Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, sodium bis­(6-carb­oxy-1-hy­droxy-3-oxo-1,3-dihydro-2,1-benzoxaborol-1-yl)oxidanium, Na+·C16H15B2O13-, was prepared in two steps from 2-bromo-p-xylene. Its crystal structure was determined at 140 K and has triclinic (P\overline{1}) symmetry. The compound presents a unique structural motif, including two units of the cyclic anhydride of boronoterephthalic acid, joined by a protonated, and thereby trivalent, oxonium center. Association in the crystal is realized by complementary hydrogen bonding of the carboxyl groups, as well as by coordination of the sodium cations to the oxygen centers on the five-membered rings.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270111008195/fn3076sup1.cif
Contains datablocks 3, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111008195/fn30763sup2.hkl
Contains datablock 3

CCDC reference: 829686

Comment top

Flame retardants are widely used in polymeric and composite materials, and their share of the overall polymer additive market has grown to nearly 30%. While almost half of the materials in use are halogenated structures, increased government scrutiny and environmental and toxicology problems have been instrumental in the recent surge of research work and commercial activity related to the discovery and implementation of new non-halogenated flame retardants. The latter are frequently phosphorus- or nitrogen-based, but there has also been increasing interest in boron-containing compounds (Pitts, 1973; Troitzsch, 1998; Morgan et al., 2000). Borates and boric acid have been shown to act as synergists and are often used in combination with other flame-retardant substances, such as halogenated materials (Wu et al., 2007). Recent years have also seen development in the area of boron-containing reactive flame retardants (Armitage et al., 1996).

In our ongoing effort to design and prepare novel boron-based reactive flame retardants, we recently endeavored to prepare boronoterephthalic acid, (2), which led to an unexpected synthetic outcome, illustrated in the scheme. The starting material, 2-bromo-p-xylene, was converted to a Grignard reagent under standard conditions, followed by reaction of the latter with trimethyl borate and subsequent acidification, to generate 2,5-dimethylphenylboronic acid, (1) (Chen et al., 2003). Oxidation of the methyl groups with KMnO4 under basic conditions (Tao et al., 2002), followed by acidification to pH 2, resulted in the formation of a white solid material, which was anticipated to be the target structure, (2). Instead, X-ray crystallographic analysis demonstrated that it was in fact sodium bis(6-carboxy-1-hydroxy-3-oxo-1,3-dihydro-2,1-benzoxaborol-1-yl)oxidanium, (3), a novel type of structure, containing two units of cyclic boronic carboxylic anhydride, connected via a formally positively charged oxygen bridge.

The asymmetric unit of (3) exhibits an almost perfect stacking of the two aromatic rings (Fig. 1), as evidenced by the torsion angles B2—O1—B1—O3 [179.34 (17)°] and B1—O1—B2—O8 [179.56 (17)°], both of which are close to 180°. The dimer is highly symmetric with respect to the central atom O1, with B1—O1 = 1.559 (2) and B2—O1 = 1.549 (3) Å. The B centers are each part of a five-membered ring, properly described as a cyclic mixed carboxylic–boronic acid anhydride ring, with a hydroxy group attached to B. The B—OH distances [1.428 (3) and 1.435 (3) Å] are virtually identical, and considerably elongated compared with typical distances for B—O(H) bonds in related arylboronic acids, such as 4-carboxyphenylboronic acid [1.275 (3) Å; SeethaLekshmi & Pedireddi, 2007] or 4-carboxy-2-nitrobenzeneboronic acid [1.346 (3) and 1.365 (4) Å; Soundararajan et al., 1993]. The B—O distances in the five-membered rings of (3) are even longer, at 1.509 (3) and 1.524 (3) Å. Two plausible reasons may be advanced to account for the differences. First, the degree of B—O π-conjugation, which is greater when boron is in a trigonal planar environment, results in shorter B—O distances. Thus, an increase of about 0.1 Å is observed for the B—O distance upon transition from phenylboronic acid [tricoordinated boron, B—O = 1.371 (7) Å] to its diethanolamine adduct [tetracoordinated boron, B—O = 1.469 (3) and 1.457 (3) Å; Rettig & Trotter, 1977, 1975] or the 2,6-dimethanolpyridine adduct [B—O = 1.479 (6) and 1.459 (6) Å; Vargas et al., 2005]. A second factor could be the steric crowding, which is greater at a tetrahedral (compared with a trigonal-planar) B center, leading to elongation of the B—O distances and thereby minimizing van der Waals interactions.

The carboxyl groups, as expected, are nearly coplanar with the aromatic rings, due to stabilizing conjugation. The CO and the C—O bond lengths differ from their typical values. The former are longer than typical [1.248 (3) and 1.253 (3) Å], while the latter are shorter [1.287 (3) and 1.283 (3) Å]. Such bond-length alteration has been observed in the crystal structures of other carboxylic acids (Etter et al., 1988), although it is not a general phenomenon. The bond difference can vary from less than 0.01 Å in 2,3-dimethoxybenzoic acid (Gopalakrishna & Cartz, 1972) to about 0.17 Å in 2-ethoxybenzoic acid (Bryan & White, 1982). The difference in lengths is similar in 4-carboxyphenylboronic acid hydrate [1.237 (2) and 1.295 (2) Å; SeethaLekshmi & Pedireddi, 2007], but it is somewhat greater in 4-carboxy-2-nitrophenylboronic acid [1.209 (3) and 1.322 (3) Å; Soundararajan et al., 1993].

A plot of the crystal packing of (3) is shown in Fig. 2. Association in the crystal is realised in two different ways: (i) by coordination of O-atom centers from the five-membered rings to Na+ cations, and (ii) by complementary hydrogen bonding of the carboxyl groups, forming an eight-membered ring structure with two hydrogen bonds, in a fashion typical for carboxylic acids in general (Gavezzotti, 2008). The hydrogen-bond distances within the carboxylic acid dimer are H—O = 1.43 (6) and 1.39 (6) Å, and O···O = 2.608 (2) and 2.610 (2) Å. The H—O distances are significantly shorter than those observed in the crystal structures of closely related compounds, such as 4-carboxy-2-nitrophenylboronic acid [H—O = 1.86 (3) Å and O···O = 2.715 (3) Å; Soundararajan et al., 1993] or 4-carboxyphenylboronic acid 0.25-hydrate (SeethaLekshmi & Pedireddi, 2007). Hydrogen-bond distances in the carboxylic acid dimer are listed in Table 2.

Related literature top

For related literature, see: Armitage et al. (1996); Bryan & White (1982); Chen et al. (2003); Etter et al. (1988); Gavezzotti (2008); Gopalakrishna & Cartz (1972); Morgan et al. (2000); Pitts (1973); Rettig & Trotter (1975, 1977); SeethaLekshmi & Pedireddi (2007); Soundararajan et al. (1993); Tao et al. (2002); Troitzsch (1998); Vargas et al. (2005); Wu et al. (2007).

Experimental top

1H and 13C NMR spectra were recorded at 300 MHz and 75 MHz, respectively, and referenced to the solvent [CDCl3 7.27 p.p.m.; DMSO-d6 2.49 p.p.m.; CD3OD 3.32 (1H) and 49.0 p.p.m. (13C); D2O 4.76 p.p.m.]. Elemental analysis was provided by Atlantic Microlab, Norcross, Georgia, USA. 2,5-Dimethylphenylboronic acid, (1), was prepared from 2-bromo-p-xylene according to the literature procedure of Chen et al. (2003).

For the preparation of (3), 2,5-dimethylphenylboronic acid (1.35 g, 9.01 mmol) was dissolved in NaOH (9.0 ml, 50% wt. solution) and water (18.0 ml) and heated to 323 K. KMnO4 (6.55 g, 41.40 mmol) in H2O (70 ml) was added dropwise over a period of 1 h. The solution was kept at 323 K for 3 h, and then cooled to 273 K. The pH was adjusted to 8, using concentrated HCl, and the mixture was filtered. The filtrate was further acidified to pH 2 at 273 K. The solvent was removed under reduced pressure and the resultant white solid was recrystallized from water to yield colorless crystals (yield 1.01 g, 52%). The product did not melt below 623 K. 1H NMR (D2O, δ, p.p.m.): 7.60 (d, J = 6.90 Hz, 1H), 7.88 (d, J = 9.00 Hz, 1H), 8.01 (s, 1H); 1H NMR (DMSO-d6, δ, p.p.m.): 6.92 (s, 1H), 7.53 (d, J = 7.78 Hz, 1H), 7.75 (dd, J1 = 1.22 Hz, J2 = 7.81 Hz, 1H), 7.89 (d, J = 8.08 Hz, 1H) 8.03 (dd, J1 = 1.69 Hz, J2 = 8.12 Hz, 1H), 8.22 (s, 1H), 8.39 (d, J = 1.49 Hz, 1H); 1H NMR (CD3OD, δ, p.p.m.): 7.85 (d, J = 7.58 Hz, 1H) 8.01 (dd, J1 = 1.37 Hz, J2 = 7.97 Hz, 1H), 8.13 (d, J = 0.88 Hz, 1H); 13C NMR (CD3OD, δ, p.p.m.): 126.76, 130.51, 131.88, 134.99, 140.74, 169.96, 174.21. Analysis calculated for C16H11B2NaO11.2H2O: C 41.79, H 3.29%; found: C 41.94, H 3.35%.

Refinement top

All H atoms were initially located in difference Fourier maps and freely refined (coordinates and isotropic displacement parameters). C—H = 0.96 (3)–1.00 (3) Å and O—H = 0.87 (4)–0.92 (4) Å, except for carboxyl O—H = 1.18 (6)–1.22 (6)Å. Solvent O—H distances are in the range 0.82 (3)–0.91 (3) Å. [Please check all added s.u.s]

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (3) (top) and a matrix packing plot (bottom). Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A crystal packing plot of (3) [viewed along which direction?].
sodium bis(6-carboxy-1-hydroxy-3-oxo-1,3-dihydro-2,1-benzoxaborol-1-yl)oxidanium top
Crystal data top
Na+·C16H15B2O13Z = 2
Mr = 459.89F(000) = 472
Triclinic, P1Dx = 1.709 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54178 Å
a = 6.7195 (5) ÅCell parameters from 3534 reflections
b = 7.1118 (4) Åθ = 4.7–72.0°
c = 19.2802 (12) ŵ = 1.48 mm1
α = 80.061 (5)°T = 140 K
β = 81.798 (6)°Plate, colourless
γ = 83.040 (6)°0.40 × 0.13 × 0.02 mm
V = 893.83 (10) Å3
Data collection top
Oxford Xcalibur Sapphire3
diffractometer
3521 independent reflections
Radiation source: Enhance (Cu) x-ray source2825 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
Detector resolution: 16.3384 pixels mm-1θmax = 72.1°, θmin = 4.7°
ω scansh = 88
Absorption correction: analytical
[CrysAlis PRO (Oxford Diffraction, 2010), based on expressions derived by Clark & Reid (1995)]
k = 78
Tmin = 0.729, Tmax = 0.974l = 2323
8576 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111All H-atom parameters refined
S = 1.06 w = 1/[σ2(Fo2) + (0.042P)2 + 0.5528P]
where P = (Fo2 + 2Fc2)/3
3521 reflections(Δ/σ)max = 0.001
349 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
Na+·C16H15B2O13γ = 83.040 (6)°
Mr = 459.89V = 893.83 (10) Å3
Triclinic, P1Z = 2
a = 6.7195 (5) ÅCu Kα radiation
b = 7.1118 (4) ŵ = 1.48 mm1
c = 19.2802 (12) ÅT = 140 K
α = 80.061 (5)°0.40 × 0.13 × 0.02 mm
β = 81.798 (6)°
Data collection top
Oxford Xcalibur Sapphire3
diffractometer
3521 independent reflections
Absorption correction: analytical
[CrysAlis PRO (Oxford Diffraction, 2010), based on expressions derived by Clark & Reid (1995)]
2825 reflections with I > 2σ(I)
Tmin = 0.729, Tmax = 0.974Rint = 0.047
8576 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.111All H-atom parameters refined
S = 1.06Δρmax = 0.27 e Å3
3521 reflectionsΔρmin = 0.32 e Å3
349 parameters
Special details top

Experimental. CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.36 (release 02–08-2010 CrysAlis171. NET) (compiled Aug 2 2010,13:00:58) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Na10.52329 (13)0.73594 (12)0.01008 (5)0.0208 (2)
O10.8635 (2)0.3153 (2)0.13070 (7)0.0138 (3)
H1A0.995 (5)0.283 (5)0.1328 (17)0.045 (9)*
C10.7580 (3)0.4803 (3)0.24616 (11)0.0150 (4)
B10.8121 (4)0.5066 (3)0.16151 (12)0.0145 (4)
O20.6142 (2)0.5951 (2)0.13633 (8)0.0163 (3)
C20.8653 (3)0.4138 (3)0.30297 (11)0.0172 (4)
H21.012 (4)0.370 (4)0.2968 (15)0.029 (7)*
B20.7574 (4)0.1285 (3)0.14442 (13)0.0154 (5)
O30.9697 (2)0.6238 (2)0.12847 (8)0.0163 (3)
H31.066 (5)0.624 (5)0.1537 (18)0.049 (10)*
C30.7641 (3)0.4082 (3)0.37209 (12)0.0186 (4)
O40.3002 (2)0.6874 (2)0.18334 (9)0.0234 (4)
C40.5577 (3)0.4688 (3)0.38401 (12)0.0203 (5)
H40.490 (4)0.465 (4)0.4320 (15)0.026 (7)*
O50.7893 (3)0.3553 (3)0.49514 (9)0.0314 (4)
H5A0.889 (9)0.280 (8)0.543 (3)0.15 (2)*
C50.4492 (3)0.5397 (3)0.32728 (12)0.0201 (4)
H50.305 (4)0.585 (4)0.3362 (13)0.021 (6)*
O61.0572 (3)0.2628 (3)0.42211 (9)0.0343 (4)
C60.5539 (3)0.5444 (3)0.25945 (11)0.0159 (4)
C70.4710 (3)0.6157 (3)0.19151 (11)0.0168 (4)
O70.5498 (2)0.1897 (2)0.12026 (8)0.0161 (3)
C80.8797 (3)0.3368 (3)0.43285 (11)0.0203 (4)
O80.8810 (2)0.0106 (2)0.09896 (8)0.0170 (3)
H8A0.885 (5)0.118 (5)0.1169 (19)0.055 (10)*
C90.6988 (3)0.0448 (3)0.22657 (11)0.0153 (4)
O90.2247 (2)0.2072 (2)0.16850 (9)0.0237 (4)
C100.8083 (3)0.0380 (3)0.28185 (11)0.0161 (4)
H100.958 (4)0.065 (3)0.2744 (13)0.016 (6)*
O100.7275 (3)0.1455 (3)0.47341 (9)0.0345 (4)
H10A0.827 (9)0.202 (9)0.520 (3)0.15 (2)*
C110.7056 (3)0.0731 (3)0.35062 (11)0.0175 (4)
O111.0025 (3)0.2174 (3)0.39977 (9)0.0271 (4)
O120.7491 (2)0.4605 (2)0.01245 (9)0.0201 (3)
H12A0.810 (5)0.408 (5)0.0267 (18)0.038 (8)*
H12B0.843 (5)0.445 (5)0.0441 (18)0.042 (9)*
C120.4959 (3)0.0305 (3)0.36385 (12)0.0196 (4)
H120.425 (4)0.054 (4)0.4124 (14)0.021 (6)*
O130.7235 (2)0.9927 (2)0.02242 (9)0.0205 (3)
H13B0.830 (5)0.991 (5)0.0575 (19)0.051 (10)*
H13A0.787 (5)0.991 (5)0.0130 (19)0.048 (10)*
C130.3844 (3)0.0428 (3)0.30838 (12)0.0196 (4)
H130.240 (4)0.069 (4)0.3176 (14)0.023 (7)*
C140.4899 (3)0.0791 (3)0.24101 (11)0.0158 (4)
C150.4042 (3)0.1639 (3)0.17430 (11)0.0172 (4)
C160.8215 (3)0.1510 (3)0.41088 (11)0.0194 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Na10.0214 (4)0.0151 (4)0.0269 (5)0.0023 (3)0.0041 (3)0.0048 (3)
O10.0135 (7)0.0118 (7)0.0164 (7)0.0004 (5)0.0024 (5)0.0035 (5)
C10.0157 (10)0.0107 (9)0.0190 (10)0.0004 (7)0.0016 (8)0.0048 (7)
B10.0162 (11)0.0120 (10)0.0163 (11)0.0007 (8)0.0058 (9)0.0028 (8)
O20.0157 (7)0.0158 (7)0.0179 (7)0.0019 (5)0.0044 (6)0.0043 (5)
C20.0187 (10)0.0144 (9)0.0184 (10)0.0001 (8)0.0020 (8)0.0037 (8)
B20.0160 (11)0.0115 (10)0.0190 (11)0.0003 (8)0.0040 (9)0.0025 (8)
O30.0176 (7)0.0141 (7)0.0182 (7)0.0025 (6)0.0039 (6)0.0032 (5)
C30.0224 (11)0.0131 (9)0.0201 (11)0.0007 (8)0.0019 (9)0.0041 (8)
O40.0169 (8)0.0265 (8)0.0284 (9)0.0038 (6)0.0075 (6)0.0091 (7)
C40.0225 (11)0.0209 (11)0.0175 (11)0.0022 (9)0.0011 (9)0.0057 (8)
O50.0314 (9)0.0440 (11)0.0166 (8)0.0063 (8)0.0031 (7)0.0055 (7)
C50.0182 (10)0.0207 (11)0.0220 (11)0.0017 (8)0.0009 (8)0.0065 (8)
O60.0293 (9)0.0478 (11)0.0222 (9)0.0152 (8)0.0070 (7)0.0059 (8)
C60.0163 (10)0.0111 (9)0.0219 (11)0.0008 (7)0.0042 (8)0.0057 (8)
C70.0169 (10)0.0135 (9)0.0219 (11)0.0018 (8)0.0043 (8)0.0066 (8)
O70.0157 (7)0.0154 (7)0.0175 (7)0.0022 (5)0.0036 (6)0.0013 (5)
C80.0247 (11)0.0180 (10)0.0180 (11)0.0002 (9)0.0021 (9)0.0035 (8)
O80.0198 (7)0.0116 (7)0.0194 (8)0.0015 (6)0.0005 (6)0.0036 (5)
C90.0161 (10)0.0114 (9)0.0188 (10)0.0011 (7)0.0022 (8)0.0033 (7)
O90.0155 (8)0.0272 (8)0.0274 (9)0.0006 (6)0.0047 (6)0.0017 (7)
C100.0170 (10)0.0119 (9)0.0196 (11)0.0027 (8)0.0024 (8)0.0017 (8)
O100.0334 (10)0.0497 (12)0.0159 (8)0.0087 (8)0.0032 (7)0.0017 (7)
C110.0223 (11)0.0127 (9)0.0182 (10)0.0017 (8)0.0045 (8)0.0024 (8)
O110.0226 (8)0.0334 (9)0.0242 (9)0.0022 (7)0.0058 (7)0.0024 (7)
O120.0212 (8)0.0213 (8)0.0167 (8)0.0012 (6)0.0002 (7)0.0027 (6)
C120.0212 (11)0.0179 (10)0.0183 (11)0.0003 (8)0.0003 (9)0.0024 (8)
O130.0190 (8)0.0220 (8)0.0213 (8)0.0033 (6)0.0003 (7)0.0071 (6)
C130.0180 (10)0.0179 (10)0.0223 (11)0.0014 (8)0.0006 (8)0.0030 (8)
C140.0162 (10)0.0120 (9)0.0196 (10)0.0009 (7)0.0026 (8)0.0037 (8)
C150.0180 (10)0.0124 (9)0.0218 (11)0.0023 (8)0.0031 (8)0.0033 (8)
C160.0233 (11)0.0168 (10)0.0183 (10)0.0013 (8)0.0025 (9)0.0031 (8)
Geometric parameters (Å, º) top
Na1—O132.3443 (18)O5—H5A1.22 (6)
Na1—O122.3904 (18)C5—C61.391 (3)
Na1—O13i2.4085 (18)C5—H50.99 (3)
Na1—O12ii2.4239 (18)O6—C81.248 (3)
Na1—O7ii2.5819 (17)C6—C71.481 (3)
Na1—O22.5953 (17)O7—C151.328 (3)
Na1—Na1ii3.5001 (16)O7—Na1ii2.5819 (17)
Na1—Na1i3.6881 (17)O8—H8A0.92 (4)
O1—B21.549 (3)C9—C101.388 (3)
O1—B11.559 (2)C9—C141.392 (3)
O1—H1A0.89 (3)O9—C151.224 (3)
C1—C21.381 (3)C10—C111.401 (3)
C1—C61.394 (3)C10—H101.00 (2)
C1—B11.604 (3)O10—C161.283 (3)
B1—O31.435 (3)O10—H10A1.18 (6)
B1—O21.509 (3)C11—C121.401 (3)
O2—C71.344 (3)C11—C161.481 (3)
C2—C31.403 (3)O11—C161.253 (3)
C2—H21.00 (3)O12—Na1ii2.4239 (18)
B2—O81.428 (3)O12—H12A0.91 (3)
B2—O71.524 (3)O12—H12B0.82 (3)
B2—C91.603 (3)C12—C131.385 (3)
O3—H30.87 (4)C12—H120.98 (3)
C3—C41.400 (3)O13—Na1i2.4085 (18)
C3—C81.480 (3)O13—H13B0.91 (4)
O4—C71.219 (3)O13—H13A0.85 (4)
C4—C51.389 (3)C13—C141.386 (3)
C4—H40.97 (3)C13—H130.96 (3)
O5—C81.287 (3)C14—C151.486 (3)
O13—Na1—O12104.38 (6)C5—C4—H4119.4 (16)
O13—Na1—O13i78.22 (6)C3—C4—H4120.1 (16)
O12—Na1—O13i173.69 (7)C8—O5—H5A113 (3)
O13—Na1—O12ii159.87 (7)C4—C5—C6117.1 (2)
O12—Na1—O12ii86.73 (6)C4—C5—H5119.9 (15)
O13i—Na1—O12ii89.15 (6)C6—C5—H5123.0 (15)
O13—Na1—O7ii84.61 (6)C5—C6—C1123.5 (2)
O12—Na1—O7ii91.66 (6)C5—C6—C7126.65 (19)
O13i—Na1—O7ii82.81 (6)C1—C6—C7109.80 (18)
O12ii—Na1—O7ii78.25 (6)O4—C7—O2122.0 (2)
O13—Na1—O2102.08 (6)O4—C7—C6127.4 (2)
O12—Na1—O278.43 (6)O2—C7—C6110.51 (18)
O13i—Na1—O2106.82 (6)C15—O7—B2111.15 (16)
O12ii—Na1—O296.52 (6)C15—O7—Na1ii122.33 (13)
O7ii—Na1—O2169.12 (6)B2—O7—Na1ii125.29 (12)
O13—Na1—Na1ii145.07 (6)O6—C8—O5123.1 (2)
O12—Na1—Na1ii43.74 (4)O6—C8—C3119.7 (2)
O13i—Na1—Na1ii131.95 (6)O5—C8—C3117.2 (2)
O12ii—Na1—Na1ii42.99 (4)B2—O8—H8A113 (2)
O7ii—Na1—Na1ii83.04 (5)C10—C9—C14118.6 (2)
O2—Na1—Na1ii86.66 (5)C10—C9—B2134.52 (19)
O13—Na1—Na1i39.74 (4)C14—C9—B2106.74 (18)
O12—Na1—Na1i143.81 (6)C9—C10—C11118.7 (2)
O13i—Na1—Na1i38.48 (4)C9—C10—H10121.8 (14)
O12ii—Na1—Na1i125.95 (6)C11—C10—H10119.4 (14)
O7ii—Na1—Na1i81.87 (4)C16—O10—H10A115 (3)
O2—Na1—Na1i108.78 (5)C10—C11—C12121.2 (2)
Na1ii—Na1—Na1i163.28 (6)C10—C11—C16119.47 (19)
B2—O1—B1131.96 (16)C12—C11—C16119.25 (19)
B2—O1—H1A108 (2)Na1—O12—Na1ii93.27 (6)
B1—O1—H1A106 (2)Na1—O12—H12A111 (2)
C2—C1—C6118.81 (19)Na1ii—O12—H12A105 (2)
C2—C1—B1134.81 (19)Na1—O12—H12B132 (2)
C6—C1—B1106.37 (18)Na1ii—O12—H12B114 (2)
O3—B1—O2109.41 (17)H12A—O12—H12B101 (3)
O3—B1—O1105.20 (16)C13—C12—C11120.3 (2)
O2—B1—O1105.87 (15)C13—C12—H12118.8 (15)
O3—B1—C1118.74 (17)C11—C12—H12120.9 (15)
O2—B1—C1102.31 (16)Na1—O13—Na1i101.78 (6)
O1—B1—C1114.60 (17)Na1—O13—H13B121 (2)
C7—O2—B1110.98 (16)Na1i—O13—H13B124 (2)
C7—O2—Na1117.66 (13)Na1—O13—H13A105 (2)
B1—O2—Na1131.06 (12)Na1i—O13—H13A101 (2)
C1—C2—C3119.0 (2)H13B—O13—H13A100 (3)
C1—C2—H2122.4 (16)C12—C13—C14117.3 (2)
C3—C2—H2118.6 (16)C12—C13—H13120.0 (16)
O8—B2—O7111.84 (17)C14—C13—H13122.7 (16)
O8—B2—O1103.39 (16)C13—C14—C9123.7 (2)
O7—B2—O1104.75 (15)C13—C14—C15126.86 (19)
O8—B2—C9119.81 (17)C9—C14—C15109.42 (18)
O7—B2—C9101.58 (16)O9—C15—O7123.3 (2)
O1—B2—C9114.73 (17)O9—C15—C14125.8 (2)
B1—O3—H3115 (2)O7—C15—C14110.86 (18)
C4—C3—C2121.1 (2)O11—C16—O10122.9 (2)
C4—C3—C8120.1 (2)O11—C16—C11120.3 (2)
C2—C3—C8118.8 (2)O10—C16—C11116.7 (2)
C5—C4—C3120.4 (2)
B2—O1—B1—O3179.34 (17)O8—B2—O7—C15132.73 (18)
B2—O1—B1—O264.9 (2)O1—B2—O7—C15115.95 (17)
B2—O1—B1—C147.1 (3)C9—B2—O7—C153.8 (2)
C2—C1—B1—O357.4 (3)O8—B2—O7—Na1ii34.8 (2)
C6—C1—B1—O3122.08 (19)O1—B2—O7—Na1ii76.55 (17)
C2—C1—B1—O2177.9 (2)C9—B2—O7—Na1ii163.74 (11)
C6—C1—B1—O21.6 (2)C4—C3—C8—O6171.8 (2)
C2—C1—B1—O168.1 (3)C2—C3—C8—O68.2 (3)
C6—C1—B1—O1112.48 (19)C4—C3—C8—O58.2 (3)
O3—B1—O2—C7127.66 (17)C2—C3—C8—O5171.7 (2)
O1—B1—O2—C7119.44 (17)O8—B2—C9—C1055.4 (3)
C1—B1—O2—C70.9 (2)O7—B2—C9—C10179.1 (2)
O3—B1—O2—Na145.8 (2)O1—B2—C9—C1068.5 (3)
O1—B1—O2—Na167.1 (2)O8—B2—C9—C14128.7 (2)
C1—B1—O2—Na1172.57 (11)O7—B2—C9—C145.0 (2)
O13—Na1—O2—C7110.73 (14)O1—B2—C9—C14107.41 (19)
O12—Na1—O2—C7146.82 (14)C14—C9—C10—C113.8 (3)
O13i—Na1—O2—C729.55 (15)B2—C9—C10—C11171.8 (2)
O12ii—Na1—O2—C761.53 (14)C9—C10—C11—C121.5 (3)
O7ii—Na1—O2—C7122.1 (3)C9—C10—C11—C16176.53 (18)
Na1ii—Na1—O2—C7103.44 (13)O13—Na1—O12—Na1ii162.98 (7)
Na1i—Na1—O2—C770.00 (14)O13i—Na1—O12—Na1ii49.3 (6)
O13—Na1—O2—B162.36 (16)O12ii—Na1—O12—Na1ii0.0
O12—Na1—O2—B140.08 (16)O7ii—Na1—O12—Na1ii78.13 (6)
O13i—Na1—O2—B1143.54 (15)O2—Na1—O12—Na1ii97.35 (6)
O12ii—Na1—O2—B1125.38 (16)Na1i—Na1—O12—Na1ii156.59 (10)
O7ii—Na1—O2—B164.8 (4)C10—C11—C12—C131.8 (3)
Na1ii—Na1—O2—B183.47 (15)C16—C11—C12—C13179.9 (2)
Na1i—Na1—O2—B1103.09 (15)O12—Na1—O13—Na1i174.10 (7)
C6—C1—C2—C31.7 (3)O13i—Na1—O13—Na1i0.0
B1—C1—C2—C3178.9 (2)O12ii—Na1—O13—Na1i52.2 (2)
B1—O1—B2—O8179.56 (17)O7ii—Na1—O13—Na1i83.76 (6)
B1—O1—B2—O762.3 (2)O2—Na1—O13—Na1i104.93 (7)
B1—O1—B2—C948.2 (3)Na1ii—Na1—O13—Na1i153.40 (10)
C1—C2—C3—C40.1 (3)C11—C12—C13—C142.8 (3)
C1—C2—C3—C8179.99 (19)C12—C13—C14—C90.5 (3)
C2—C3—C4—C51.3 (3)C12—C13—C14—C15177.57 (19)
C8—C3—C4—C5178.6 (2)C10—C9—C14—C132.9 (3)
C3—C4—C5—C60.9 (3)B2—C9—C14—C13173.83 (19)
C4—C5—C6—C10.8 (3)C10—C9—C14—C15178.81 (18)
C4—C5—C6—C7179.22 (19)B2—C9—C14—C154.5 (2)
C2—C1—C6—C52.2 (3)B2—O7—C15—O9178.04 (19)
B1—C1—C6—C5178.29 (19)Na1ii—O7—C15—O914.0 (3)
C2—C1—C6—C7177.85 (18)B2—O7—C15—C141.3 (2)
B1—C1—C6—C71.7 (2)Na1ii—O7—C15—C14166.64 (12)
B1—O2—C7—O4178.70 (19)C13—C14—C15—O93.3 (3)
Na1—O2—C7—O44.3 (3)C9—C14—C15—O9178.4 (2)
B1—O2—C7—C60.1 (2)C13—C14—C15—O7176.02 (19)
Na1—O2—C7—C6174.52 (12)C9—C14—C15—O72.2 (2)
C5—C6—C7—O42.5 (3)C10—C11—C16—O1112.8 (3)
C1—C6—C7—O4177.5 (2)C12—C11—C16—O11169.1 (2)
C5—C6—C7—O2178.77 (19)C10—C11—C16—O10166.8 (2)
C1—C6—C7—O21.2 (2)C12—C11—C16—O1011.3 (3)
Symmetry codes: (i) x+1, y+2, z; (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O9iii0.89 (3)1.77 (3)2.621 (2)160 (3)
O3—H3···O4iii0.87 (4)1.88 (4)2.708 (2)161 (3)
O5—H5A···O11iv1.22 (6)1.39 (6)2.610 (2)173 (5)
O8—H8A···O3v0.92 (4)1.84 (4)2.721 (2)160 (3)
O10—H10A···O6iv1.18 (6)1.43 (6)2.608 (2)177 (5)
O12—H12A···O10.91 (3)2.07 (3)2.950 (2)163 (3)
O12—H12B···O3vi0.82 (3)2.00 (3)2.814 (2)167 (3)
O13—H13A···O8vii0.85 (4)1.89 (4)2.731 (2)169 (3)
O13—H13B···O8vi0.91 (4)1.99 (4)2.849 (2)156 (3)
Symmetry codes: (iii) x+1, y, z; (iv) x+2, y, z+1; (v) x, y1, z; (vi) x+2, y+1, z; (vii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaNa+·C16H15B2O13
Mr459.89
Crystal system, space groupTriclinic, P1
Temperature (K)140
a, b, c (Å)6.7195 (5), 7.1118 (4), 19.2802 (12)
α, β, γ (°)80.061 (5), 81.798 (6), 83.040 (6)
V3)893.83 (10)
Z2
Radiation typeCu Kα
µ (mm1)1.48
Crystal size (mm)0.40 × 0.13 × 0.02
Data collection
DiffractometerOxford Xcalibur Sapphire3
diffractometer
Absorption correctionAnalytical
[CrysAlis PRO (Oxford Diffraction, 2010), based on expressions derived by Clark & Reid (1995)]
Tmin, Tmax0.729, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
8576, 3521, 2825
Rint0.047
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.111, 1.06
No. of reflections3521
No. of parameters349
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.27, 0.32

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Na1—O22.5953 (17)B2—O81.428 (3)
O1—B21.549 (3)B2—O71.524 (3)
O1—B11.559 (2)O5—C81.287 (3)
C1—B11.604 (3)O6—C81.248 (3)
B1—O31.435 (3)O10—C161.283 (3)
B1—O21.509 (3)O11—C161.253 (3)
B2—O1—B1131.96 (16)C7—O2—B1110.98 (16)
O3—B1—O1105.20 (16)O8—B2—O1103.39 (16)
O2—B1—C1102.31 (16)O7—B2—C9101.58 (16)
B2—O1—B1—O3179.34 (17)C4—C3—C8—O58.2 (3)
B1—O1—B2—O8179.56 (17)C12—C11—C16—O11169.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O9i0.89 (3)1.77 (3)2.621 (2)160 (3)
O3—H3···O4i0.87 (4)1.88 (4)2.708 (2)161 (3)
O5—H5A···O11ii1.22 (6)1.39 (6)2.610 (2)173 (5)
O8—H8A···O3iii0.92 (4)1.84 (4)2.721 (2)160 (3)
O10—H10A···O6ii1.18 (6)1.43 (6)2.608 (2)177 (5)
O12—H12A···O10.91 (3)2.07 (3)2.950 (2)163 (3)
O12—H12B···O3iv0.82 (3)2.00 (3)2.814 (2)167 (3)
O13—H13A···O8v0.85 (4)1.89 (4)2.731 (2)169 (3)
O13—H13B···O8iv0.91 (4)1.99 (4)2.849 (2)156 (3)
Symmetry codes: (i) x+1, y, z; (ii) x+2, y, z+1; (iii) x, y1, z; (iv) x+2, y+1, z; (v) x, y+1, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds