0.5941 (4)0.56028 (14)0.0290 (7)
C90.3053 (3)0.5072 (4)0.56976 (14)0.0336 (8)
H90.33200.45020.60880.040*
C100.1856 (3)0.5048 (4)0.52358 (14)0.0322 (8)
H100.12910.44770.53070.039*
C110.1456 (3)0.5872 (4)0.46524 (14)0.0269 (7)
H110.06220.58270.43290.032*
C120.1851 (2)0.7647 (4)0.28802 (13)0.0214 (6)
C130.2203 (3)0.8519 (3)0.33046 (13)0.0206 (6)
C140.3384 (3)0.8366 (3)0.32240 (13)0.0212 (7)
C150.4348 (3)0.7466 (4)0.27194 (14)0.0260 (7)
H150.42210.68970.24190.031*
C160.5468 (3)0.7411 (4)0.26617 (15)0.0319 (8)
H160.61070.68010.23210.038*
C170.5680 (3)0.8241 (4)0.30977 (16)0.0338 (8)
H170.64570.81880.30520.041*
C180.4776 (3)0.9120 (4)0.35840 (15)0.0300 (8)
H180.49290.96790.38770.036*
C190.3605 (3)0.9224 (4)0.36655 (14)0.0244 (7)
C200.2664 (3)1.0156 (4)0.41677 (14)0.0284 (7)
H200.28141.07190.44610.034*
C210.1550 (3)1.0261 (4)0.42391 (13)0.0281 (7)
H210.09241.08800.45830.034*
C220.1322 (3)0.9453 (4)0.38020 (13)0.0259 (7)
H220.05440.95530.38510.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mg10.0203 (5)0.0143 (5)0.0192 (5)0.0003 (4)0.0107 (4)0.0008 (4)
O10.0292 (12)0.0185 (11)0.0170 (10)0.0034 (9)0.0087 (9)0.0018 (8)
O20.0417 (13)0.0176 (11)0.0245 (11)0.0063 (10)0.0094 (10)0.0007 (9)
O1W0.0193 (10)0.0178 (10)0.0188 (10)0.0003 (9)0.0107 (8)0.0014 (9)
O30.0274 (11)0.0171 (11)0.0339 (12)0.0018 (9)0.0222 (10)0.0006 (9)
O2W0.0330 (12)0.0139 (10)0.0333 (12)0.0006 (10)0.0228 (10)0.0009 (9)
O40.0321 (12)0.0161 (11)0.0414 (13)0.0043 (9)0.0257 (10)0.0042 (9)
O3W0.0363 (12)0.0165 (11)0.0185 (10)0.0011 (10)0.0102 (10)0.0011 (9)
O4W0.0580 (16)0.0289 (13)0.0409 (14)0.0016 (12)0.0350 (13)0.0022 (11)
O5W0.0619 (18)0.0432 (16)0.0392 (14)0.0042 (13)0.0223 (13)0.0046 (13)
C10.0250 (16)0.0202 (16)0.0222 (16)0.0020 (13)0.0112 (13)0.0025 (13)
C20.0286 (17)0.0168 (15)0.0189 (15)0.0020 (13)0.0120 (13)0.0021 (12)
C30.0298 (17)0.0177 (15)0.0197 (15)0.0019 (13)0.0119 (13)0.0036 (13)
C40.0322 (19)0.0306 (18)0.0330 (18)0.0011 (15)0.0159 (15)0.0002 (15)
C50.0290 (19)0.050 (2)0.049 (2)0.0036 (18)0.0174 (18)0.0054 (19)
C60.031 (2)0.052 (2)0.041 (2)0.0093 (19)0.0063 (17)0.0065 (19)
C70.044 (2)0.037 (2)0.0249 (18)0.0118 (18)0.0088 (16)0.0004 (15)
C80.0401 (19)0.0206 (16)0.0209 (16)0.0083 (15)0.0120 (15)0.0007 (13)
C90.057 (2)0.0211 (17)0.0224 (16)0.0061 (16)0.0206 (17)0.0056 (14)
C100.053 (2)0.0233 (18)0.0324 (18)0.0064 (16)0.0305 (17)0.0035 (15)
C110.0323 (17)0.0231 (16)0.0243 (16)0.0015 (14)0.0140 (14)0.0034 (13)
C120.0193 (15)0.0197 (16)0.0247 (16)0.0009 (13)0.0111 (13)0.0011 (13)
C130.0267 (16)0.0130 (14)0.0249 (16)0.0026 (13)0.0154 (13)0.0042 (12)
C140.0261 (16)0.0153 (15)0.0245 (16)0.0008 (13)0.0146 (13)0.0029 (12)
C150.0298 (18)0.0186 (16)0.0325 (17)0.0033 (14)0.0182 (15)0.0020 (13)
C160.0282 (18)0.0235 (17)0.0404 (19)0.0010 (14)0.0152 (16)0.0034 (15)
C170.0315 (18)0.0296 (18)0.052 (2)0.0057 (16)0.0297 (18)0.0042 (17)
C180.0390 (19)0.0247 (17)0.0393 (19)0.0082 (15)0.0295 (17)0.0042 (15)
C190.0328 (17)0.0171 (15)0.0317 (17)0.0070 (14)0.0226 (15)0.0064 (13)
C200.043 (2)0.0211 (16)0.0267 (16)0.0041 (15)0.0223 (15)0.0023 (14)
C210.0386 (19)0.0206 (16)0.0215 (15)0.0015 (14)0.0130 (14)0.0032 (13)
C220.0268 (17)0.0226 (16)0.0288 (17)0.0005 (14)0.0149 (14)0.0033 (14)
Geometric parameters (Å, º) top
Mg1—O3W2.016 (2)C6—C71.349 (5)
Mg1—O2W2.028 (2)C6—H60.9500
Mg1—O32.058 (2)C7—C81.427 (4)
Mg1—O12.069 (2)C7—H70.9500
Mg1—O1Wi2.195 (2)C8—C91.421 (5)
Mg1—O1W2.200 (2)C9—C101.362 (4)
O1—C11.273 (3)C9—H90.9500
O2—C11.253 (3)C10—C111.409 (4)
O1W—Mg1ii2.195 (2)C10—H100.9500
O1W—H1W0.881 (10)C11—H110.9500
O1W—H2W0.873 (10)C12—C131.505 (4)
O3—C121.270 (3)C13—C221.379 (4)
O2W—H3W0.871 (10)C13—C141.435 (4)
O2W—H4W0.872 (10)C14—C151.415 (4)
O4—C121.252 (3)C14—C191.430 (4)
O3W—H5W0.874 (10)C15—C161.377 (4)
O3W—H6W0.874 (10)C15—H150.9500
O4W—H7W0.876 (10)C16—C171.401 (4)
O4W—H8W0.873 (10)C16—H160.9500
O5W—H9W0.896 (10)C17—C181.355 (4)
O5W—H10W0.894 (10)C17—H170.9500
C1—C21.500 (4)C18—C191.418 (4)
C2—C111.371 (4)C18—H180.9500
C2—C31.430 (4)C19—C201.414 (4)
C3—C81.419 (4)C20—C211.356 (4)
C3—C41.427 (4)C20—H200.9500
C4—C51.364 (4)C21—C221.407 (4)
C4—H40.9500C21—H210.9500
C5—C61.401 (5)C22—H220.9500
C5—H50.9500
O3W—Mg1—O2W90.86 (9)C6—C7—C8121.0 (3)
O3W—Mg1—O391.72 (9)C6—C7—H7119.5
O2W—Mg1—O3177.36 (10)C8—C7—H7119.5
O3W—Mg1—O1179.08 (9)C3—C8—C9119.7 (3)
O2W—Mg1—O189.84 (8)C3—C8—C7119.0 (3)
O3—Mg1—O187.58 (8)C9—C8—C7121.3 (3)
O3W—Mg1—O1Wi93.30 (8)C10—C9—C8120.8 (3)
O2W—Mg1—O1Wi90.03 (8)C10—C9—H9119.6
O3—Mg1—O1Wi90.40 (8)C8—C9—H9119.6
O1—Mg1—O1Wi87.31 (8)C9—C10—C11120.0 (3)
O3W—Mg1—O1W87.73 (8)C9—C10—H10120.0
O2W—Mg1—O1W92.27 (8)C11—C10—H10120.0
O3—Mg1—O1W87.27 (8)C2—C11—C10121.1 (3)
O1—Mg1—O1W91.64 (8)C2—C11—H11119.5
O1Wi—Mg1—O1W177.47 (5)C10—C11—H11119.5
C1—O1—Mg1130.42 (18)O4—C12—O3123.7 (3)
Mg1ii—O1W—Mg1131.30 (8)O4—C12—C13119.4 (2)
Mg1ii—O1W—H1W114.4 (19)O3—C12—C13116.8 (2)
Mg1—O1W—H1W97.7 (18)C22—C13—C14119.8 (3)
Mg1ii—O1W—H2W97.5 (19)C22—C13—C12117.3 (2)
Mg1—O1W—H2W112 (2)C14—C13—C12122.9 (2)
H1W—O1W—H2W101.2 (18)C15—C14—C19118.5 (3)
C12—O3—Mg1129.00 (17)C15—C14—C13123.5 (3)
Mg1—O2W—H3W122 (2)C19—C14—C13117.9 (3)
Mg1—O2W—H4W113.7 (19)C16—C15—C14120.4 (3)
H3W—O2W—H4W102.7 (19)C16—C15—H15119.8
Mg1—O3W—H5W117.7 (18)C14—C15—H15119.8
Mg1—O3W—H6W134.4 (19)C15—C16—C17121.0 (3)
H5W—O3W—H6W101.9 (19)C15—C16—H16119.5
H7W—O4W—H8W100.0 (19)C17—C16—H16119.5
H9W—O5W—H10W97.4 (19)C18—C17—C16120.0 (3)
O2—C1—O1123.6 (3)C18—C17—H17120.0
O2—C1—C2119.6 (2)C16—C17—H17120.0
O1—C1—C2116.7 (2)C17—C18—C19121.4 (3)
C11—C2—C3120.3 (3)C17—C18—H18119.3
C11—C2—C1118.4 (3)C19—C18—H18119.3
C3—C2—C1121.2 (3)C20—C19—C18121.6 (3)
C8—C3—C4118.3 (3)C20—C19—C14119.7 (3)
C8—C3—C2118.1 (3)C18—C19—C14118.7 (3)
C4—C3—C2123.6 (3)C21—C20—C19121.3 (3)
C5—C4—C3120.2 (3)C21—C20—H20119.4
C5—C4—H4119.9C19—C20—H20119.4
C3—C4—H4119.9C20—C21—C22119.8 (3)
C4—C5—C6121.4 (3)C20—C21—H21120.1
C4—C5—H5119.3C22—C21—H21120.1
C6—C5—H5119.3C13—C22—C21121.5 (3)
C7—C6—C5120.1 (3)C13—C22—H22119.2
C7—C6—H6120.0C21—C22—H22119.2
C5—C6—H6120.0
O2W—Mg1—O1—C198.8 (2)C3—C8—C9—C100.1 (4)
O3—Mg1—O1—C180.6 (2)C7—C8—C9—C10179.7 (3)
O1Wi—Mg1—O1—C1171.1 (2)C8—C9—C10—C110.9 (4)
O1W—Mg1—O1—C16.6 (2)C3—C2—C11—C101.4 (4)
O3W—Mg1—O1W—Mg1ii47.12 (12)C1—C2—C11—C10176.4 (3)
O2W—Mg1—O1W—Mg1ii137.89 (12)C9—C10—C11—C21.5 (4)
O3—Mg1—O1W—Mg1ii44.71 (11)Mg1—O3—C12—O428.0 (4)
O1—Mg1—O1W—Mg1ii132.21 (12)Mg1—O3—C12—C13149.89 (19)
O3W—Mg1—O3—C12118.8 (2)O4—C12—C13—C22132.9 (3)
O1—Mg1—O3—C1261.8 (2)O3—C12—C13—C2245.1 (4)
O1Wi—Mg1—O3—C1225.4 (2)O4—C12—C13—C1444.9 (4)
O1W—Mg1—O3—C12153.6 (2)O3—C12—C13—C14137.2 (3)
Mg1—O1—C1—O25.7 (4)C22—C13—C14—C15178.5 (3)
Mg1—O1—C1—C2172.46 (18)C12—C13—C14—C153.8 (4)
O2—C1—C2—C11128.3 (3)C22—C13—C14—C190.9 (4)
O1—C1—C2—C1150.0 (4)C12—C13—C14—C19178.6 (2)
O2—C1—C2—C349.5 (4)C19—C14—C15—C160.6 (4)
O1—C1—C2—C3132.3 (3)C13—C14—C15—C16178.2 (3)
C11—C2—C3—C80.6 (4)C14—C15—C16—C170.1 (4)
C1—C2—C3—C8177.1 (2)C15—C16—C17—C180.2 (5)
C11—C2—C3—C4177.9 (3)C16—C17—C18—C190.0 (5)
C1—C2—C3—C44.4 (4)C17—C18—C19—C20179.2 (3)
C8—C3—C4—C51.4 (4)C17—C18—C19—C140.5 (4)
C2—C3—C4—C5179.9 (3)C15—C14—C19—C20178.9 (3)
C3—C4—C5—C60.6 (5)C13—C14—C19—C201.2 (4)
C4—C5—C6—C70.1 (5)C15—C14—C19—C180.8 (4)
C5—C6—C7—C80.3 (5)C13—C14—C19—C18178.5 (3)
C4—C3—C8—C9178.6 (3)C18—C19—C20—C21179.4 (3)
C2—C3—C8—C90.0 (4)C14—C19—C20—C210.3 (4)
C4—C3—C8—C71.6 (4)C19—C20—C21—C221.0 (4)
C2—C3—C8—C7179.8 (3)C14—C13—C22—C210.3 (4)
C6—C7—C8—C31.1 (5)C12—C13—C22—C21177.5 (3)
C6—C7—C8—C9179.1 (3)C20—C21—C22—C131.3 (4)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O20.88 (1)1.76 (1)2.621 (3)164 (3)
O1W—H2W···O4ii0.87 (1)1.79 (1)2.637 (3)165 (3)
O2W—H3W···O4Wii0.87 (1)1.88 (1)2.713 (3)159 (3)
O2W—H4W···O3i0.87 (1)1.84 (1)2.704 (3)171 (3)
O3W—H5W···O1ii0.87 (1)1.83 (1)2.693 (3)167 (3)
O3W—H6W···O5Wi0.87 (1)1.86 (1)2.701 (3)161 (3)
O4W—H7W···O40.88 (1)1.90 (2)2.691 (3)149 (3)
O5W—H9W···O20.90 (1)1.85 (2)2.692 (3)155 (3)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1/2, z+1/2.
(CaNPH) catena-poly[[diaquacalcium(II)]-bis(µ-1-naphthoato)- κ3O,O':O;κ3O:O,O'] top
Crystal data top
[Ca(C11H7O2)2(H2O)2]F(000) = 872
Mr = 418.44Dx = 1.496 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2196 reflections
a = 21.079 (1) Åθ = 1–27.5°
b = 11.4410 (6) ŵ = 0.38 mm1
c = 7.7200 (3) ÅT = 123 K
β = 93.994 (3)°Cut needle, colourless
V = 1857.27 (15) Å30.28 × 0.12 × 0.06 mm
Z = 4
Data collection top
Nonius KappaCCD area-detector
diffractometer
1641 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
Graphite monochromatorθmax = 27.5°, θmin = 3.3°
ϕ and ω scansh = 2727
4047 measured reflectionsk = 1414
2108 independent reflectionsl = 109
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0258P)2 + 1.991P]
where P = (Fo2 + 2Fc2)/3
2108 reflections(Δ/σ)max < 0.001
138 parametersΔρmax = 0.29 e Å3
3 restraintsΔρmin = 0.30 e Å3
Crystal data top
[Ca(C11H7O2)2(H2O)2]V = 1857.27 (15) Å3
Mr = 418.44Z = 4
Monoclinic, C2/cMo Kα radiation
a = 21.079 (1) ŵ = 0.38 mm1
b = 11.4410 (6) ÅT = 123 K
c = 7.7200 (3) Å0.28 × 0.12 × 0.06 mm
β = 93.994 (3)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
1641 reflections with I > 2σ(I)
4047 measured reflectionsRint = 0.031
2108 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0363 restraints
wR(F2) = 0.077H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.29 e Å3
2108 reflectionsΔρmin = 0.30 e Å3
138 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ca10.00000.03980 (4)1.25000.01390 (13)
O10.04711 (5)0.09489 (10)0.99365 (14)0.0170 (3)
O20.07864 (5)0.11825 (10)0.72994 (14)0.0192 (3)
O1W0.07630 (6)0.17367 (12)1.11200 (15)0.0240 (3)
H1W0.0827 (9)0.1706 (18)1.0004 (12)0.036*
H2W0.0996 (9)0.2304 (14)1.143 (2)0.036*
C10.07467 (7)0.15460 (15)0.8834 (2)0.0152 (4)
C20.10026 (8)0.27320 (15)0.9348 (2)0.0159 (4)
C30.06320 (8)0.34445 (15)1.0302 (2)0.0184 (4)
H30.02380.31611.06560.022*
C40.08283 (8)0.45869 (16)1.0764 (2)0.0215 (4)
H40.05600.50751.13910.026*
C50.14031 (8)0.49945 (16)1.0311 (2)0.0197 (4)
H50.15320.57651.06280.024*
C60.18086 (8)0.42798 (15)0.9373 (2)0.0162 (4)
C70.24163 (8)0.46787 (16)0.8961 (2)0.0187 (4)
H70.25530.54380.93160.022*
C80.28081 (8)0.39944 (16)0.8064 (2)0.0206 (4)
H80.32130.42770.77940.025*
C90.26091 (8)0.28643 (16)0.7541 (2)0.0203 (4)
H90.28830.23890.69150.024*
C100.20274 (8)0.24413 (15)0.7919 (2)0.0174 (4)
H100.19030.16770.75550.021*
C110.16068 (7)0.31362 (15)0.8851 (2)0.0148 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ca10.0149 (2)0.0161 (3)0.0108 (2)0.0000.00190 (17)0.000
O10.0183 (6)0.0187 (7)0.0143 (6)0.0020 (5)0.0031 (4)0.0022 (5)
O20.0228 (6)0.0236 (7)0.0115 (6)0.0064 (5)0.0029 (5)0.0024 (5)
O1W0.0272 (7)0.0293 (8)0.0154 (6)0.0116 (6)0.0017 (5)0.0017 (6)
C10.0116 (8)0.0196 (9)0.0142 (8)0.0015 (6)0.0002 (6)0.0007 (7)
C20.0197 (8)0.0177 (9)0.0101 (8)0.0007 (7)0.0005 (6)0.0016 (7)
C30.0180 (8)0.0220 (10)0.0154 (8)0.0019 (7)0.0026 (6)0.0012 (7)
C40.0270 (9)0.0205 (10)0.0174 (8)0.0043 (8)0.0040 (7)0.0041 (8)
C50.0271 (9)0.0162 (9)0.0155 (8)0.0009 (7)0.0014 (7)0.0017 (7)
C60.0199 (8)0.0167 (9)0.0116 (8)0.0017 (7)0.0019 (6)0.0015 (7)
C70.0224 (9)0.0168 (9)0.0163 (8)0.0056 (7)0.0024 (7)0.0022 (7)
C80.0167 (8)0.0251 (10)0.0201 (9)0.0043 (7)0.0009 (7)0.0034 (8)
C90.0189 (9)0.0224 (10)0.0198 (9)0.0015 (7)0.0026 (7)0.0020 (7)
C100.0188 (9)0.0161 (9)0.0171 (8)0.0012 (7)0.0006 (7)0.0005 (7)
C110.0163 (8)0.0176 (9)0.0103 (8)0.0002 (7)0.0010 (6)0.0028 (7)
Geometric parameters (Å, º) top
Ca1—O12.3608 (11)C2—C31.378 (2)
Ca1—O1i2.3608 (10)C2—C111.432 (2)
Ca1—O1Wi2.4143 (12)C3—C41.409 (2)
Ca1—O1W2.4143 (12)C3—H30.9500
Ca1—O2ii2.4652 (12)C4—C51.366 (2)
Ca1—O2iii2.4652 (12)C4—H40.9500
Ca1—O1ii2.5765 (12)C5—C61.417 (2)
Ca1—O1iii2.5765 (11)C5—H50.9500
Ca1—C1ii2.8738 (17)C6—C71.417 (2)
Ca1—C1iii2.8738 (17)C6—C111.425 (2)
O1—C11.2638 (19)C7—C81.361 (2)
O1—Ca1ii2.5765 (12)C7—H70.9500
O2—C11.2640 (19)C8—C91.410 (3)
O2—Ca1ii2.4652 (12)C8—H80.9500
O1W—H1W0.863 (9)C9—C101.368 (2)
O1W—H2W0.856 (9)C9—H90.9500
C1—C21.503 (2)C10—C111.423 (2)
C1—Ca1ii2.8738 (17)C10—H100.9500
O1—Ca1—O1i149.04 (6)O1—Ca1—Ca1iv154.92 (3)
O1—Ca1—O1Wi83.94 (4)O1i—Ca1—Ca1iv38.46 (3)
O1i—Ca1—O1Wi76.52 (4)O1Wi—Ca1—Ca1iv76.19 (3)
O1—Ca1—O1W76.52 (4)O1W—Ca1—Ca1iv122.00 (3)
O1i—Ca1—O1W83.94 (4)O2ii—Ca1—Ca1iv74.03 (3)
O1Wi—Ca1—O1W101.25 (7)O2iii—Ca1—Ca1iv86.46 (3)
O1—Ca1—O2ii124.92 (4)O1ii—Ca1—Ca1iv123.17 (3)
O1i—Ca1—O2ii79.59 (4)O1iii—Ca1—Ca1iv34.74 (2)
O1Wi—Ca1—O2ii150.20 (4)C1ii—Ca1—Ca1iv97.70 (3)
O1W—Ca1—O2ii93.60 (4)C1iii—Ca1—Ca1iv60.70 (3)
O1—Ca1—O2iii79.59 (4)Ca1ii—Ca1—Ca1iv153.45 (3)
O1i—Ca1—O2iii124.92 (4)C1—O1—Ca1161.56 (11)
O1Wi—Ca1—O2iii93.60 (4)C1—O1—Ca1ii90.20 (9)
O1W—Ca1—O2iii150.20 (4)Ca1—O1—Ca1ii106.81 (4)
O2ii—Ca1—O2iii85.64 (6)C1—O2—Ca1ii95.38 (9)
O1—Ca1—O1ii73.19 (4)Ca1—O1W—H1W117.9 (13)
O1i—Ca1—O1ii127.48 (4)Ca1—O1W—H2W137.4 (13)
O1Wi—Ca1—O1ii155.86 (4)H1W—O1W—H2W104.6 (15)
O1W—Ca1—O1ii81.15 (4)O1—C1—O2121.12 (15)
O2ii—Ca1—O1ii51.72 (4)O1—C1—C2118.93 (14)
O2iii—Ca1—O1ii75.05 (4)O2—C1—C2119.88 (14)
O1—Ca1—O1iii127.48 (4)O1—C1—Ca1ii63.71 (8)
O1i—Ca1—O1iii73.19 (4)O2—C1—Ca1ii58.65 (8)
O1Wi—Ca1—O1iii81.15 (4)C2—C1—Ca1ii166.08 (11)
O1W—Ca1—O1iii155.86 (4)C3—C2—C11120.01 (15)
O2ii—Ca1—O1iii75.05 (4)C3—C2—C1117.95 (14)
O2iii—Ca1—O1iii51.72 (3)C11—C2—C1122.04 (14)
O1ii—Ca1—O1iii106.53 (5)C2—C3—C4121.10 (15)
O1—Ca1—C1ii99.09 (4)C2—C3—H3119.5
O1i—Ca1—C1ii104.79 (4)C4—C3—H3119.5
O1Wi—Ca1—C1ii168.66 (5)C5—C4—C3120.13 (16)
O1W—Ca1—C1ii90.08 (4)C5—C4—H4119.9
O2ii—Ca1—C1ii25.97 (4)C3—C4—H4119.9
O2iii—Ca1—C1ii76.33 (4)C4—C5—C6120.72 (16)
O1ii—Ca1—C1ii26.09 (4)C4—C5—H5119.6
O1iii—Ca1—C1ii88.42 (4)C6—C5—H5119.6
O1—Ca1—C1iii104.79 (4)C7—C6—C5121.05 (16)
O1i—Ca1—C1iii99.09 (4)C7—C6—C11119.25 (15)
O1Wi—Ca1—C1iii90.08 (4)C5—C6—C11119.69 (15)
O1W—Ca1—C1iii168.66 (5)C8—C7—C6121.26 (16)
O2ii—Ca1—C1iii76.33 (4)C8—C7—H7119.4
O2iii—Ca1—C1iii25.97 (4)C6—C7—H7119.4
O1ii—Ca1—C1iii88.42 (4)C7—C8—C9119.63 (16)
O1iii—Ca1—C1iii26.09 (4)C7—C8—H8120.2
C1ii—Ca1—C1iii78.59 (6)C9—C8—H8120.2
O1—Ca1—Ca1ii38.46 (3)C10—C9—C8121.08 (16)
O1i—Ca1—Ca1ii154.92 (3)C10—C9—H9119.5
O1Wi—Ca1—Ca1ii122.00 (3)C8—C9—H9119.5
O1W—Ca1—Ca1ii76.19 (3)C9—C10—C11120.62 (16)
O2ii—Ca1—Ca1ii86.46 (3)C9—C10—H10119.7
O2iii—Ca1—Ca1ii74.03 (3)C11—C10—H10119.7
O1ii—Ca1—Ca1ii34.74 (2)C10—C11—C6118.16 (14)
O1iii—Ca1—Ca1ii123.17 (3)C10—C11—C2123.50 (15)
C1ii—Ca1—Ca1ii60.70 (3)C6—C11—C2118.30 (15)
C1iii—Ca1—Ca1ii97.70 (3)
O1i—Ca1—O1—C119.5 (3)O1—C1—C2—C342.3 (2)
O1Wi—Ca1—O1—C131.2 (3)O2—C1—C2—C3134.80 (16)
O1W—Ca1—O1—C171.9 (3)Ca1ii—C1—C2—C354.9 (5)
O2ii—Ca1—O1—C1156.8 (3)O1—C1—C2—C11138.69 (15)
O2iii—Ca1—O1—C1126.0 (3)O2—C1—C2—C1144.2 (2)
O1ii—Ca1—O1—C1156.6 (3)Ca1ii—C1—C2—C11124.0 (4)
O1iii—Ca1—O1—C1105.2 (3)C11—C2—C3—C41.9 (2)
C1ii—Ca1—O1—C1159.8 (3)C1—C2—C3—C4177.15 (15)
C1iii—Ca1—O1—C1119.7 (3)C2—C3—C4—C52.0 (3)
Ca1ii—Ca1—O1—C1156.6 (3)C3—C4—C5—C60.1 (3)
Ca1iv—Ca1—O1—C168.8 (3)C4—C5—C6—C7177.39 (16)
O1i—Ca1—O1—Ca1ii137.05 (4)C4—C5—C6—C111.9 (2)
O1Wi—Ca1—O1—Ca1ii172.19 (5)C5—C6—C7—C8179.83 (16)
O1W—Ca1—O1—Ca1ii84.68 (5)C11—C6—C7—C80.5 (2)
O2ii—Ca1—O1—Ca1ii0.25 (6)C6—C7—C8—C90.3 (3)
O2iii—Ca1—O1—Ca1ii77.38 (5)C7—C8—C9—C100.0 (3)
O1ii—Ca1—O1—Ca1ii0.0C8—C9—C10—C110.1 (2)
O1iii—Ca1—O1—Ca1ii98.23 (7)C9—C10—C11—C60.1 (2)
C1ii—Ca1—O1—Ca1ii3.21 (5)C9—C10—C11—C2177.50 (15)
C1iii—Ca1—O1—Ca1ii83.71 (5)C7—C6—C11—C100.4 (2)
Ca1iv—Ca1—O1—Ca1ii134.65 (7)C5—C6—C11—C10179.72 (14)
Ca1—O1—C1—O2170.2 (2)C7—C6—C11—C2177.31 (14)
Ca1ii—O1—C1—O212.53 (15)C5—C6—C11—C22.0 (2)
Ca1—O1—C1—C26.9 (4)C3—C2—C11—C10177.74 (15)
Ca1ii—O1—C1—C2164.57 (13)C1—C2—C11—C103.3 (2)
Ca1—O1—C1—Ca1ii157.6 (3)C3—C2—C11—C60.1 (2)
Ca1ii—O2—C1—O113.16 (16)C1—C2—C11—C6179.11 (14)
Ca1ii—O2—C1—C2163.91 (12)
Symmetry codes: (i) x, y, z+5/2; (ii) x, y, z+2; (iii) x, y, z+1/2; (iv) x, y, z+3.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O2v0.86 (1)1.88 (1)2.7120 (16)160 (2)
Symmetry code: (v) x, y, z+3/2.
(SrNPH) catena-poly[[diaquastrontium(II)]-bis(µ-1-naphthoato)- κ3O,O':O;κ3O:O,O'] top
Crystal data top
[Sr(C11H7O2)2(H2O)2]F(000) = 944
Mr = 465.98Dx = 1.616 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 13743 reflections
a = 21.2740 (19) Åθ = 1.0–30.0°
b = 11.3397 (10) ŵ = 2.85 mm1
c = 7.9619 (5) ÅT = 123 K
β = 94.520 (4)°Cut fragment, colourless
V = 1914.8 (3) Å30.20 × 0.20 × 0.10 mm
Z = 4
Data collection top
Nonius KappaCCD area-detector
diffractometer
2312 independent reflections
Radiation source: fine-focus sealed tube1853 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
ϕ and ω scansθmax = 28.0°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 2728
Tmin = 0.922, Tmax = 1.000k = 1414
4336 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0437P)2 + 1.1387P]
where P = (Fo2 + 2Fc2)/3
2312 reflections(Δ/σ)max < 0.001
138 parametersΔρmax = 0.62 e Å3
3 restraintsΔρmin = 0.45 e Å3
Crystal data top
[Sr(C11H7O2)2(H2O)2]V = 1914.8 (3) Å3
Mr = 465.98Z = 4
Monoclinic, C2/cMo Kα radiation
a = 21.2740 (19) ŵ = 2.85 mm1
b = 11.3397 (10) ÅT = 123 K
c = 7.9619 (5) Å0.20 × 0.20 × 0.10 mm
β = 94.520 (4)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
2312 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1853 reflections with I > 2σ(I)
Tmin = 0.922, Tmax = 1.000Rint = 0.059
4336 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0453 restraints
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.62 e Å3
2312 reflectionsΔρmin = 0.45 e Å3
138 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sr10.00000.54911 (4)0.75000.01586 (14)
O10.08138 (10)0.3771 (2)0.7297 (3)0.0220 (5)
O20.04972 (10)0.4005 (2)0.9857 (2)0.0203 (5)
O1W0.07903 (12)0.6931 (2)0.5967 (3)0.0268 (6)
H1W0.0826 (18)0.688 (3)0.4875 (13)0.040*
H2W0.0992 (17)0.757 (2)0.616 (4)0.040*
C10.07734 (14)0.3404 (3)0.8781 (4)0.0173 (7)
C20.10307 (14)0.2211 (3)0.9292 (4)0.0171 (7)
C30.06709 (15)0.1487 (3)1.0219 (4)0.0201 (7)
H30.02750.17591.05380.024*
C40.08798 (16)0.0349 (3)1.0702 (4)0.0234 (8)
H40.06200.01461.13170.028*
C50.14525 (16)0.0041 (3)1.0292 (4)0.0231 (7)
H50.15880.08091.06290.028*
C60.18528 (15)0.0676 (3)0.9368 (4)0.0182 (7)
C70.24615 (15)0.0299 (3)0.8987 (4)0.0207 (7)
H70.26070.04590.93430.025*
C80.28399 (15)0.1004 (3)0.8122 (4)0.0234 (8)
H80.32440.07330.78700.028*
C90.26332 (15)0.2138 (3)0.7598 (4)0.0223 (8)
H90.29020.26260.69990.027*
C100.20490 (14)0.2543 (3)0.7942 (4)0.0186 (7)
H100.19180.33090.75790.022*
C110.16387 (15)0.1830 (3)0.8835 (4)0.0172 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sr10.0168 (2)0.0199 (2)0.0109 (2)0.0000.00093 (14)0.000
O10.0257 (12)0.0265 (14)0.0140 (11)0.0098 (11)0.0022 (9)0.0021 (10)
O20.0215 (12)0.0247 (13)0.0148 (11)0.0022 (10)0.0018 (9)0.0023 (10)
O1W0.0322 (14)0.0322 (15)0.0159 (12)0.0128 (12)0.0010 (10)0.0011 (11)
C10.0128 (14)0.0244 (19)0.0146 (15)0.0003 (13)0.0002 (12)0.0001 (13)
C20.0190 (15)0.0201 (18)0.0116 (14)0.0008 (14)0.0023 (12)0.0012 (13)
C30.0199 (16)0.0240 (19)0.0167 (16)0.0037 (14)0.0031 (13)0.0003 (14)
C40.0247 (17)0.028 (2)0.0182 (16)0.0041 (16)0.0044 (13)0.0043 (14)
C50.0286 (18)0.0221 (17)0.0181 (16)0.0034 (16)0.0011 (14)0.0011 (15)
C60.0208 (15)0.0221 (19)0.0109 (14)0.0029 (14)0.0035 (12)0.0054 (13)
C70.0222 (16)0.021 (2)0.0182 (15)0.0047 (14)0.0030 (12)0.0026 (13)
C80.0195 (16)0.029 (2)0.0211 (17)0.0054 (15)0.0016 (13)0.0065 (15)
C90.0218 (18)0.026 (2)0.0197 (16)0.0027 (15)0.0026 (14)0.0006 (14)
C100.0172 (15)0.0222 (18)0.0157 (15)0.0012 (14)0.0028 (12)0.0013 (13)
C110.0219 (16)0.0184 (18)0.0107 (15)0.0003 (14)0.0022 (12)0.0050 (12)
Geometric parameters (Å, º) top
Sr1—O2i2.495 (2)C2—C111.438 (4)
Sr1—O2ii2.495 (2)C3—C41.408 (5)
Sr1—O1Wiii2.581 (2)C3—H30.9500
Sr1—O1W2.581 (2)C4—C51.360 (5)
Sr1—O12.621 (2)C4—H40.9500
Sr1—O1iii2.621 (2)C5—C61.423 (5)
Sr1—O2iii2.678 (2)C5—H50.9500
Sr1—O22.678 (2)C6—C71.419 (4)
Sr1—C1iii3.014 (3)C6—C111.439 (4)
Sr1—C13.014 (3)C7—C81.360 (5)
O1—C11.262 (4)C7—H70.9500
O2—C11.274 (4)C8—C91.411 (5)
O2—Sr1i2.495 (2)C8—H80.9500
O1W—H1W0.868 (10)C9—C101.373 (4)
O1W—H2W0.865 (10)C9—H90.9500
C1—C21.503 (4)C10—C111.421 (4)
C2—C31.376 (4)C10—H100.9500
O2i—Sr1—O2ii153.50 (11)O2i—Sr1—Sr1i38.50 (5)
O2i—Sr1—O1Wiii76.10 (7)O2ii—Sr1—Sr1i154.98 (5)
O2ii—Sr1—O1Wiii87.14 (7)O1Wiii—Sr1—Sr1i76.38 (5)
O2i—Sr1—O1W87.14 (7)O1W—Sr1—Sr1i125.21 (5)
O2ii—Sr1—O1W76.10 (7)O1—Sr1—Sr1i84.78 (5)
O1Wiii—Sr1—O1W101.48 (12)O1iii—Sr1—Sr1i71.95 (5)
O2i—Sr1—O1123.26 (7)O2iii—Sr1—Sr1i118.39 (5)
O2ii—Sr1—O178.03 (7)O2—Sr1—Sr1i35.45 (5)
O1Wiii—Sr1—O195.23 (8)C1iii—Sr1—Sr1i94.18 (6)
O1W—Sr1—O1148.27 (7)C1—Sr1—Sr1i60.26 (6)
O2i—Sr1—O1iii78.03 (7)Sr1iv—Sr1—Sr1i148.74 (2)
O2ii—Sr1—O1iii123.26 (7)C1—O1—Sr195.39 (18)
O1Wiii—Sr1—O1iii148.27 (7)C1—O2—Sr1i159.8 (2)
O1W—Sr1—O1iii95.23 (8)C1—O2—Sr192.46 (18)
O1—Sr1—O1iii83.85 (11)Sr1i—O2—Sr1106.05 (8)
O2i—Sr1—O2iii124.41 (8)Sr1—O1W—H1W116 (2)
O2ii—Sr1—O2iii73.95 (8)Sr1—O1W—H2W140 (2)
O1Wiii—Sr1—O2iii159.48 (7)H1W—O1W—H2W103 (2)
O1W—Sr1—O2iii81.97 (8)O1—C1—O2121.5 (3)
O1—Sr1—O2iii73.43 (7)O1—C1—C2120.0 (3)
O1iii—Sr1—O2iii49.34 (6)O2—C1—C2118.5 (3)
O2i—Sr1—O273.95 (8)O1—C1—Sr159.97 (16)
O2ii—Sr1—O2124.41 (8)O2—C1—Sr162.56 (16)
O1Wiii—Sr1—O281.97 (8)C2—C1—Sr1167.3 (2)
O1W—Sr1—O2159.48 (7)C3—C2—C11120.4 (3)
O1—Sr1—O249.34 (6)C3—C2—C1118.4 (3)
O1iii—Sr1—O273.43 (7)C11—C2—C1121.2 (3)
O2iii—Sr1—O2101.97 (10)C2—C3—C4121.1 (3)
O2i—Sr1—C1iii102.06 (8)C2—C3—H3119.5
O2ii—Sr1—C1iii98.69 (8)C4—C3—H3119.5
O1Wiii—Sr1—C1iii167.13 (8)C5—C4—C3120.1 (3)
O1W—Sr1—C1iii91.09 (8)C5—C4—H4119.9
O1—Sr1—C1iii74.95 (8)C3—C4—H4119.9
O1iii—Sr1—C1iii24.64 (7)C4—C5—C6121.5 (3)
O2iii—Sr1—C1iii24.98 (7)C4—C5—H5119.2
O2—Sr1—C1iii85.28 (8)C6—C5—H5119.2
O2i—Sr1—C198.69 (8)C7—C6—C5122.2 (3)
O2ii—Sr1—C1102.06 (8)C7—C6—C11118.9 (3)
O1Wiii—Sr1—C191.09 (8)C5—C6—C11118.9 (3)
O1W—Sr1—C1167.13 (9)C8—C7—C6121.2 (3)
O1—Sr1—C124.64 (7)C8—C7—H7119.4
O1iii—Sr1—C174.95 (8)C6—C7—H7119.4
O2iii—Sr1—C185.28 (8)C7—C8—C9120.2 (3)
O2—Sr1—C124.98 (7)C7—C8—H8119.9
C1iii—Sr1—C176.50 (12)C9—C8—H8119.9
O2i—Sr1—Sr1iv154.98 (5)C10—C9—C8120.8 (3)
O2ii—Sr1—Sr1iv38.50 (5)C10—C9—H9119.6
O1Wiii—Sr1—Sr1iv125.21 (5)C8—C9—H9119.6
O1W—Sr1—Sr1iv76.38 (5)C9—C10—C11120.7 (3)
O1—Sr1—Sr1iv71.95 (5)C9—C10—H10119.6
O1iii—Sr1—Sr1iv84.78 (5)C11—C10—H10119.6
O2iii—Sr1—Sr1iv35.45 (5)C10—C11—C2123.8 (3)
O2—Sr1—Sr1iv118.39 (5)C10—C11—C6118.2 (3)
C1iii—Sr1—Sr1iv60.26 (6)C2—C11—C6118.0 (3)
C1—Sr1—Sr1iv94.18 (6)
O2i—Sr1—O1—C14.4 (2)O2ii—Sr1—C1—O2155.47 (18)
O2ii—Sr1—O1—C1167.11 (19)O1Wiii—Sr1—C1—O268.16 (18)
O1Wiii—Sr1—O1—C181.16 (19)O1W—Sr1—C1—O2124.2 (3)
O1W—Sr1—O1—C1156.97 (19)O1—Sr1—C1—O2168.4 (3)
O1iii—Sr1—O1—C166.96 (18)O1iii—Sr1—C1—O282.97 (18)
O2iii—Sr1—O1—C1116.30 (19)O2iii—Sr1—C1—O2132.07 (17)
O2—Sr1—O1—C16.44 (17)C1iii—Sr1—C1—O2108.4 (2)
C1iii—Sr1—O1—C190.4 (2)Sr1iv—Sr1—C1—O2166.42 (17)
Sr1iv—Sr1—O1—C1153.45 (19)Sr1i—Sr1—C1—O25.45 (15)
Sr1i—Sr1—O1—C15.39 (18)O2i—Sr1—C1—C290.0 (9)
O2i—Sr1—O2—C1171.8 (2)O2ii—Sr1—C1—C2106.6 (9)
O2ii—Sr1—O2—C129.5 (2)O1Wiii—Sr1—C1—C2166.1 (9)
O1Wiii—Sr1—O2—C1110.40 (19)O1W—Sr1—C1—C226.2 (12)
O1W—Sr1—O2—C1148.3 (2)O1—Sr1—C1—C293.7 (10)
O1—Sr1—O2—C16.36 (17)O1iii—Sr1—C1—C215.0 (9)
O1iii—Sr1—O2—C189.85 (18)O2iii—Sr1—C1—C234.1 (9)
O2iii—Sr1—O2—C149.14 (17)O2—Sr1—C1—C298.0 (10)
C1iii—Sr1—O2—C167.8 (2)C1iii—Sr1—C1—C210.4 (9)
Sr1iv—Sr1—O2—C115.44 (19)Sr1iv—Sr1—C1—C268.4 (9)
Sr1i—Sr1—O2—C1171.8 (2)Sr1i—Sr1—C1—C292.5 (9)
O2i—Sr1—O2—Sr1i0.0O1—C1—C2—C3135.5 (3)
O2ii—Sr1—O2—Sr1i158.69 (8)O2—C1—C2—C342.1 (4)
O1Wiii—Sr1—O2—Sr1i77.77 (9)Sr1—C1—C2—C349.2 (11)
O1W—Sr1—O2—Sr1i23.5 (3)O1—C1—C2—C1144.8 (4)
O1—Sr1—O2—Sr1i178.19 (13)O2—C1—C2—C11137.7 (3)
O1iii—Sr1—O2—Sr1i81.98 (8)Sr1—C1—C2—C11131.1 (9)
O2iii—Sr1—O2—Sr1i122.69 (9)C11—C2—C3—C41.7 (5)
C1iii—Sr1—O2—Sr1i104.00 (9)C1—C2—C3—C4178.5 (3)
C1—Sr1—O2—Sr1i171.8 (2)C2—C3—C4—C51.7 (5)
Sr1iv—Sr1—O2—Sr1i156.39 (5)C3—C4—C5—C60.2 (5)
Sr1—O1—C1—O212.1 (3)C4—C5—C6—C7177.5 (3)
Sr1—O1—C1—C2165.4 (2)C4—C5—C6—C111.1 (5)
Sr1i—O2—C1—O1168.5 (4)C5—C6—C7—C8179.1 (3)
Sr1—O2—C1—O111.8 (3)C11—C6—C7—C80.5 (5)
Sr1i—O2—C1—C29.0 (8)C6—C7—C8—C90.6 (5)
Sr1—O2—C1—C2165.7 (2)C7—C8—C9—C100.3 (5)
Sr1i—O2—C1—Sr1156.7 (6)C8—C9—C10—C110.0 (5)
O2i—Sr1—C1—O1176.31 (18)C9—C10—C11—C2177.7 (3)
O2ii—Sr1—C1—O112.90 (19)C9—C10—C11—C60.1 (4)
O1Wiii—Sr1—C1—O1100.21 (19)C3—C2—C11—C10177.3 (3)
O1W—Sr1—C1—O167.5 (4)C1—C2—C11—C102.5 (5)
O1iii—Sr1—C1—O1108.66 (19)C3—C2—C11—C60.3 (4)
O2iii—Sr1—C1—O159.56 (18)C1—C2—C11—C6179.9 (3)
O2—Sr1—C1—O1168.4 (3)C7—C6—C11—C100.2 (4)
C1iii—Sr1—C1—O183.28 (19)C5—C6—C11—C10178.8 (3)
Sr1iv—Sr1—C1—O125.22 (18)C7—C6—C11—C2177.6 (3)
Sr1i—Sr1—C1—O1173.8 (2)C5—C6—C11—C21.0 (4)
O2i—Sr1—C1—O27.9 (2)
Symmetry codes: (i) x, y+1, z+2; (ii) x, y+1, z1/2; (iii) x, y, z+3/2; (iv) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O1iv0.87 (1)1.89 (1)2.715 (3)160 (3)
Symmetry code: (iv) x, y+1, z+1.
(BaNPH) catena-poly[[diaquabarium(II)]-bis(µ-1-naphthoato)- κ3O,O':O;κ3O:O,O'] top
Crystal data top
[Ba(C11H7O2)2(H2O)2]F(000) = 1016
Mr = 515.70Dx = 1.689 Mg m3
Orthorhombic, PbcnSynchrotron radiation, λ = 0.82520 Å
Hall symbol: -P 2n 2abCell parameters from 8174 reflections
a = 20.464 (3) Åθ = 3.7–32.9°
b = 11.9699 (15) ŵ = 1.99 mm1
c = 8.2812 (10) ÅT = 150 K
V = 2028.5 (4) Å3Plate, colourless
Z = 40.10 × 0.10 × 0.01 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2355 independent reflections
Radiation source: Daresbury SRS station 9.82196 reflections with I > 2σ(I)
Silicon 111 monochromatorRint = 0.172
fine slice ω scansθmax = 33.0°, θmin = 3.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 2626
Tmin = 0.673, Tmax = 1.000k = 1515
14467 measured reflectionsl = 1010
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.126 w = 1/[σ2(Fo2) + (0.0549P)2 + 1.7007P]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max = 0.003
2355 reflectionsΔρmax = 1.44 e Å3
139 parametersΔρmin = 1.46 e Å3
3 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0135 (10)
Crystal data top
[Ba(C11H7O2)2(H2O)2]V = 2028.5 (4) Å3
Mr = 515.70Z = 4
Orthorhombic, PbcnSynchrotron radiation, λ = 0.82520 Å
a = 20.464 (3) ŵ = 1.99 mm1
b = 11.9699 (15) ÅT = 150 K
c = 8.2812 (10) Å0.10 × 0.10 × 0.01 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2355 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2196 reflections with I > 2σ(I)
Tmin = 0.673, Tmax = 1.000Rint = 0.172
14467 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0413 restraints
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.14Δρmax = 1.44 e Å3
2355 reflectionsΔρmin = 1.46 e Å3
139 parameters
Special details top

Experimental. SADABS `absorbtion correction' also includes a correction for synchrotron beam decay.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ba10.50001.058363 (17)0.25000.01293 (18)
O10.55542 (9)0.89902 (15)0.0331 (2)0.0202 (4)
O20.58514 (11)0.87800 (18)0.2876 (3)0.0227 (5)
O1W0.58616 (10)1.20076 (18)0.0948 (2)0.0259 (5)
H1W0.5914 (16)1.186 (3)0.0081 (16)0.039*
H2W0.6251 (9)1.225 (3)0.120 (4)0.039*
C10.60220 (12)0.7246 (2)0.1049 (3)0.0150 (5)
C20.56422 (13)0.6626 (2)0.0018 (3)0.0205 (6)
H20.52520.69390.04040.025*
C30.58220 (15)0.5532 (2)0.0425 (4)0.0253 (6)
H30.55470.51070.11170.030*
C40.63869 (19)0.5084 (2)0.0137 (3)0.0235 (7)
H40.65060.43470.01730.028*
C50.68027 (13)0.5699 (2)0.1178 (3)0.0182 (6)
C60.66177 (12)0.67921 (19)0.1673 (3)0.0143 (5)
C70.70534 (16)0.7392 (3)0.2701 (3)0.0176 (6)
H70.69410.81230.30540.021*
C80.76338 (14)0.6921 (2)0.3186 (4)0.0237 (6)
H80.79200.73360.38630.028*
C90.7814 (2)0.5833 (4)0.2697 (4)0.0252 (7)
H90.82140.55140.30510.030*
C100.74053 (14)0.5246 (2)0.1709 (3)0.0236 (6)
H100.75270.45170.13700.028*
C110.57986 (12)0.8419 (2)0.1458 (3)0.0159 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba10.0188 (2)0.0109 (2)0.0090 (3)0.0000.00099 (6)0.000
O10.0285 (10)0.0176 (9)0.0144 (9)0.0065 (7)0.0021 (7)0.0025 (7)
O20.0319 (11)0.0228 (10)0.0133 (9)0.0106 (9)0.0041 (9)0.0014 (9)
O1W0.0254 (10)0.0344 (11)0.0178 (10)0.0105 (9)0.0011 (8)0.0002 (8)
C10.0181 (12)0.0165 (11)0.0103 (11)0.0019 (9)0.0013 (9)0.0011 (9)
C20.0196 (13)0.0215 (12)0.0204 (14)0.0020 (10)0.0042 (10)0.0014 (10)
C30.0312 (16)0.0218 (14)0.0228 (16)0.0038 (11)0.0026 (13)0.0073 (10)
C40.0316 (18)0.0184 (13)0.0206 (16)0.0019 (10)0.0032 (10)0.0049 (12)
C50.0222 (13)0.0179 (12)0.0145 (14)0.0024 (9)0.0037 (10)0.0016 (9)
C60.0185 (12)0.0148 (11)0.0097 (11)0.0001 (9)0.0030 (9)0.0038 (8)
C70.0178 (15)0.0219 (15)0.0132 (12)0.0032 (12)0.0021 (10)0.0028 (10)
C80.0211 (13)0.0313 (15)0.0187 (16)0.0024 (11)0.0034 (11)0.0021 (11)
C90.0177 (18)0.0361 (17)0.0219 (16)0.0075 (17)0.0008 (11)0.0067 (13)
C100.0263 (14)0.0255 (13)0.0190 (14)0.0105 (11)0.0021 (11)0.0008 (11)
C110.0171 (11)0.0183 (12)0.0124 (13)0.0013 (9)0.0001 (10)0.0017 (9)
Geometric parameters (Å, º) top
Ba1—O1i2.6536 (19)C1—C111.515 (3)
Ba1—O1ii2.6536 (19)C2—C31.409 (3)
Ba1—O1W2.769 (2)C2—H20.9500
Ba1—O1Wiii2.769 (2)C3—C41.356 (5)
Ba1—O2iii2.792 (2)C3—H30.9500
Ba1—O22.792 (2)C4—C51.418 (4)
Ba1—O12.8551 (18)C4—H40.9500
Ba1—O1iii2.8551 (18)C5—C101.417 (4)
Ba1—C11iii3.183 (3)C5—C61.422 (3)
Ba1—C113.183 (3)C6—C71.427 (4)
O1—C111.260 (3)C7—C81.375 (4)
O1—Ba1i2.6536 (19)C7—H70.9500
O2—C111.256 (3)C8—C91.413 (5)
O1W—H1W0.878 (10)C8—H80.9500
O1W—H2W0.872 (10)C9—C101.365 (5)
C1—C21.373 (4)C9—H90.9500
C1—C61.431 (3)C10—H100.9500
O1i—Ba1—O1ii157.84 (8)O1i—Ba1—Ba1iv153.96 (4)
O1i—Ba1—O1W75.15 (6)O1ii—Ba1—Ba1iv39.15 (4)
O1ii—Ba1—O1W91.13 (6)O1W—Ba1—Ba1iv129.55 (4)
O1i—Ba1—O1Wiii91.13 (6)O1Wiii—Ba1—Ba1iv75.93 (4)
O1ii—Ba1—O1Wiii75.15 (6)O2iii—Ba1—Ba1iv81.86 (5)
O1W—Ba1—O1Wiii104.01 (9)O2—Ba1—Ba1iv69.33 (5)
O1i—Ba1—O2iii77.49 (6)O1—Ba1—Ba1iv112.50 (4)
O1ii—Ba1—O2iii120.93 (6)O1iii—Ba1—Ba1iv35.93 (4)
O1W—Ba1—O2iii145.25 (7)C11iii—Ba1—Ba1iv58.85 (5)
O1Wiii—Ba1—O2iii97.49 (7)C11—Ba1—Ba1iv89.81 (5)
O1i—Ba1—O2120.93 (6)Ba1i—Ba1—Ba1iv142.707 (12)
O1ii—Ba1—O277.49 (6)C11—O1—Ba1i158.12 (17)
O1W—Ba1—O297.49 (7)C11—O1—Ba193.10 (16)
O1Wiii—Ba1—O2145.25 (7)Ba1i—O1—Ba1104.93 (6)
O2iii—Ba1—O278.69 (10)C11—O2—Ba196.20 (16)
O1i—Ba1—O175.07 (6)Ba1—O1W—H1W114 (2)
O1ii—Ba1—O1120.96 (6)Ba1—O1W—H2W133 (2)
O1W—Ba1—O182.30 (6)H1W—O1W—H2W101 (2)
O1Wiii—Ba1—O1163.01 (6)C2—C1—C6120.1 (2)
O2iii—Ba1—O170.19 (6)C2—C1—C11118.0 (2)
O2—Ba1—O146.03 (6)C6—C1—C11121.9 (2)
O1i—Ba1—O1iii120.96 (6)C1—C2—C3121.1 (2)
O1ii—Ba1—O1iii75.07 (6)C1—C2—H2119.4
O1W—Ba1—O1iii163.01 (6)C3—C2—H2119.4
O1Wiii—Ba1—O1iii82.30 (6)C4—C3—C2120.0 (3)
O2iii—Ba1—O1iii46.03 (6)C4—C3—H3120.0
O2—Ba1—O1iii70.19 (6)C2—C3—H3120.0
O1—Ba1—O1iii96.17 (8)C3—C4—C5121.0 (2)
O1i—Ba1—C11iii100.17 (6)C3—C4—H4119.5
O1ii—Ba1—C11iii97.84 (6)C5—C4—H4119.5
O1W—Ba1—C11iii162.56 (7)C10—C5—C4120.8 (3)
O1Wiii—Ba1—C11iii92.77 (6)C10—C5—C6119.6 (3)
O2iii—Ba1—C11iii23.10 (6)C4—C5—C6119.5 (3)
O2—Ba1—C11iii70.16 (7)C5—C6—C7117.9 (2)
O1—Ba1—C11iii80.26 (6)C5—C6—C1118.2 (2)
O1iii—Ba1—C11iii23.29 (6)C7—C6—C1123.8 (2)
O1i—Ba1—C1197.84 (6)C8—C7—C6120.5 (3)
O1ii—Ba1—C11100.17 (6)C8—C7—H7119.7
O1W—Ba1—C1192.77 (6)C6—C7—H7119.7
O1Wiii—Ba1—C11162.56 (7)C7—C8—C9121.3 (3)
O2iii—Ba1—C1170.16 (7)C7—C8—H8119.3
O2—Ba1—C1123.10 (6)C9—C8—H8119.3
O1—Ba1—C1123.29 (6)C10—C9—C8119.1 (3)
O1iii—Ba1—C1180.26 (6)C10—C9—H9120.5
C11iii—Ba1—C1171.00 (9)C8—C9—H9120.5
O1i—Ba1—Ba1i39.15 (4)C9—C10—C5121.5 (3)
O1ii—Ba1—Ba1i153.96 (4)C9—C10—H10119.3
O1W—Ba1—Ba1i75.93 (4)C5—C10—H10119.3
O1Wiii—Ba1—Ba1i129.55 (4)O2—C11—O1122.7 (2)
O2iii—Ba1—Ba1i69.33 (5)O2—C11—C1120.1 (2)
O2—Ba1—Ba1i81.86 (5)O1—C11—C1117.2 (2)
O1—Ba1—Ba1i35.93 (4)O2—C11—Ba160.70 (14)
O1iii—Ba1—Ba1i112.50 (4)O1—C11—Ba163.61 (14)
C11iii—Ba1—Ba1i89.81 (5)C1—C11—Ba1165.96 (16)
C11—Ba1—Ba1i58.85 (5)
O1i—Ba1—O1—C11167.48 (18)C8—C9—C10—C50.6 (5)
O1ii—Ba1—O1—C1129.24 (17)C4—C5—C10—C9179.2 (3)
O1W—Ba1—O1—C11115.91 (15)C6—C5—C10—C90.4 (4)
O1Wiii—Ba1—O1—C11130.9 (2)Ba1—O2—C11—O115.1 (3)
O2iii—Ba1—O1—C1185.66 (16)Ba1—O2—C11—C1163.85 (19)
O2—Ba1—O1—C117.66 (14)Ba1i—O1—C11—O2160.5 (3)
O1iii—Ba1—O1—C1147.04 (14)Ba1—O1—C11—O214.7 (3)
C11iii—Ba1—O1—C1164.11 (17)Ba1i—O1—C11—C118.5 (6)
Ba1i—Ba1—O1—C11167.48 (18)Ba1—O1—C11—C1164.29 (19)
Ba1iv—Ba1—O1—C1113.84 (16)Ba1i—O1—C11—Ba1145.8 (5)
O1i—Ba1—O1—Ba1i0.0C2—C1—C11—O2139.5 (3)
O1ii—Ba1—O1—Ba1i163.28 (5)C6—C1—C11—O242.0 (4)
O1W—Ba1—O1—Ba1i76.61 (7)C2—C1—C11—O139.5 (3)
O1Wiii—Ba1—O1—Ba1i36.6 (2)C6—C1—C11—O1139.0 (2)
O2iii—Ba1—O1—Ba1i81.82 (7)C2—C1—C11—Ba150.2 (8)
O2—Ba1—O1—Ba1i175.14 (11)C6—C1—C11—Ba1131.3 (6)
O1iii—Ba1—O1—Ba1i120.44 (8)O1i—Ba1—C11—O2178.06 (16)
C11iii—Ba1—O1—Ba1i103.37 (7)O1ii—Ba1—C11—O211.03 (17)
C11—Ba1—O1—Ba1i167.48 (18)O1W—Ba1—C11—O2102.68 (17)
Ba1iv—Ba1—O1—Ba1i153.64 (4)O1Wiii—Ba1—C11—O261.6 (3)
O1i—Ba1—O2—C112.24 (19)O2iii—Ba1—C11—O2108.33 (17)
O1ii—Ba1—O2—C11168.87 (17)O1—Ba1—C11—O2165.9 (3)
O1W—Ba1—O2—C1179.38 (17)O1iii—Ba1—C11—O261.73 (17)
O1Wiii—Ba1—O2—C11152.44 (16)C11iii—Ba1—C11—O283.83 (17)
O2iii—Ba1—O2—C1165.59 (15)Ba1i—Ba1—C11—O2174.40 (18)
O1—Ba1—O2—C117.72 (15)Ba1iv—Ba1—C11—O226.92 (16)
O1iii—Ba1—O2—C11112.70 (17)O1i—Ba1—C11—O112.21 (18)
C11iii—Ba1—O2—C1187.91 (17)O1ii—Ba1—C11—O1154.82 (15)
Ba1i—Ba1—O2—C114.84 (16)O1W—Ba1—C11—O163.18 (15)
Ba1iv—Ba1—O2—C11151.06 (17)O1Wiii—Ba1—C11—O1132.5 (2)
C6—C1—C2—C31.1 (4)O2iii—Ba1—C11—O185.82 (16)
C11—C1—C2—C3179.6 (2)O2—Ba1—C11—O1165.9 (3)
C1—C2—C3—C41.7 (4)O1iii—Ba1—C11—O1132.42 (14)
C2—C3—C4—C50.4 (5)C11iii—Ba1—C11—O1110.32 (17)
C3—C4—C5—C10177.4 (3)Ba1i—Ba1—C11—O18.55 (13)
C3—C4—C5—C61.5 (4)Ba1iv—Ba1—C11—O1167.23 (14)
C10—C5—C6—C70.2 (4)O1i—Ba1—C11—C184.6 (7)
C4—C5—C6—C7179.1 (2)O1ii—Ba1—C11—C1108.4 (7)
C10—C5—C6—C1176.9 (2)O1W—Ba1—C11—C1160.0 (7)
C4—C5—C6—C12.0 (4)O1Wiii—Ba1—C11—C135.7 (8)
C2—C1—C6—C50.7 (4)O2iii—Ba1—C11—C111.0 (7)
C11—C1—C6—C5177.7 (2)O2—Ba1—C11—C197.3 (7)
C2—C1—C6—C7177.6 (3)O1—Ba1—C11—C196.8 (7)
C11—C1—C6—C70.8 (4)O1iii—Ba1—C11—C135.6 (7)
C5—C6—C7—C80.3 (4)C11iii—Ba1—C11—C113.5 (7)
C1—C6—C7—C8176.6 (3)Ba1i—Ba1—C11—C188.3 (7)
C6—C7—C8—C90.6 (5)Ba1iv—Ba1—C11—C170.4 (7)
C7—C8—C9—C100.8 (5)
Symmetry codes: (i) x+1, y+2, z; (ii) x, y+2, z+1/2; (iii) x+1, y, z+1/2; (iv) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O2v0.88 (1)1.86 (1)2.713 (3)163 (3)
Symmetry code: (v) x, y+2, z1/2.

Experimental details

(MgNPH)(CaNPH)(SrNPH)(BaNPH)
Crystal data
Chemical formula[Mg(C11H7O2)2(H2O)3]·2H2O[Ca(C11H7O2)2(H2O)2][Sr(C11H7O2)2(H2O)2][Ba(C11H7O2)2(H2O)2]
Mr456.72418.44465.98515.70
Crystal system, space groupMonoclinic, P21/cMonoclinic, C2/cMonoclinic, C2/cOrthorhombic, Pbcn
Temperature (K)123123123150
a, b, c (Å)12.8896 (4), 8.0048 (2), 24.5300 (5)21.079 (1), 11.4410 (6), 7.7200 (3)21.2740 (19), 11.3397 (10), 7.9619 (5)20.464 (3), 11.9699 (15), 8.2812 (10)
α, β, γ (°)90, 121.190 (1), 9090, 93.994 (3), 9090, 94.520 (4), 9090, 90, 90
V3)2165.13 (10)1857.27 (15)1914.8 (3)2028.5 (4)
Z4444
Radiation typeMo KαMo KαMo KαSynchrotron, λ = 0.82520 Å
µ (mm1)0.130.382.851.99
Crystal size (mm)0.15 × 0.13 × 0.030.28 × 0.12 × 0.060.20 × 0.20 × 0.100.10 × 0.10 × 0.01
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Nonius KappaCCD area-detector
diffractometer
Nonius KappaCCD area-detector
diffractometer
Bruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Multi-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.922, 1.0000.673, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8977, 4968, 2744 4047, 2108, 1641 4336, 2312, 1853 14467, 2355, 2196
Rint0.0780.0310.0590.172
(sin θ/λ)max1)0.6490.6490.6610.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.150, 1.02 0.036, 0.077, 1.07 0.045, 0.100, 1.06 0.041, 0.126, 1.14
No. of reflections4968210823122355
No. of parameters319138138139
No. of restraints15333
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.430.29, 0.300.62, 0.451.44, 1.46

Computer programs: DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 1998), APEX2 (Bruker, 2007), SAINT (Bruker, 2007), DENZO (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and X-SEED (Barbour, 2001), ORTEP-3 (Farrugia, 1997).

Selected bond lengths (Å) for (MgNPH) top
Mg1—O3W2.016 (2)Mg1—O12.069 (2)
Mg1—O2W2.028 (2)Mg1—O1Wi2.195 (2)
Mg1—O32.058 (2)Mg1—O1W2.200 (2)
Symmetry code: (i) x, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) for (MgNPH) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O20.88 (1)1.763 (12)2.621 (3)164 (3)
O1W—H2W···O4ii0.87 (1)1.785 (12)2.637 (3)165 (3)
O2W—H3W···O4Wii0.87 (1)1.883 (13)2.713 (3)159 (3)
O2W—H4W···O3i0.87 (1)1.840 (11)2.704 (3)171 (3)
O3W—H5W···O1ii0.87 (1)1.833 (11)2.693 (3)167 (3)
O3W—H6W···O5Wi0.87 (1)1.859 (12)2.701 (3)161 (3)
O4W—H7W···O40.88 (1)1.901 (17)2.691 (3)149 (3)
O5W—H9W···O20.90 (1)1.854 (16)2.692 (3)155 (3)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1/2, z+1/2.
Selected bond lengths (Å) for (CaNPH) top
Ca1—O12.3608 (11)Ca1—O2ii2.4652 (12)
Ca1—O1i2.3608 (10)Ca1—O2iii2.4652 (12)
Ca1—O1Wi2.4143 (12)Ca1—O1ii2.5765 (12)
Ca1—O1W2.4143 (12)Ca1—O1iii2.5765 (11)
Symmetry codes: (i) x, y, z+5/2; (ii) x, y, z+2; (iii) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) for (CaNPH) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O2iv0.863 (9)1.884 (10)2.7120 (16)160.1 (18)
Symmetry code: (iv) x, y, z+3/2.
Selected bond lengths (Å) for (SrNPH) top
Sr1—O2i2.495 (2)Sr1—O12.621 (2)
Sr1—O2ii2.495 (2)Sr1—O1iii2.621 (2)
Sr1—O1Wiii2.581 (2)Sr1—O2iii2.678 (2)
Sr1—O1W2.581 (2)Sr1—O22.678 (2)
Symmetry codes: (i) x, y+1, z+2; (ii) x, y+1, z1/2; (iii) x, y, z+3/2.
Hydrogen-bond geometry (Å, º) for (SrNPH) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O1iv0.868 (10)1.885 (14)2.715 (3)160 (3)
Symmetry code: (iv) x, y+1, z+1.
Selected bond lengths (Å) for (BaNPH) top
Ba1—O1i2.6536 (19)Ba1—O2iii2.792 (2)
Ba1—O1ii2.6536 (19)Ba1—O22.792 (2)
Ba1—O1W2.769 (2)Ba1—O12.8551 (18)
Ba1—O1Wiii2.769 (2)Ba1—O1iii2.8551 (18)
Symmetry codes: (i) x+1, y+2, z; (ii) x, y+2, z+1/2; (iii) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) for (BaNPH) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O2iv0.878 (10)1.860 (13)2.713 (3)163 (3)
Symmetry code: (iv) x, y+2, z1/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds