Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The synthesis and characterization of a new ternary di­lanthanum lithium hexa­germanide, La2LiGe6-x (x = 0.21), belonging to the Pr2LiGe6 structure type, and a quaternary dilanthanum lithium tetra­ger­man­ium disilicide, La2LiGe4Si2, which crystallizes as an ordered variant of this type, are reported. In both structures, Li is on a site of mmm symmetry. All other atoms are on sites of m2m symmetry. These structures are new representatives of a homologous linear structure series based on structural fragments of the AlB2, CaF2 and ZrSi2 structure types. The observed 17-vertex polyhedra are typical for La atoms and the environment of the Li atom is cubic. Two Ge atoms are enclosed in a tetra­gonal prism with one added atom (nine-vertex polyhedron). The trigonal prismatic coordination is typical for Ge or Si atoms. The metallic nature of the bonding is indicated by the inter­atomic distances and electronic structure calculations.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270112031526/fn3108sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112031526/fn3108Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112031526/fn3108IIsup3.hkl
Contains datablock II

Comment top

The reaction of rare earth metals (RE) with lithium and the p-elements of group IV (Si, Ge and Sn) resulted in an isostructural series of compounds: RELiGe2 (Pavlyuk et al., 1986), RE2Li2Ge3 (Pavlyuk, Pecharskii, Bodak & Bruskov, 1988; Pavlyuk, Pecharskii & Bodak, 1989), RELiSn2 (Pavlyuk, Bodak et al., 1989), RE4LiGe4 (Pavlyuk et al., 1990), RELiGe (Pavlyuk et al., 1991; Pavlyuk & Bodak, 1992a) and RE3Li2Ge3 (Pavlyuk & Bodak, 1992b). A new ternary germanide, RE2LiGe6 (RE = Ce and Pr), which crystallizes in an orthorhombic structure with the space group Cmmm, was detected earlier during the systematic study of ternary germanium-rich alloys of Ce–Li–Ge and Pr–Li–Ge systems (Pavlyuk, Pecharskii & Bodak, 1988).

During a systematic study of ternary La–Li–Ge alloys synthesized with a high content of Ge, a new ternary phase was detected. The powder diffraction pattern of this compound was similar to that of the RE2LiGe6 (RE = Ce and Pr) ternary phases, but had added reflections which belonged to another phase. Substitution of some of the Ge atoms by Si in La2LiGe6-xSix quaternary alloys with x = 2.0 altered the unit-cell dimensions. [Please check rephrasing] Also at this composition, there was a significant decrease in the intensities of the [041], [151], [170] and [171] reflections and an increase in the intensities of the [001], [110] and other reflections. It appeared very likely that these changes were connected with an ordering process. It was decided to investigate these ternary and quaternary phases further using single-crystal methods.

The single-crystal data proved that both La2LiGe6, (I), and La2LiGe4Si2, (II), crystallize in the same orthorhombic crystal system in the space group Cmmm, with 18 atoms per unit cell. The La atoms in both structures occupy the 4i site anf the Li atoms are located on the 2a site. In (I), all the Ge atoms occupy 4j sites, whereas in (II) one of these sites is fully occupied by Si atoms. Disorder in La2LiGe6-x occurs as the Ge atoms are partially displaced from a single site. The presence of these defects may lead to a limited homogeneity range for La2LiGe6-x. [Please check rephrasing]

Although (I) and (II) are very similar to the Pr2LiGe6 structure (Pavlyuk, Pecharskii & Bodak, 1988) in terms of having the same space group, the same Wyckoff positions and similar lattice parameters, quaternary (II) cannot be treated as being isostructural with it. According to the classification scheme of Krypyakevich (1977), an ordered variant must be treated as a new structure type.

A projection of the unit cell and the coordination polyhedra of the atoms for (II) are shown in Fig. 1. A detailed analysis shows that, in the case of (II), the Si atom has trigonal prismatic coordination with two additional capping atoms [coordination number (CN) = 8], i.e. Ge1 and Ge2 are enclosed in a tetragonal prism with one added atom (nine-vertex polyhedron). The 17-vertex polyhedron is typical for an La atom and the environment of the Li atom is cubic.

The title compounds may be viewed as the first intermetallic representatives of the novel homologous series based on the CaF2, ZrSi2 and AlB2 structure types (Fig. 2). The general formula of the ternary series is Rm+nMkX2(k+m+n) and that of the quaternary series is Rm+nMkX'2(k+n)X''2 m (m = number of blocks of AlB2-type trigonal prisms, n = number of blocks of ZrSi2-type empty tetragonal antiprisms and k = number of blocks of CaF2-type filled and empty cubes). For the title compounds, m = n = k = 2 and the compositions of fragments are: LiGe2 (for the CaF2 block), LaGe2 (for the ZrSi2 block) and LaGe2 in (I) or LaSi2 in (II) (for the AlB2 block). The combinations of these fragments in the unit cell gives the compositions of the title compounds as:

2LaSi2 +2LaGe2 + 2LiGe2 = La4Li2Ge8Si4 = 2La2LiGe4Si2

or

2LaGe2 +2LaGe2 + 2LiGe2 = La4Li2Ge12 = 2La2LiGe6.

Among the known structure types similar to the title compounds is Lu2NiSn6 (Skolozdra et al., 1985). The main diffrerence between that structure type and the present one is a difference in the location of the trigonal prism and the filled cubes.

The electronic structures of the title compounds were calculated using the tight-binding linear muffin-tin orbital (TB–LMTO) method in the atomic spheres approximation (TB–LMTO–ASA; Andersen, 1975; Andersen & Jepsen, 1984; Andersen et al., 1985, 1986), using the experimental crystallographic data reported here. The exchange and correlation were interpreted in the local density approximation (von Barth & Hedin, 1972).

The La and Li atoms donate their electrons to the Ge and Si atoms. Therefore, positive charge density can be observed around the rare earth and Li atoms, and negative charge density is present around the Ge atoms in phase (I) or the Ge and Si atoms in phase (II) (Fig. 3). The dominant type of bonding in this compound is metallic. However, Ge—Ge and Si—Si covalent dumb-bells are also observed. Similar covalent dumb-bells were observed in La4Mg5Ge6 (Solokha et al., 2012), Tb4Zn5Ge6 (Chumak et al., 2006) and Gd4Zn5Ge6 (Kranenberg et al., 2001).

The total and partial density of states for La2LiGe6 and La2LiGe4Si2 (Figs. 4a and 4b, respectively) in the region below EF exhibit significant mixing between the La and Ge states in phase (I), and a decrease of this mixing in the case of phase (II). The region above EF consists mostly of La 5d orbitals and Ge p orbitals. The Si and Ge s-type states are mainly close to the lower valence band (from -12.0 eV to <-7.5 eV). The higher occupation number of electronic states at the Fermi level for La2LiGe6 than for La2LiGe4Si2 indicates a more metallic behaviour.

The crystal orbital Hamilton population (COHP) and integrated COHP (iCOHP) calculations were used to obtain a quantitative evaluation of the bonding strength between the different types of atoms. From the COHP curves for both phases (Fig. 5), it can be concluded that the strongest interactions are between Ge1—Ge1 atoms [δ = 2.451 Å and -iCOHP = 3.425 eV for (I), and δ = 2.381 Å and -iCOHP = 3.796 eV for (II)] and between Ge2—Ge2 atoms [δ = 2.423 Å and -iCOHP = 3.441 eV for (I), and δ = 2.389 Å and -iCOHP = 3.547 eV for (II)]. These atoms in both structures are enclosed by a tetragonal prism. The Si1···Si1 interaction in (II) (δ = 2.581 Å and -iCOHP = 2.162 eV) and the Ge3···Ge3 interaction in (I) (δ = 2.594 Å and -iCOHP = 2.060 eV), which are enclosed by a trigonal prism, are weak. These results indicate that the strength of Ge···Ge and Si···Si covalent interactions depends significantly on the type of coordination.

Related literature top

For related literature, see: Andersen (1975); Andersen & Jepsen (1984); Andersen et al. (1985, 1986); Barth & Hedin (1972); Chumak et al. (2006); Kranenberg et al. (2001); Krypyakevich (1977); Pavlyuk & Bodak (1992a, 1992b); Pavlyuk et al. (1986, 1990, 1991); Pavlyuk, Bodak, Pecharskii, Skolozdra & Gladyshevskii (1989); Pavlyuk, Pecharskii & Bodak (1988, 1989); Pavlyuk, Pecharskii, Bodak & Bruskov (1988); Skolozdra et al. (1985); Solokha et al. (2012).

Experimental top

Lanthanum, lithium, germanium and silicon, all with a nominal purity greater than 99.9 wt.%, were used as starting materials. First, pieces of the pure metals with stoichiometries La22Li12Ge66, La22Li12Ge60Si6 and La22Li12Ge44Si12 were pressed into pellets, then enclosed in a tantalum crucible and placed in a resistance furnace with a thermocouple controller. The heating rate from room temperature to 670 K was 5 K min-1. The alloy was kept at this temperature for 2 d and then the temperature was increased from 670 to 1070 K over a period of 1 h. The alloy was then annealed at this temperature for 6 h and slowly cooled to room temperature. After these melting and annealing procedures, the total weight loss was less than 2%. Small good quality single crystals of (I) and (II) were isolated from the La22Li12Ge66 and La22Li12Ge44Si12 alloys.

Refinement top

The structures of (I) and (II) were solved after applying an analytical absorption correction. In the first stage of the structure solution, the positions of the La, Ge and Si atoms were obtained correctly by direct methods. For (I), the residual factor R1 = 0.030 after refinement of the La and Ge atoms and the highest difference peak was 6.54 e Å-3. For (II), R1 = 0.032 after refinement of the La, Ge and Si atoms and the highest difference peak was 7.58 e Å-3. The remaining Li atoms were located in subsequent difference Fourier syntheses and, after refinement of their parameters, R1 reduced to 0.024 for (I) and 0.020 for (II), and the highest difference peaks decreased to 1.20 e Å-3 for (I) and 1.15 e Å-3 for (II). However, in (I), the Ge1 position showed a displacement parameter considerably different from those of the other Ge atoms, suggesting that this position is only partially occupied by the Ge atom.

Computing details top

For both compounds, data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis CCD (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A projection of the unit cell and coordination polyhedra of the atoms for La2LiGe4Si2, (II).
[Figure 2] Fig. 2. The packing of the AlB2, ZrSi2 and CaF2 fragments in the unit cell of La2LiGe4Si2, (II).
[Figure 3] Fig. 3. (a) The electron localization function (ELF) mapping and (b) isosurfaces of the ELF around the atoms for La2LiGe6, (I), and La2LiGe4Si2, (II).
[Figure 4] Fig. 4. The total and partial density of states for (a) La2LiGe6, (I), and (b) La2LiGe4Si2, (II).
[Figure 5] Fig. 5. -COHP curves for: (a) and (b) La2LiGe6, (I); and (c), (d) and (e) La2LiGe4Si2, (II).
(I) dilanthanum lithium hexagermanide top
Crystal data top
La2LiGe5.79F(000) = 605.2
Mr = 1410.11Dx = 6.032 Mg m3
Orthorhombic, CmmmMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2 2Cell parameters from 289 reflections
a = 4.1871 (1) Åθ = 3.9–27.6°
b = 21.1132 (6) ŵ = 32.73 mm1
c = 4.3912 (1) ÅT = 293 K
V = 388.20 (2) Å3Plate, metallic dark grey
Z = 10.14 × 0.12 × 0.02 mm
Data collection top
Oxford Xcalibur3 CCD area-detector
diffractometer
290 independent reflections
Radiation source: fine-focus sealed tube289 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 0 pixels mm-1θmax = 27.6°, θmin = 3.9°
ω scansh = 55
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2008)
k = 2727
Tmin = 0.015, Tmax = 0.528l = 55
1770 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.024Secondary atom site location: difference Fourier map
wR(F2) = 0.059 w = 1/[σ2(Fo2) + (0.P)2 + 14.9101P]
where P = (Fo2 + 2Fc2)/3
S = 1.20(Δ/σ)max < 0.001
290 reflectionsΔρmax = 1.20 e Å3
21 parametersΔρmin = 0.98 e Å3
Crystal data top
La2LiGe5.79V = 388.20 (2) Å3
Mr = 1410.11Z = 1
Orthorhombic, CmmmMo Kα radiation
a = 4.1871 (1) ŵ = 32.73 mm1
b = 21.1132 (6) ÅT = 293 K
c = 4.3912 (1) Å0.14 × 0.12 × 0.02 mm
Data collection top
Oxford Xcalibur3 CCD area-detector
diffractometer
290 independent reflections
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2008)
289 reflections with I > 2σ(I)
Tmin = 0.015, Tmax = 0.528Rint = 0.034
1770 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.059 w = 1/[σ2(Fo2) + (0.P)2 + 14.9101P]
where P = (Fo2 + 2Fc2)/3
S = 1.20Δρmax = 1.20 e Å3
290 reflectionsΔρmin = 0.98 e Å3
21 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
La10.00000.16551 (3)0.00000.0114 (2)
Ge10.00000.05806 (7)0.50000.0179 (5)0.896 (8)
Ge20.00000.44262 (6)0.00000.0152 (3)
Ge30.00000.28626 (6)0.50000.0155 (3)
Li10.00000.00000.00000.018 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La10.0096 (3)0.0127 (3)0.0118 (3)0.0000.0000.000
Ge10.0164 (8)0.0201 (8)0.0171 (8)0.0000.0000.000
Ge20.0131 (6)0.0185 (6)0.0140 (6)0.0000.0000.000
Ge30.0132 (6)0.0194 (6)0.0139 (6)0.0000.0000.000
Li10.022 (15)0.015 (13)0.018 (15)0.0000.0000.000
Geometric parameters (Å, º) top
La1—Ge2i3.0975 (10)Ge2—La1i3.0975 (10)
La1—Ge2ii3.0975 (10)Ge2—La1ii3.0975 (10)
La1—Ge1iii3.1571 (12)Ge3—Ge3v2.5936 (16)
La1—Ge13.1571 (12)Ge3—Ge3iv2.5936 (16)
La1—Ge3iv3.2001 (5)Ge3—La1iv3.2001 (5)
La1—Ge3i3.2001 (5)Ge3—La1i3.2001 (5)
La1—Ge3v3.2001 (5)Ge3—La1ii3.2001 (5)
La1—Ge3ii3.2001 (5)Ge3—La1v3.2001 (5)
La1—Ge33.3646 (11)Ge3—La1vii3.3646 (11)
La1—Ge3iii3.3646 (11)Li1—Ge2ii2.4188 (6)
La1—Li13.4944 (6)Li1—Ge2xi2.4188 (6)
Ge1—Ge1vi2.451 (3)Li1—Ge2i2.4188 (6)
Ge1—Li12.5146 (7)Li1—Ge2xii2.4188 (6)
Ge1—Li1vii2.5146 (7)Li1—Ge1xiii2.5146 (7)
Ge1—La1vii3.1571 (12)Li1—Ge1vi2.5146 (7)
Ge2—Li1viii2.4188 (6)Li1—Ge1iii2.5146 (7)
Ge2—Li1ix2.4188 (6)Li1—La1xiii3.4944 (6)
Ge2—Ge2x2.423 (3)
Ge2i—La1—Ge2ii85.04 (3)Li1ix—Ge2—La1i77.534 (14)
Ge2i—La1—Ge1iii58.022 (17)Ge2x—Ge2—La1i137.478 (17)
Ge2ii—La1—Ge1iii58.022 (17)Li1viii—Ge2—La1ii77.534 (14)
Ge2i—La1—Ge158.022 (17)Li1ix—Ge2—La1ii162.58 (4)
Ge2ii—La1—Ge158.022 (17)Ge2x—Ge2—La1ii137.478 (17)
Ge1iii—La1—Ge188.13 (4)La1i—Ge2—La1ii85.04 (3)
Ge2i—La1—Ge3iv132.59 (2)Ge3v—Ge3—Ge3iv107.64 (9)
Ge2ii—La1—Ge3iv78.02 (2)Ge3v—Ge3—La1iv135.72 (2)
Ge1iii—La1—Ge3iv134.90 (2)Ge3iv—Ge3—La1iv70.111 (17)
Ge1—La1—Ge3iv75.61 (2)Ge3v—Ge3—La1i70.111 (17)
Ge2i—La1—Ge3i78.02 (2)Ge3iv—Ge3—La1i135.72 (2)
Ge2ii—La1—Ge3i132.59 (2)La1iv—Ge3—La1i142.89 (5)
Ge1iii—La1—Ge3i75.61 (2)Ge3v—Ge3—La1ii135.72 (2)
Ge1—La1—Ge3i134.90 (2)Ge3iv—Ge3—La1ii70.111 (17)
Ge3iv—La1—Ge3i142.89 (5)La1iv—Ge3—La1ii86.644 (16)
Ge2i—La1—Ge3v78.02 (2)La1i—Ge3—La1ii81.719 (14)
Ge2ii—La1—Ge3v132.59 (2)Ge3v—Ge3—La1v70.111 (17)
Ge1iii—La1—Ge3v134.90 (2)Ge3iv—Ge3—La1v135.72 (2)
Ge1—La1—Ge3v75.61 (2)La1iv—Ge3—La1v81.719 (14)
Ge3iv—La1—Ge3v81.719 (14)La1i—Ge3—La1v86.644 (16)
Ge3i—La1—Ge3v86.644 (16)La1ii—Ge3—La1v142.89 (5)
Ge2i—La1—Ge3ii132.59 (2)Ge3v—Ge3—La163.43 (4)
Ge2ii—La1—Ge3ii78.02 (2)Ge3iv—Ge3—La163.43 (4)
Ge1iii—La1—Ge3ii75.61 (2)La1iv—Ge3—La1133.54 (2)
Ge1—La1—Ge3ii134.90 (2)La1i—Ge3—La178.078 (17)
Ge3iv—La1—Ge3ii86.644 (16)La1ii—Ge3—La178.078 (17)
Ge3i—La1—Ge3ii81.719 (14)La1v—Ge3—La1133.54 (2)
Ge3v—La1—Ge3ii142.89 (5)Ge3v—Ge3—La1vii63.43 (4)
Ge2i—La1—Ge3123.949 (13)Ge3iv—Ge3—La1vii63.43 (4)
Ge2ii—La1—Ge3123.949 (13)La1iv—Ge3—La1vii78.078 (17)
Ge1iii—La1—Ge3176.67 (3)La1i—Ge3—La1vii133.54 (2)
Ge1—La1—Ge395.20 (2)La1ii—Ge3—La1vii133.54 (2)
Ge3iv—La1—Ge346.46 (2)La1v—Ge3—La1vii78.078 (17)
Ge3i—La1—Ge3101.922 (17)La1—Ge3—La1vii81.47 (3)
Ge3v—La1—Ge346.46 (2)Ge2ii—Li1—Ge2xi180.00 (5)
Ge3ii—La1—Ge3101.922 (17)Ge2ii—Li1—Ge2i119.89 (5)
Ge2i—La1—Ge3iii123.949 (13)Ge2xi—Li1—Ge2i60.11 (5)
Ge2ii—La1—Ge3iii123.949 (13)Ge2ii—Li1—Ge2xii60.11 (5)
Ge1iii—La1—Ge3iii95.20 (2)Ge2xi—Li1—Ge2xii119.89 (5)
Ge1—La1—Ge3iii176.67 (3)Ge2i—Li1—Ge2xii180.00 (5)
Ge3iv—La1—Ge3iii101.922 (17)Ge2ii—Li1—Ge1xiii104.131 (17)
Ge3i—La1—Ge3iii46.46 (2)Ge2xi—Li1—Ge1xiii75.869 (17)
Ge3v—La1—Ge3iii101.922 (17)Ge2i—Li1—Ge1xiii104.131 (17)
Ge3ii—La1—Ge3iii46.46 (2)Ge2xii—Li1—Ge1xiii75.869 (17)
Ge3—La1—Ge3iii81.47 (3)Ge2ii—Li1—Ge175.869 (17)
Ge2i—La1—Li142.522 (17)Ge2xi—Li1—Ge1104.131 (17)
Ge2ii—La1—Li142.522 (17)Ge2i—Li1—Ge175.869 (17)
Ge1iii—La1—Li144.06 (2)Ge2xii—Li1—Ge1104.131 (17)
Ge1—La1—Li144.06 (2)Ge1xiii—Li1—Ge1180.00 (6)
Ge3iv—La1—Li1108.56 (2)Ge2ii—Li1—Ge1vi104.131 (17)
Ge3i—La1—Li1108.56 (2)Ge2xi—Li1—Ge1vi75.869 (17)
Ge3v—La1—Li1108.56 (2)Ge2i—Li1—Ge1vi104.131 (17)
Ge3ii—La1—Li1108.56 (2)Ge2xii—Li1—Ge1vi75.869 (17)
Ge3—La1—Li1139.265 (16)Ge1xiii—Li1—Ge1vi121.65 (6)
Ge3iii—La1—Li1139.265 (16)Ge1—Li1—Ge1vi58.35 (6)
Ge2i—La1—La1ii167.88 (2)Ge2ii—Li1—Ge1iii75.869 (17)
Ge2ii—La1—La1ii107.074 (16)Ge2xi—Li1—Ge1iii104.131 (17)
Ge1iii—La1—La1ii128.299 (15)Ge2i—Li1—Ge1iii75.869 (17)
Ge1—La1—La1ii128.299 (15)Ge2xii—Li1—Ge1iii104.131 (17)
Ge3iv—La1—La1ii52.73 (2)Ge1xiii—Li1—Ge1iii58.35 (6)
Ge3i—La1—La1ii93.24 (3)Ge1—Li1—Ge1iii121.65 (6)
Ge3v—La1—La1ii93.24 (3)Ge1vi—Li1—Ge1iii180.00 (6)
Ge3ii—La1—La1ii52.73 (2)Ge2ii—Li1—La1xiii120.06 (3)
Ge3—La1—La1ii49.191 (15)Ge2xi—Li1—La1xiii59.94 (3)
Ge3iii—La1—La1ii49.191 (15)Ge2i—Li1—La1xiii120.06 (3)
Li1—La1—La1ii149.597 (9)Ge2xii—Li1—La1xiii59.94 (3)
Ge1vi—Ge1—Li160.83 (3)Ge1xiii—Li1—La1xiii60.83 (3)
Ge1vi—Ge1—Li1vii60.83 (3)Ge1—Li1—La1xiii119.17 (3)
Li1—Ge1—Li1vii121.65 (6)Ge1vi—Li1—La1xiii60.83 (3)
Ge1vi—Ge1—La1vii135.94 (2)Ge1iii—Li1—La1xiii119.17 (3)
Li1—Ge1—La1vii163.24 (5)Ge2ii—Li1—La159.94 (3)
Li1vii—Ge1—La1vii75.110 (14)Ge2xi—Li1—La1120.06 (3)
Ge1vi—Ge1—La1135.94 (2)Ge2i—Li1—La159.94 (3)
Li1—Ge1—La175.110 (14)Ge2xii—Li1—La1120.06 (3)
Li1vii—Ge1—La1163.24 (5)Ge1xiii—Li1—La1119.17 (3)
La1vii—Ge1—La188.13 (4)Ge1—Li1—La160.83 (3)
Li1viii—Ge2—Li1ix119.89 (5)Ge1vi—Li1—La1119.17 (3)
Li1viii—Ge2—Ge2x59.94 (3)Ge1iii—Li1—La160.83 (3)
Li1ix—Ge2—Ge2x59.94 (3)La1xiii—Li1—La1180.0
Li1viii—Ge2—La1i162.58 (4)
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+1/2, y+1/2, z; (iii) x, y, z1; (iv) x+1/2, y+1/2, z+1; (v) x1/2, y+1/2, z+1; (vi) x, y, z+1; (vii) x, y, z+1; (viii) x+1/2, y+1/2, z; (ix) x1/2, y+1/2, z; (x) x, y+1, z; (xi) x1/2, y1/2, z; (xii) x+1/2, y1/2, z; (xiii) x, y, z.
(II) dilanthanum lithium tetragermanium disilicide top
Crystal data top
La2LiGe4Si2F(000) = 546
Mr = 631.38Dx = 5.493 Mg m3
Orthorhombic, CmmmMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2 2Cell parameters from 289 reflections
a = 4.1462 (1) Åθ = 3.9–27.8°
b = 21.0674 (6) ŵ = 26.69 mm1
c = 4.3704 (1) ÅT = 293 K
V = 381.75 (2) Å3Plate, metallic dark grey
Z = 20.12 × 0.09 × 0.03 mm
Data collection top
Oxford Xcalibur3 CCD area-detector
diffractometer
290 independent reflections
Radiation source: fine-focus sealed tube289 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.073
Detector resolution: 0 pixels mm-1θmax = 27.8°, θmin = 3.9°
ω scansh = 55
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2008)
k = 2727
Tmin = 0.074, Tmax = 0.451l = 55
1770 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.020Secondary atom site location: difference Fourier map
wR(F2) = 0.045 w = 1/[σ2(Fo2) + (0.P)2 + 0.5539P]
where P = (Fo2 + 2Fc2)/3
S = 1.20(Δ/σ)max < 0.001
290 reflectionsΔρmax = 1.15 e Å3
18 parametersΔρmin = 1.62 e Å3
Crystal data top
La2LiGe4Si2V = 381.75 (2) Å3
Mr = 631.38Z = 2
Orthorhombic, CmmmMo Kα radiation
a = 4.1462 (1) ŵ = 26.69 mm1
b = 21.0674 (6) ÅT = 293 K
c = 4.3704 (1) Å0.12 × 0.09 × 0.03 mm
Data collection top
Oxford Xcalibur3 CCD area-detector
diffractometer
290 independent reflections
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2008)
289 reflections with I > 2σ(I)
Tmin = 0.074, Tmax = 0.451Rint = 0.073
1770 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02018 parameters
wR(F2) = 0.0450 restraints
S = 1.20Δρmax = 1.15 e Å3
290 reflectionsΔρmin = 1.62 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
La10.00000.165371 (18)0.00000.01556 (16)
Ge10.00000.05651 (3)0.50000.0146 (2)
Ge20.00000.44330 (3)0.00000.0140 (2)
Si10.00000.28647 (10)0.50000.0159 (4)
Li10.00000.00000.00000.011 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La10.01094 (19)0.0230 (2)0.0128 (3)0.0000.0000.000
Ge10.0125 (3)0.0203 (4)0.0112 (5)0.0000.0000.000
Ge20.0122 (3)0.0193 (4)0.0105 (4)0.0000.0000.000
Si10.0131 (7)0.0249 (9)0.0099 (12)0.0000.0000.000
Geometric parameters (Å, º) top
La1—Ge2i3.0885 (6)Ge2—La1i3.0885 (6)
La1—Ge2ii3.0885 (6)Ge2—La1ii3.0885 (6)
La1—Ge1iii3.1679 (6)Si1—Si1v2.581 (2)
La1—Ge13.1679 (6)Si1—Si1iv2.581 (2)
La1—Si1iv3.1784 (7)Si1—La1iv3.1784 (7)
La1—Si1i3.1784 (7)Si1—La1i3.1784 (7)
La1—Si1v3.1784 (7)Si1—La1v3.1784 (7)
La1—Si1ii3.1784 (7)Si1—La1ii3.1784 (7)
La1—Si13.3592 (16)Si1—La1vii3.3592 (16)
La1—Si1iii3.3592 (16)Li1—Ge2ii2.3926 (3)
La1—Li13.4839 (4)Li1—Ge2xi2.3926 (3)
Ge1—Ge1vi2.3808 (14)Li1—Ge2i2.3926 (3)
Ge1—Li12.4884 (3)Li1—Ge2xii2.3926 (3)
Ge1—Li1vii2.4884 (3)Li1—Ge1xiii2.4884 (3)
Ge1—La1vii3.1679 (6)Li1—Ge1iii2.4884 (3)
Ge2—Ge2viii2.3891 (14)Li1—Ge1vi2.4884 (3)
Ge2—Li1ix2.3926 (3)Li1—La1xiii3.4839 (4)
Ge2—Li1x2.3926 (3)
Ge2i—La1—Ge2ii84.32 (2)Li1ix—Ge2—La1i162.11 (2)
Ge2i—La1—Ge1iii57.543 (9)Li1x—Ge2—La1i77.789 (8)
Ge2ii—La1—Ge1iii57.543 (9)Ge2viii—Ge2—La1ii137.838 (10)
Ge2i—La1—Ge157.543 (9)Li1ix—Ge2—La1ii77.789 (8)
Ge2ii—La1—Ge157.543 (9)Li1x—Ge2—La1ii162.11 (2)
Ge1iii—La1—Ge187.23 (2)La1i—Ge2—La1ii84.32 (2)
Ge2i—La1—Si1iv132.41 (3)Si1v—Si1—Si1iv106.90 (15)
Ge2ii—La1—Si1iv78.39 (3)Si1v—Si1—La1iv135.57 (3)
Ge1iii—La1—Si1iv134.86 (3)Si1iv—Si1—La1iv70.49 (2)
Ge1—La1—Si1iv75.93 (3)Si1v—Si1—La1i70.49 (2)
Ge2i—La1—Si1i78.39 (3)Si1iv—Si1—La1i135.57 (3)
Ge2ii—La1—Si1i132.41 (3)La1iv—Si1—La1i142.77 (7)
Ge1iii—La1—Si1i75.93 (3)Si1v—Si1—La1v70.49 (2)
Ge1—La1—Si1i134.86 (3)Si1iv—Si1—La1v135.57 (3)
Si1iv—La1—Si1i142.77 (7)La1iv—Si1—La1v81.42 (2)
Ge2i—La1—Si1v78.39 (3)La1i—Si1—La1v86.87 (2)
Ge2ii—La1—Si1v132.41 (3)Si1v—Si1—La1ii135.57 (3)
Ge1iii—La1—Si1v134.86 (3)Si1iv—Si1—La1ii70.49 (2)
Ge1—La1—Si1v75.93 (3)La1iv—Si1—La1ii86.87 (2)
Si1iv—La1—Si1v81.42 (2)La1i—Si1—La1ii81.42 (2)
Si1i—La1—Si1v86.87 (2)La1v—Si1—La1ii142.77 (7)
Ge2i—La1—Si1ii132.41 (3)Si1v—Si1—La163.11 (6)
Ge2ii—La1—Si1ii78.39 (3)Si1iv—Si1—La163.11 (6)
Ge1iii—La1—Si1ii75.93 (3)La1iv—Si1—La1133.60 (4)
Ge1—La1—Si1ii134.86 (3)La1i—Si1—La178.182 (18)
Si1iv—La1—Si1ii86.87 (2)La1v—Si1—La1133.60 (4)
Si1i—La1—Si1ii81.42 (2)La1ii—Si1—La178.182 (18)
Si1v—La1—Si1ii142.77 (7)Si1v—Si1—La1vii63.11 (6)
Ge2i—La1—Si1124.262 (14)Si1iv—Si1—La1vii63.11 (6)
Ge2ii—La1—Si1124.262 (14)La1iv—Si1—La1vii78.182 (18)
Ge1iii—La1—Si1176.97 (3)La1i—Si1—La1vii133.60 (4)
Ge1—La1—Si195.81 (2)La1v—Si1—La1vii78.182 (18)
Si1iv—La1—Si146.40 (4)La1ii—Si1—La1vii133.60 (4)
Si1i—La1—Si1101.818 (17)La1—Si1—La1vii81.16 (5)
Si1v—La1—Si146.40 (4)Ge2ii—Li1—Ge2xi180.00 (3)
Si1ii—La1—Si1101.818 (18)Ge2ii—Li1—Ge2i120.10 (3)
Ge2i—La1—Si1iii124.262 (14)Ge2xi—Li1—Ge2i59.90 (3)
Ge2ii—La1—Si1iii124.262 (14)Ge2ii—Li1—Ge2xii59.90 (3)
Ge1iii—La1—Si1iii95.81 (2)Ge2xi—Li1—Ge2xii120.10 (3)
Ge1—La1—Si1iii176.97 (3)Ge2i—Li1—Ge2xii180.00 (3)
Si1iv—La1—Si1iii101.818 (18)Ge2ii—Li1—Ge1xiii103.818 (9)
Si1i—La1—Si1iii46.40 (4)Ge2xi—Li1—Ge1xiii76.182 (9)
Si1v—La1—Si1iii101.818 (18)Ge2i—Li1—Ge1xiii103.818 (9)
Si1ii—La1—Si1iii46.40 (4)Ge2xii—Li1—Ge1xiii76.182 (9)
Si1—La1—Si1iii81.16 (5)Ge2ii—Li1—Ge176.182 (9)
Ge2i—La1—Li142.161 (10)Ge2xi—Li1—Ge1103.818 (9)
Ge2ii—La1—Li142.161 (10)Ge2i—Li1—Ge176.182 (9)
Ge1iii—La1—Li143.615 (10)Ge2xii—Li1—Ge1103.818 (9)
Ge1—La1—Li143.615 (10)Ge1xiii—Li1—Ge1180.00 (3)
Si1iv—La1—Li1108.61 (4)Ge2ii—Li1—Ge1iii76.182 (9)
Si1i—La1—Li1108.61 (4)Ge2xi—Li1—Ge1iii103.818 (9)
Si1v—La1—Li1108.61 (4)Ge2i—Li1—Ge1iii76.182 (9)
Si1ii—La1—Li1108.61 (4)Ge2xii—Li1—Ge1iii103.818 (9)
Si1—La1—Li1139.42 (2)Ge1xiii—Li1—Ge1iii57.16 (3)
Si1iii—La1—Li1139.42 (2)Ge1—Li1—Ge1iii122.84 (3)
Ge2i—La1—La1ii168.011 (13)Ge2ii—Li1—Ge1vi103.818 (9)
Ge2ii—La1—La1ii107.666 (9)Ge2xi—Li1—Ge1vi76.182 (9)
Ge1iii—La1—La1ii128.749 (7)Ge2i—Li1—Ge1vi103.818 (9)
Ge1—La1—La1ii128.749 (7)Ge2xii—Li1—Ge1vi76.182 (9)
Si1iv—La1—La1ii52.86 (3)Ge1xiii—Li1—Ge1vi122.84 (3)
Si1i—La1—La1ii92.97 (4)Ge1—Li1—Ge1vi57.16 (3)
Si1v—La1—La1ii92.97 (4)Ge1iii—Li1—Ge1vi180.00 (3)
Si1ii—La1—La1ii52.86 (3)Ge2ii—Li1—La1xiii119.951 (14)
Si1—La1—La1ii48.959 (18)Ge2xi—Li1—La1xiii60.049 (14)
Si1iii—La1—La1ii48.959 (18)Ge2i—Li1—La1xiii119.951 (14)
Li1—La1—La1ii149.827 (5)Ge2xii—Li1—La1xiii60.049 (14)
Ge1vi—Ge1—Li161.420 (14)Ge1xiii—Li1—La1xiii61.420 (14)
Ge1vi—Ge1—Li1vii61.420 (14)Ge1—Li1—La1xiii118.580 (14)
Li1—Ge1—Li1vii122.84 (3)Ge1iii—Li1—La1xiii118.580 (14)
Ge1vi—Ge1—La1vii136.385 (10)Ge1vi—Li1—La1xiii61.420 (14)
Li1—Ge1—La1vii162.19 (2)Ge2ii—Li1—La160.049 (14)
Li1vii—Ge1—La1vii74.965 (7)Ge2xi—Li1—La1119.951 (14)
Ge1vi—Ge1—La1136.385 (10)Ge2i—Li1—La160.049 (14)
Li1—Ge1—La174.965 (8)Ge2xii—Li1—La1119.951 (14)
Li1vii—Ge1—La1162.19 (2)Ge1xiii—Li1—La1118.580 (14)
La1vii—Ge1—La187.23 (2)Ge1—Li1—La161.420 (14)
Ge2viii—Ge2—Li1ix60.049 (14)Ge1iii—Li1—La161.420 (14)
Ge2viii—Ge2—Li1x60.049 (14)Ge1vi—Li1—La1118.580 (14)
Li1ix—Ge2—Li1x120.10 (3)La1xiii—Li1—La1180.0
Ge2viii—Ge2—La1i137.838 (10)
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+1/2, y+1/2, z; (iii) x, y, z1; (iv) x+1/2, y+1/2, z+1; (v) x1/2, y+1/2, z+1; (vi) x, y, z+1; (vii) x, y, z+1; (viii) x, y+1, z; (ix) x+1/2, y+1/2, z; (x) x1/2, y+1/2, z; (xi) x1/2, y1/2, z; (xii) x+1/2, y1/2, z; (xiii) x, y, z.

Experimental details

(I)(II)
Crystal data
Chemical formulaLa2LiGe5.79La2LiGe4Si2
Mr1410.11631.38
Crystal system, space groupOrthorhombic, CmmmOrthorhombic, Cmmm
Temperature (K)293293
a, b, c (Å)4.1871 (1), 21.1132 (6), 4.3912 (1)4.1462 (1), 21.0674 (6), 4.3704 (1)
V3)388.20 (2)381.75 (2)
Z12
Radiation typeMo KαMo Kα
µ (mm1)32.7326.69
Crystal size (mm)0.14 × 0.12 × 0.020.12 × 0.09 × 0.03
Data collection
DiffractometerOxford Xcalibur3 CCD area-detector
diffractometer
Oxford Xcalibur3 CCD area-detector
diffractometer
Absorption correctionAnalytical
(CrysAlis RED; Oxford Diffraction, 2008)
Analytical
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.015, 0.5280.074, 0.451
No. of measured, independent and
observed [I > 2σ(I)] reflections
1770, 290, 289 1770, 290, 289
Rint0.0340.073
(sin θ/λ)max1)0.6510.656
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.059, 1.20 0.020, 0.045, 1.20
No. of reflections290290
No. of parameters2118
w = 1/[σ2(Fo2) + (0.P)2 + 14.9101P]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.P)2 + 0.5539P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.20, 0.981.15, 1.62

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006).

 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds