Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The syntheses of 3-[1-(4-sulfamoylphenyl)-5-p-tolyl-1H-pyra­zol-3-yl]propanoic acid, C19H19N3O4S, (I), and 3-[5-(4-bromo­phen­yl)-1-(4-sulfamoyl­phen­yl)-1H-pyrazol-3-yl]­propanoic acid–dichloro­methane–diethyl ether–water (2/0.72/1/1), 2C18H16BrN3O4S·0.72CH2Cl2·C4H10O·H2O, (II), are regio­specific. However, correct identification by spectroscopic techniques of the regioisomer formed is not trivial and single-crystal X-ray analysis provided the only means of unambiguous structure determination. Both structures make extensive use of hydrogen bonding and while compound (I) forms a straightforward unsolvated Z′ = 1 structure, compound (II) crystallizes as an unusual mixed solvate, with two crystallographically unique mol­ecules of the pyrazole derivative present in the asymmetric unit. The structure of (II) also features Br...Br inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010901676X/fn3023sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010901676X/fn3023Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010901676X/fn3023IIsup3.hkl
Contains datablock II

CCDC references: 742184; 742185

Comment top

Non-steroidal anti-inflammatory drugs are divided into three different categories, classical cyclooxygenase-1 (COX1) inhibitors, cyclooxygenase-2 (COX2) inhibitors and dual inhibitors (Charlier & Michaux, 2003). Pharmacologically, they possess analgesic, anti-inflammatory and antipyretic effects (Charlier & Michaux, 2003; Antoniou et al., 2007). COX1 inhibitors were replaced by COX2 inhibitors due to problems of severe gastrointestinal irritation and renal impairment experienced by COX1 patients (Copeland et al., 1995). In the USA, only the COX2 inhibitor celecoxib is approved for the treatement of various forms of arthritis and even then the Food and Drug Administration requires a warning label highlighting the potential of an increased risk of cardiovascular events (Antoniou et al., 2007). This prompted us to synthesize celecoxib analogues and to investigate their pharmacological properties. In the process of synthesizing these analogues, we found that a mixture of regioisomers was possible, identified as 1 and 2 in the scheme. Efforts to identify unambiguously the correct regioisomer by heteronuclear multiple-bond correlation (two-dimensional HMBC) and one-dimensional nuclear Overhauser effect (one-dimensional NOE) NMR spectroscopy were not successful, leaving single-crystal X-ray diffraction as the only possible means of unambiguous identification. We report here the structures of two related analogues, the title compounds, (I) and (II).

The asymmetric unit of (I) is shown in Fig. 1. The molecular dimensions are unexceptional and the compound is unambiguously regioisomer 1. A mean plane fitted through the central pyrazole ring has an r.m.s. deviation of 0.0036 Å, showing it to be essentially planar. The benzenesulfonamide ring is rotated by 28.73 (9)° from the pyrazole ring, while the tolyl ring is essentially planar (r.m.s. deviation of a plane fitted through all seven C atoms is 0.0137 Å) and is rotated by 70.26 (6)° from the pyrazole ring. The propanoic acid group has an extended structure but is not planar, with the C16—C17—C18—O4 torsion angle being -138.85 (16)°, and the r.m.s. deviation of a mean plane fitted through atoms C16, C17, C18 O3 and O4 is 0.2287 Å. This mean plane is rotated by 48.01(0.08)° from the pyrazole ring.

The crystal packing of (I) involves O—H···O, N—H···O, N—H···N and C—H···O hydrogen-bonding interactions. Fig. 2 shows the interactions involving O acceptor sites. There are two discrete motifs (Bernstein et al., 1995), an R22(10) interaction around an inversion centre formed by symmetry-related C—H···O interactions, and an R33(11) interaction formed by O—H···O, N—H···O and C—H···O interactions from three adjacent molecules. N—H···N interactions form a large discrete motif involving sites related by inversion symmetry. Hydrogen bonding is supported by C—H···π interactions and overall forms a three-dimensional hydrogen-bonded structure.

Compound (II) crystallizes, unusually, with three separate and chemically different solvent molecules of crystallization (dichloromethane, diethyl ether and water) present in the asymmetric unit, along with two molecules of the pyrazole derivative itself (Fig. 3). Thus, Z' = 1, since this represents the empirical chemical formula. In the following discussion, reference is made to the molecule containing atoms Br1–C18 (molecule A), with details for the molecule containing atoms Br51–C68 (molecule B) given in square brackets. Both molecules A and B are unambiguously regiosiomer 1.

The presence of three separate solvent molecules is rather unusual. Diethyl ether and dichloromethane were used for recrystallization and the identity of the remaining solvent molecule was established by analysis of difference Fourier maps, which clearly showed the water H atoms (they are also involved in hydrogen bonding, which is discussed below). The source of the water is probably due to using bench, rather than rigourously dried, solvents for recrystallization. The displacement ellipsoids for dichloromethane are rather large, especially when compared with the remainder of the structure and when considering that the data were measured at 115 K. In this case free refinement of the dichloromethane atom occupancies suggests that it is only ca 0.72 occupied, consistent with the observation that the crystals lost solvent when removed from the mother liquor. This model also yields lower refinement residuals than a fully ordered model. The presence of three different solvent molecules is not without precedent. The Cambridge Structural Database (CSD, Version 5.30 plus two updates; Allen, 2002) has 21 examples of reported structures containing diethyl ether, dichloromethane and water solvent molecules, all of them metal complexes.

The molecular dimensions of (II) are unexceptional. A mean plane fitted through the central pyrazole ring has an r.m.s. deviation of 0.0018 Å [0.0038 Å], showing it to be essentially planar. The benzenesulfonamide ring is rotated by 46.79 (10)° [48.72 (7)°] from the pyrazole ring, while the bromobenzene ring is essentially planar (r.m.s. deviation of a plane fitted through the one Br and all six C atoms is 0.0303 Å [0.0196 Å]) and is rotated by 44.85 (8)° [35.11 (9)°] from the pyrazole ring. The propanoic acid group has an extended planar structure (r.m.s. deviation of a mean plane fitted through atoms C16, C17, C18 O3 and O4 is 0.0581 Å [0.0403 Å]) and the group is rotated by 83.07 (10)° [24.85 (12)°] from the pyrazole ring. Fig. 4 shows an overlay of the two independent molecules, formed by fitting the two pyrazole rings, and from this the differences in the relative orientations of the benzyl rings and the propanoic acid groups can be clearly seen.

The crystal structure makes extensive use of hydrogen bonding, forming a thick two-dimensional hydrogen-bonded structure. Fig. 5 shows a c-axis projection of part of the structure, showing how two different hydrogen-bonding motifs, one R33(11) and one R33(13), allow the structure to propagate along the b axis. The role of water is crucial here since it acts as both donor (two O—H···O interactions) and acceptor (one N—H···O interaction), allowing both ring motifs to form. By contrast, the diethyl ether acts as a space-filling hydrogen-bond acceptor in a D(3) interaction with one sulfonamide donor site of molecule B. Further D(3) interactions, one N—H···O with sulfonamide as both donor and acceptor and a second N—H···O with sulfonamide as donor and an adjacent propanoic acid group as acceptor, allow the two-dimensional hydrogen-bonded sheet structure to grow.

The third direction is dominated by Br···Br interactions. The refined Br···Br distance is 3.5787 (9) Å. This is consistent with data derived from the CSD. A search for non-bonded Br···Br contacts between two Br atoms bonded to benzyl rings yielded 741 hits, with an average Br···Br distance of 3.576 Å. The Br···Br interactions, propagating along the [101] direction, link the hydrogen-bonded sheets together to form the overall crystal structure. Molecules of dichloromethane are also found in between the sheets, although there are no significant interactions between dichloromethane and adjacent molecules.

Experimental top

The title compounds were synthesized in a two-step procedure. 6-(4-Bromophenyl)-4,6-dioxohexanoic acid and 4,6-dioxo-6-p-tolylhexanoic acid were synthesized by a modified literature method (Murray et al., 1991), using NaHMDS in place of LiHMDS; further details are available in the archived CIF.

For the preparation of (I), a mixture of 4,6-dioxo-6-p-tolylhexanoic acid (1.639 g, 7 mmol), 4-sulfonamidophenylhydrazine hydrochloride (1.56 g, 7 mmol) and Et3N (0.97 ml, 7 mmol) were combined in MeOH (8 ml) and stirred at room temperature for 6 h. The mixture was then concentrated in vacuo to a residue which was partitioned between Et2O (40 ml) and 5% aqueous HCl (12.5 ml). The ether layer was separated, washed with 5% aqueous HCl (2 × 10 ml) and brine (10 ml), dried over Na2SO4, filtered, and concentrated to a residue. The crude residue was flash chromatographed on silica gel with a 6:2:1 eluant of hexane–EtOAc–AcOH, then recrystallized from methanol, yielding colourless crystals of (I). C19H19N3O4S, calculated mass 385.4 g mol-1, observed mass (LQ-ESI MS) 386.1 g mol-1.

For the preparation of (II), a mixture of 6-(4-bromophenyl)-4,6-dioxohexanoic acid (299 mg, 1 mmol), 4-sulfonamidophenylhydrazine hydrochloride (224 mg, 1 mmol) and Et3N (0.1 ml, 1 mmol) were combined in MeOH (8 ml) and stirred at room temperature for 6 h. The mixture was then concentrated in vacuo to a residue which was partitioned between Et2O (40 ml) and 5% aqueous HCl (12.5 ml). The ether layer was separated, washed with 5% aqueous HCl (2 × 10 ml) and brine (10 ml), dried over Na2SO4, filtered, and concentrated to a residue. The crude residue was flash chromatographed on silica gel with a 1:1 eluant of hexane and EtOAc, and recrystallized from diethyl ether and dichloromethane, yielding colourless crystals of (II). C18H16BrN3O4S, yield 0.47 g, calculated mass 450.31 g mol-1, observed mass (LQ-ESI MS) 452.0 g mol-1.

Refinement top

In (I), all atoms, including H atoms, were freely refined. In (II), O- and N-bound H atoms were refined with Uiso(H) = 1.2Ueq(O,N) but without distance restraints. Other H atoms were refined with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl), and with fixed C—H distances of 0.95 for aryl, 0.98 for methyl and 0.99 Å for methylene H atoms. The dichloromethane atom site occupancies were freely refined to 0.722.

Computing details top

For both compounds, data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Version 2.2; Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and local programs.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Hydrogen-bonding interactions (dotted lines) involving O acceptor sites in (I).
[Figure 3] Fig. 3. The asymmetric unit of (II), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. C-bound H atoms have been omitted.
[Figure 4] Fig. 4. An overlay of molecules A (lighter shading) and B (black) in (II), formed by fitting the pyrazole rings, with an r.m.s. deviation of 0.00724(s.u.?) Å.
[Figure 5] Fig. 5. Part of the crystal structure of (II), projected along the c axis. The long a axis has been truncated. Molecules are coloured according to symmetry equivalence as in Fig. 4. Dashed lines indicate hydrogen bonds. Dichloromethane has been omitted. (In the electronic version of the journal, water is indicated in light purple and diethyl ether is shown in red. Blue dashed lines indicate hydrogen bonds in the direction of the b axis, while red dashed lines indicate further hydrogen bonding which propagates the structure in the c-axis direction.)
(I) 3-[1-(4-Sulfamoylphenyl)-5-p-tolyl-1H-pyrazol-3-yl]propanoic acid top
Crystal data top
C19H19N3O4SZ = 2
Mr = 385.43F(000) = 404
Triclinic, P1Dx = 1.428 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.8382 (14) ÅCell parameters from 3944 reflections
b = 12.582 (3) Åθ = 2.8–26.0°
c = 13.279 (3) ŵ = 0.21 mm1
α = 106.928 (3)°T = 115 K
β = 97.777 (3)°Prism, colourless
γ = 101.077 (3)°0.52 × 0.25 × 0.15 mm
V = 896.5 (4) Å3
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3300 independent reflections
Radiation source: sealed tube2824 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
thin–slice ω scansθmax = 25.5°, θmin = 1.6°
Absorption correction: numerical
(SADABS Version 2008/1; Sheldrick, 1996)
h = 77
Tmin = 0.898, Tmax = 0.989k = 1515
6690 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: difference Fourier map
wR(F2) = 0.109All H-atom parameters refined
S = 1.06 w = 1/[σ2(Fo2) + (0.0648P)2 + 0.3322P]
where P = (Fo2 + 2Fc2)/3
3300 reflections(Δ/σ)max < 0.001
320 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C19H19N3O4Sγ = 101.077 (3)°
Mr = 385.43V = 896.5 (4) Å3
Triclinic, P1Z = 2
a = 5.8382 (14) ÅMo Kα radiation
b = 12.582 (3) ŵ = 0.21 mm1
c = 13.279 (3) ÅT = 115 K
α = 106.928 (3)°0.52 × 0.25 × 0.15 mm
β = 97.777 (3)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3300 independent reflections
Absorption correction: numerical
(SADABS Version 2008/1; Sheldrick, 1996)
2824 reflections with I > 2σ(I)
Tmin = 0.898, Tmax = 0.989Rint = 0.025
6690 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.109All H-atom parameters refined
S = 1.06Δρmax = 0.43 e Å3
3300 reflectionsΔρmin = 0.41 e Å3
320 parameters
Special details top

Experimental. 4,6-dioxo-6-p-tolylhexanoic acid

1.1 M of NaHMDS solution (56.8 ml, 62.5 mmol) and THF (100 ml) were added to a nitrogen-filled dry round-bottomed flask containing a stirrer and addition funnel maintained at 253 K. 4'-Methylacetophenone (8.386 g,) in THF (50 ml) was added to this solution slowly over 5 min and the solution was stirred at 253 K for 30 min. Succinic anhydride (2.5 g, 25 mmol) in THF (100 ml) was added to this solution. It was stirred for 1 h at 253 K, allowed to warm to room temperature and stirred overnight. At this time, 3 N aqueous HCl (50 ml) and Et2O (250 ml) were added. The layers were separated, and the Et2O/THF layer was extracted with 1 N NaOH (2 × 50 ml). The base extracts were combined and acidified to the cloudpoint (approximately pH 2) with 3 N aqueous HCl. The precipitate which formed was collected by filtration and dried under high vacuum. The residue was recrystallized from EtOAc. 4,6-Dioxo-6-p-tolylhexanoic acid, C13H14O4, white solid (yield 1.93 g, 33%). Mass calculated: 234.25; mass observed: LCQ-ESI MS 235.0.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.48826 (7)0.25029 (4)0.42341 (3)0.01551 (15)
O10.6249 (2)0.15155 (11)0.33376 (10)0.0221 (3)
O20.6121 (2)0.32605 (11)0.48363 (10)0.0209 (3)
O30.8431 (2)1.01701 (11)0.38423 (11)0.0269 (3)
O41.1563 (2)0.94718 (12)0.34640 (12)0.0247 (3)
H4O1.222 (5)1.021 (3)0.354 (2)0.054 (8)*
N10.2549 (3)0.63100 (12)0.27877 (12)0.0171 (3)
N20.1831 (3)0.51422 (12)0.23132 (12)0.0164 (3)
N30.3459 (3)0.20193 (15)0.50397 (13)0.0191 (4)
H3A0.286 (4)0.250 (2)0.563 (2)0.028 (6)*
H3B0.278 (4)0.150 (2)0.475 (2)0.040 (7)*
C10.2966 (3)0.47763 (16)0.14826 (14)0.0175 (4)
C20.4473 (3)0.57394 (16)0.14405 (15)0.0195 (4)
H20.554 (4)0.5750 (17)0.0932 (17)0.021 (5)*
C30.4159 (3)0.66676 (15)0.22625 (14)0.0171 (4)
C40.0243 (3)0.45057 (15)0.27776 (13)0.0156 (4)
C50.0334 (3)0.33912 (16)0.27229 (14)0.0175 (4)
H50.149 (3)0.3030 (16)0.2403 (16)0.013 (5)*
C60.1226 (3)0.27852 (16)0.31774 (14)0.0175 (4)
H60.112 (3)0.2031 (18)0.3141 (16)0.018 (5)*
C70.2840 (3)0.33043 (15)0.36936 (14)0.0154 (4)
C80.2889 (3)0.44215 (15)0.37791 (14)0.0180 (4)
H80.402 (4)0.4767 (17)0.4124 (17)0.019 (5)*
C90.1349 (3)0.50225 (16)0.33127 (14)0.0180 (4)
H90.143 (3)0.5755 (18)0.3359 (16)0.018 (5)*
C100.2531 (3)0.35711 (15)0.07841 (14)0.0168 (4)
C110.4297 (3)0.29761 (17)0.08549 (15)0.0214 (4)
H110.578 (4)0.334 (2)0.1343 (19)0.032 (6)*
C120.3909 (4)0.18445 (17)0.02208 (15)0.0225 (4)
H120.516 (4)0.142 (2)0.029 (2)0.041 (7)*
C130.1770 (3)0.12691 (16)0.05111 (14)0.0203 (4)
C140.0036 (4)0.18796 (17)0.06031 (15)0.0227 (4)
H140.143 (4)0.151 (2)0.114 (2)0.034 (6)*
C150.0396 (3)0.30120 (17)0.00393 (15)0.0211 (4)
H150.085 (4)0.3428 (19)0.0031 (18)0.027 (6)*
C160.5447 (3)0.79016 (16)0.25976 (16)0.0187 (4)
H16A0.452 (4)0.8383 (19)0.3009 (18)0.028 (6)*
H16B0.557 (4)0.8101 (18)0.1985 (18)0.024 (6)*
C170.7966 (3)0.81288 (16)0.32558 (16)0.0198 (4)
H17A0.890 (4)0.7658 (18)0.2871 (17)0.020 (5)*
H17B0.792 (4)0.7959 (18)0.3901 (19)0.026 (6)*
C180.9303 (3)0.93609 (15)0.35570 (14)0.0177 (4)
C190.1375 (4)0.00314 (17)0.11757 (17)0.0266 (5)
H19A0.155 (4)0.042 (2)0.071 (2)0.035 (6)*
H19B0.250 (4)0.008 (2)0.165 (2)0.038 (7)*
H19C0.017 (5)0.027 (2)0.164 (2)0.054 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0154 (2)0.0149 (2)0.0153 (2)0.00330 (17)0.00347 (17)0.00365 (17)
O10.0210 (7)0.0199 (7)0.0194 (7)0.0009 (5)0.0010 (5)0.0025 (5)
O20.0218 (7)0.0202 (7)0.0233 (7)0.0080 (5)0.0086 (6)0.0075 (6)
O30.0286 (8)0.0184 (7)0.0346 (8)0.0097 (6)0.0118 (6)0.0052 (6)
O40.0177 (7)0.0168 (7)0.0365 (8)0.0029 (5)0.0059 (6)0.0049 (6)
N10.0188 (8)0.0136 (7)0.0164 (8)0.0026 (6)0.0016 (6)0.0028 (6)
N20.0171 (8)0.0154 (7)0.0143 (7)0.0024 (6)0.0027 (6)0.0026 (6)
N30.0241 (9)0.0180 (8)0.0150 (8)0.0079 (7)0.0045 (7)0.0031 (7)
C10.0168 (9)0.0224 (10)0.0122 (8)0.0060 (7)0.0021 (7)0.0038 (7)
C20.0207 (10)0.0215 (9)0.0151 (9)0.0042 (7)0.0050 (8)0.0040 (7)
C30.0170 (9)0.0191 (9)0.0155 (9)0.0053 (7)0.0014 (7)0.0064 (7)
C40.0133 (9)0.0187 (9)0.0113 (8)0.0007 (7)0.0007 (7)0.0032 (7)
C50.0173 (9)0.0198 (9)0.0154 (9)0.0072 (7)0.0035 (7)0.0040 (7)
C60.0195 (9)0.0157 (9)0.0169 (9)0.0056 (7)0.0026 (7)0.0044 (7)
C70.0142 (9)0.0179 (9)0.0122 (8)0.0015 (7)0.0014 (7)0.0041 (7)
C80.0181 (10)0.0199 (9)0.0149 (9)0.0067 (7)0.0046 (7)0.0019 (7)
C90.0210 (10)0.0137 (9)0.0177 (9)0.0052 (7)0.0027 (7)0.0027 (7)
C100.0183 (9)0.0192 (9)0.0117 (9)0.0030 (7)0.0048 (7)0.0033 (7)
C110.0188 (10)0.0258 (10)0.0159 (9)0.0041 (8)0.0020 (8)0.0029 (8)
C120.0248 (11)0.0238 (10)0.0197 (10)0.0108 (8)0.0052 (8)0.0049 (8)
C130.0276 (10)0.0192 (9)0.0137 (9)0.0033 (8)0.0071 (8)0.0050 (7)
C140.0206 (10)0.0242 (10)0.0173 (9)0.0008 (8)0.0004 (8)0.0024 (8)
C150.0209 (10)0.0234 (10)0.0186 (9)0.0071 (8)0.0027 (8)0.0058 (8)
C160.0201 (10)0.0184 (9)0.0195 (10)0.0046 (7)0.0062 (8)0.0078 (8)
C170.0184 (10)0.0189 (10)0.0226 (10)0.0054 (8)0.0050 (8)0.0069 (8)
C180.0194 (9)0.0195 (9)0.0139 (9)0.0054 (7)0.0029 (7)0.0047 (7)
C190.0353 (13)0.0208 (10)0.0206 (10)0.0052 (9)0.0046 (9)0.0038 (8)
Geometric parameters (Å, º) top
S1—O11.4485 (13)C7—C81.383 (3)
S1—O21.4313 (13)C8—H80.95 (2)
S1—N31.5931 (17)C8—C91.388 (3)
S1—C71.7735 (18)C9—H90.92 (2)
O3—C181.211 (2)C10—C111.394 (3)
O4—H4O0.90 (3)C10—C151.397 (3)
O4—C181.326 (2)C11—H110.95 (2)
N1—N21.373 (2)C11—C121.383 (3)
N1—C31.330 (2)C12—H120.99 (3)
N2—C11.374 (2)C12—C131.394 (3)
N2—C41.428 (2)C13—C141.396 (3)
N3—H3A0.82 (3)C13—C191.505 (3)
N3—H3B0.85 (3)C14—H140.97 (2)
C1—C21.374 (3)C14—C151.389 (3)
C1—C101.481 (2)C15—H150.98 (2)
C2—H20.98 (2)C16—H16A0.98 (2)
C2—C31.408 (2)C16—H16B0.93 (2)
C3—C161.494 (3)C16—C171.534 (3)
C4—C51.394 (3)C17—H17A0.97 (2)
C4—C91.390 (3)C17—H17B0.94 (2)
C5—H50.96 (2)C17—C181.504 (3)
C5—C61.387 (3)C19—H19A0.96 (3)
C6—H60.95 (2)C19—H19B0.98 (3)
C6—C71.391 (3)C19—H19C0.96 (3)
O1—S1—O2118.72 (8)C8—C9—H9118.3 (13)
O1—S1—N3106.37 (9)C1—C10—C11119.66 (16)
O1—S1—C7105.96 (8)C1—C10—C15121.67 (17)
O2—S1—N3107.94 (9)C11—C10—C15118.66 (17)
O2—S1—C7108.10 (8)C10—C11—H11120.2 (14)
N3—S1—C7109.54 (9)C10—C11—C12120.48 (18)
H4O—O4—C18109.3 (18)H11—C11—C12119.3 (14)
N2—N1—C3105.55 (14)C11—C12—H12120.0 (15)
N1—N2—C1111.17 (14)C11—C12—C13121.46 (18)
N1—N2—C4118.11 (14)H12—C12—C13118.6 (15)
C1—N2—C4130.52 (15)C12—C13—C14117.82 (17)
S1—N3—H3A113.0 (16)C12—C13—C19120.40 (18)
S1—N3—H3B116.1 (17)C14—C13—C19121.78 (18)
H3A—N3—H3B121 (2)C13—C14—H14119.1 (14)
N2—C1—C2106.25 (16)C13—C14—C15121.17 (18)
N2—C1—C10124.67 (16)H14—C14—C15119.7 (14)
C2—C1—C10129.06 (17)C10—C15—C14120.36 (18)
C1—C2—H2125.3 (12)C10—C15—H15119.4 (13)
C1—C2—C3106.23 (17)C14—C15—H15120.2 (13)
H2—C2—C3128.5 (12)C3—C16—H16A110.0 (13)
N1—C3—C2110.79 (16)C3—C16—H16B108.4 (13)
N1—C3—C16120.90 (16)C3—C16—C17111.73 (15)
C2—C3—C16128.24 (17)H16A—C16—H16B107.5 (18)
N2—C4—C5120.44 (16)H16A—C16—C17110.5 (13)
N2—C4—C9119.17 (16)H16B—C16—C17108.6 (13)
C5—C4—C9120.37 (16)C16—C17—H17A112.0 (12)
C4—C5—H5122.3 (12)C16—C17—H17B111.4 (14)
C4—C5—C6119.62 (17)C16—C17—C18111.88 (15)
H5—C5—C6118.0 (12)H17A—C17—H17B106.2 (18)
C5—C6—H6118.3 (12)H17A—C17—C18107.9 (12)
C5—C6—C7119.45 (17)H17B—C17—C18107.2 (13)
H6—C6—C7122.2 (12)O3—C18—O4123.06 (17)
S1—C7—C6118.87 (14)O3—C18—C17124.42 (17)
S1—C7—C8119.94 (14)O4—C18—C17112.52 (15)
C6—C7—C8121.18 (16)C13—C19—H19A110.1 (14)
C7—C8—H8120.7 (12)C13—C19—H19B111.8 (14)
C7—C8—C9119.33 (17)C13—C19—H19C112.4 (16)
H8—C8—C9119.9 (12)H19A—C19—H19B108 (2)
C4—C9—C8120.00 (17)H19A—C19—H19C109 (2)
C4—C9—H9121.7 (13)H19B—C19—H19C105 (2)
C3—N1—N2—C10.96 (19)N3—S1—C7—C8125.47 (15)
C3—N1—N2—C4174.50 (15)S1—C7—C8—C9177.27 (13)
N1—N2—C1—C20.9 (2)C6—C7—C8—C92.0 (3)
N1—N2—C1—C10177.90 (16)C7—C8—C9—C40.8 (3)
C4—N2—C1—C2173.84 (17)N2—C4—C9—C8179.32 (15)
C4—N2—C1—C107.4 (3)C5—C4—C9—C81.2 (3)
N2—C1—C2—C30.5 (2)N2—C1—C10—C11110.9 (2)
C10—C1—C2—C3178.26 (18)N2—C1—C10—C1569.9 (2)
N2—N1—C3—C20.6 (2)C2—C1—C10—C1170.6 (3)
N2—N1—C3—C16176.73 (15)C2—C1—C10—C15108.6 (2)
C1—C2—C3—N10.1 (2)C1—C10—C11—C12179.00 (17)
C1—C2—C3—C16177.01 (18)C15—C10—C11—C121.8 (3)
N1—N2—C4—C5148.48 (16)C10—C11—C12—C130.6 (3)
N1—N2—C4—C929.7 (2)C11—C12—C13—C141.4 (3)
C1—N2—C4—C525.9 (3)C11—C12—C13—C19178.80 (18)
C1—N2—C4—C9155.91 (18)C12—C13—C14—C152.2 (3)
N2—C4—C5—C6179.90 (15)C19—C13—C14—C15177.99 (18)
C9—C4—C5—C62.0 (3)C13—C14—C15—C101.0 (3)
C4—C5—C6—C70.8 (3)C1—C10—C15—C14179.82 (17)
C5—C6—C7—S1178.08 (13)C11—C10—C15—C141.0 (3)
C5—C6—C7—C81.2 (3)N1—C3—C16—C17100.8 (2)
O1—S1—C7—C659.09 (16)C2—C3—C16—C1776.0 (2)
O1—S1—C7—C8120.17 (15)C3—C16—C17—C18177.72 (16)
O2—S1—C7—C6172.65 (13)C16—C17—C18—O340.4 (3)
O2—S1—C7—C88.09 (17)C16—C17—C18—O4138.85 (16)
N3—S1—C7—C655.27 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4O···O1i0.90 (3)1.83 (3)2.705 (2)164 (3)
N3—H3A···N1ii0.82 (3)2.16 (3)2.941 (2)160 (2)
N3—H3B···O3iii0.85 (3)2.07 (3)2.910 (2)170 (2)
C8—H8···O2iv0.95 (2)2.44 (2)3.167 (2)132.6 (16)
C16—H16A···O4v0.98 (2)2.44 (2)3.387 (2)162.1 (18)
Symmetry codes: (i) x+2, y+1, z; (ii) x, y+1, z+1; (iii) x1, y1, z; (iv) x1, y+1, z+1; (v) x1, y, z.
(II) Bis{3-[5-(4-bromophenyl)-1-(4-sulfamoylphenyl)-1H-pyrazol-3-yl]propanoic acid} dichloromethane 0.72-solvate diethyl ether solvate monohydrate top
Crystal data top
2C18H16BrN3O4S·0.72CH2Cl2·C4H10O·H2OF(000) = 4307
Mr = 1054.11Dx = 1.508 Mg m3
Dm = 0 Mg m3
Dm measured by not measured
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 8341 reflections
a = 49.255 (15) Åθ = 2.2–25.5°
b = 11.702 (3) ŵ = 1.98 mm1
c = 16.181 (5) ÅT = 115 K
β = 95.567 (4)°Plate, colourless
V = 9283 (5) Å30.51 × 0.31 × 0.05 mm
Z = 8
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
8605 independent reflections
Radiation source: sealed tube6781 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
thin–slice ω scansθmax = 25.5°, θmin = 1.8°
Absorption correction: numerical
(SADABS, Version 2008/1; Sheldrick, 1996)
h = 5159
Tmin = 0.432, Tmax = 0.908k = 1014
23405 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: difference Fourier map
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0604P)2 + 10.1055P]
where P = (Fo2 + 2Fc2)/3
8605 reflections(Δ/σ)max = 0.002
595 parametersΔρmax = 0.84 e Å3
2 restraintsΔρmin = 0.43 e Å3
Crystal data top
2C18H16BrN3O4S·0.72CH2Cl2·C4H10O·H2OV = 9283 (5) Å3
Mr = 1054.11Z = 8
Monoclinic, C2/cMo Kα radiation
a = 49.255 (15) ŵ = 1.98 mm1
b = 11.702 (3) ÅT = 115 K
c = 16.181 (5) Å0.51 × 0.31 × 0.05 mm
β = 95.567 (4)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
8605 independent reflections
Absorption correction: numerical
(SADABS, Version 2008/1; Sheldrick, 1996)
6781 reflections with I > 2σ(I)
Tmin = 0.432, Tmax = 0.908Rint = 0.033
23405 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0372 restraints
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0604P)2 + 10.1055P]
where P = (Fo2 + 2Fc2)/3
8605 reflectionsΔρmax = 0.84 e Å3
595 parametersΔρmin = 0.43 e Å3
Special details top

Experimental. 6-(4-bromophenyl)-4, 6-dioxohexanoic acid

1.1 M of NaHMDS solution (56.8 ml, 62.5 mmol) and THF (100 ml) were added to a nitrogen-filled dry round-bottomed flask containing a stirrer and addition funnel, and maintained at 253 K. 4'-Bromoacetophenone (12.44 g, 62.5 mmol) in THF (50 ml) was added to this solution slowly over 5 min and the solution was stirred at 253 K for 30 min. Succinic anhydride (2.5 g, 25 mmol) in THF (100 ml) was added to this solution. It was stirred for 1 h at 253 K, allowed to warm to room temperature and stirred overnight. At this time, 3 N aqueous HCl 50 ml and Et2O 250 ml was added. The layers were separated, and the Et2O/THF layer was extracted with 1 N NaOH (2 × 50 ml). The base extracts were combined and acidified to the cloudpoint (approximately pH 2) with 3 N aqueous HCl. The precipitate which formed was collected by filtration and dried under high vacuum. The residue was recrystallized from EtOAc. 6-(4-bromophenyl)-4,6-dioxohexanoic acid, C12H11BrO4, white solid (yield 3.63 g, 48.5%). Mass calculated: 299.12; mass observed: LCQ-ESI MS 298.8.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.053486 (6)0.58331 (3)0.22339 (2)0.03752 (11)
S10.171923 (13)1.14155 (6)0.29404 (4)0.01934 (15)
O10.15423 (4)1.19084 (17)0.34983 (12)0.0281 (5)
O20.16411 (4)1.15060 (17)0.20642 (12)0.0257 (4)
O30.28741 (4)0.31142 (16)0.49517 (11)0.0214 (4)
O40.29017 (4)0.26197 (17)0.36315 (11)0.0229 (4)
H4O0.3038 (4)0.228 (2)0.3827 (18)0.028*
N10.21614 (4)0.61947 (18)0.40372 (13)0.0166 (5)
N20.19044 (4)0.64946 (18)0.37132 (13)0.0161 (5)
N30.20128 (5)1.2017 (2)0.31365 (16)0.0244 (5)
H3A0.2139 (7)1.169 (3)0.292 (2)0.029*
H3B0.2063 (6)1.204 (3)0.367 (2)0.029*
C10.17324 (5)0.5572 (2)0.36694 (15)0.0160 (5)
C20.18858 (5)0.4656 (2)0.39690 (16)0.0180 (6)
H20.18250.38900.40170.022*
C30.21497 (5)0.5077 (2)0.41900 (15)0.0166 (5)
C40.18517 (5)0.7672 (2)0.35227 (15)0.0152 (5)
C50.17103 (5)0.7975 (2)0.27739 (15)0.0180 (6)
H50.16440.74040.23890.022*
C60.16672 (5)0.9125 (2)0.25928 (16)0.0192 (6)
H60.15720.93500.20800.023*
C70.17644 (5)0.9940 (2)0.31673 (15)0.0162 (5)
C80.19055 (5)0.9633 (2)0.39217 (16)0.0193 (6)
H80.19701.02040.43090.023*
C90.19502 (5)0.8490 (2)0.41004 (16)0.0187 (6)
H90.20470.82650.46110.022*
C100.14423 (5)0.5628 (2)0.33579 (15)0.0169 (5)
C110.13328 (6)0.4779 (2)0.28209 (16)0.0219 (6)
H110.14450.41650.26760.026*
C120.10613 (6)0.4818 (3)0.24947 (17)0.0256 (6)
H120.09880.42410.21250.031*
C130.09004 (5)0.5712 (3)0.27178 (16)0.0227 (6)
C140.10003 (5)0.6541 (2)0.32799 (17)0.0217 (6)
H140.08840.71320.34430.026*
C150.12708 (5)0.6495 (2)0.35991 (16)0.0191 (6)
H150.13410.70570.39860.023*
C160.24003 (5)0.4457 (2)0.45524 (16)0.0187 (6)
H16A0.23460.38380.49200.022*
H16B0.25190.49950.48950.022*
C170.25610 (5)0.3946 (2)0.38805 (16)0.0191 (6)
H17A0.24350.34940.34930.023*
H17B0.26350.45750.35600.023*
C180.27922 (5)0.3193 (2)0.42215 (16)0.0164 (5)
Br510.492625 (6)1.03361 (3)0.61729 (2)0.04198 (12)
S510.399305 (14)1.63701 (6)0.43441 (4)0.01941 (15)
O510.38078 (4)1.70006 (16)0.47994 (12)0.0281 (5)
O520.42773 (4)1.63621 (17)0.46228 (12)0.0285 (5)
O530.25523 (4)0.86444 (18)0.33345 (13)0.0316 (5)
O540.26711 (4)0.71210 (17)0.41108 (12)0.0248 (4)
H54O0.2518 (3)0.686 (3)0.4019 (19)0.030*
N510.33516 (4)1.13208 (19)0.40102 (13)0.0169 (5)
N520.36116 (4)1.15427 (18)0.43420 (13)0.0159 (5)
N530.39626 (5)1.6870 (2)0.34092 (14)0.0217 (5)
H53A0.3798 (7)1.688 (3)0.3222 (19)0.026*
H53B0.4078 (7)1.662 (3)0.315 (2)0.026*
C510.37494 (5)1.0551 (2)0.45528 (15)0.0169 (5)
C520.35705 (5)0.9671 (2)0.43323 (16)0.0183 (6)
H520.36050.88750.43930.022*
C530.33273 (5)1.0185 (2)0.40016 (15)0.0160 (5)
C540.37061 (5)1.2695 (2)0.43335 (15)0.0153 (5)
C550.39497 (5)1.2957 (2)0.40020 (16)0.0185 (6)
H550.40541.23710.37770.022*
C560.40379 (5)1.4081 (2)0.40053 (16)0.0191 (6)
H560.42061.42710.37960.023*
C570.38785 (5)1.4933 (2)0.43187 (15)0.0176 (6)
C580.36334 (5)1.4673 (2)0.46264 (16)0.0189 (6)
H580.35251.52630.48270.023*
C590.35481 (5)1.3545 (2)0.46392 (15)0.0173 (5)
H590.33821.33550.48570.021*
C600.40282 (5)1.0513 (2)0.49616 (16)0.0184 (6)
C610.41998 (5)0.9615 (2)0.47758 (17)0.0213 (6)
H610.41340.90440.43910.026*
C620.44630 (6)0.9549 (3)0.51439 (18)0.0270 (7)
H620.45780.89320.50190.032*
C630.45587 (5)1.0388 (3)0.56956 (18)0.0268 (7)
C640.43928 (6)1.1266 (3)0.59094 (18)0.0290 (7)
H640.44601.18250.63020.035*
C650.41279 (6)1.1325 (2)0.55485 (17)0.0233 (6)
H650.40121.19220.57000.028*
C660.30632 (5)0.9671 (2)0.36527 (17)0.0200 (6)
H66A0.30590.96490.30400.024*
H66B0.29121.01720.37930.024*
C670.30137 (5)0.8481 (2)0.39636 (16)0.0171 (5)
H67A0.31360.79400.37100.020*
H67B0.30590.84590.45730.020*
C680.27235 (5)0.8103 (2)0.37624 (15)0.0174 (6)
O700.06540 (4)1.0870 (2)0.26448 (13)0.0363 (5)
C730.10180 (7)0.9800 (3)0.3327 (2)0.0388 (8)
H73A0.10870.96270.27940.058*
H73B0.10640.91720.37170.058*
H73C0.11011.05080.35530.058*
C700.03701 (7)1.1042 (4)0.2460 (3)0.0520 (10)
H70A0.02831.11400.29820.062*
H70B0.02881.03650.21660.062*
C720.07185 (7)0.9939 (3)0.3204 (2)0.0425 (9)
H72A0.06330.92270.29720.051*
H72B0.06461.00940.37430.051*
C710.03203 (7)1.2075 (3)0.1930 (2)0.0465 (9)
H71A0.04081.27380.22140.070*
H71B0.01241.22110.18290.070*
H71C0.03971.19570.14000.070*
Cl10.02610 (3)0.88634 (17)0.49011 (12)0.0792 (7)0.722 (3)
Cl20.00563 (4)0.81360 (17)0.35698 (10)0.0813 (7)0.722 (3)
C740.00165 (12)0.8135 (6)0.4615 (4)0.0620 (16)0.722 (3)
H74A0.00040.73320.48000.074*0.722 (3)
H74B0.01830.84680.49160.074*0.722 (3)
O70.24801 (5)1.0920 (2)0.26813 (14)0.0340 (5)
H7A0.2520 (7)1.026 (3)0.289 (2)0.041*
H7B0.2636 (8)1.145 (3)0.277 (2)0.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01759 (15)0.0565 (2)0.03656 (18)0.00299 (14)0.00699 (12)0.00352 (15)
S10.0219 (3)0.0143 (3)0.0214 (3)0.0000 (3)0.0001 (3)0.0046 (3)
O10.0330 (11)0.0166 (11)0.0357 (11)0.0069 (9)0.0083 (9)0.0041 (9)
O20.0294 (11)0.0218 (11)0.0245 (10)0.0036 (9)0.0042 (8)0.0076 (8)
O30.0211 (10)0.0209 (11)0.0212 (10)0.0023 (8)0.0028 (8)0.0014 (8)
O40.0195 (10)0.0265 (12)0.0224 (10)0.0107 (8)0.0001 (8)0.0020 (8)
N10.0138 (10)0.0160 (12)0.0197 (11)0.0014 (9)0.0001 (8)0.0011 (9)
N20.0139 (10)0.0138 (12)0.0203 (11)0.0009 (9)0.0000 (8)0.0005 (9)
N30.0273 (13)0.0195 (14)0.0259 (13)0.0038 (10)0.0007 (11)0.0004 (11)
C10.0164 (13)0.0148 (14)0.0171 (12)0.0004 (10)0.0039 (10)0.0046 (10)
C20.0197 (13)0.0138 (14)0.0211 (13)0.0001 (11)0.0045 (10)0.0030 (11)
C30.0176 (13)0.0142 (14)0.0186 (12)0.0011 (10)0.0045 (10)0.0009 (10)
C40.0137 (12)0.0126 (14)0.0197 (13)0.0014 (10)0.0034 (10)0.0013 (10)
C50.0213 (13)0.0177 (15)0.0151 (12)0.0030 (11)0.0026 (10)0.0027 (11)
C60.0208 (13)0.0212 (15)0.0150 (12)0.0015 (11)0.0014 (10)0.0023 (11)
C70.0162 (13)0.0134 (14)0.0193 (13)0.0009 (10)0.0029 (10)0.0040 (10)
C80.0207 (13)0.0161 (15)0.0204 (13)0.0034 (11)0.0015 (11)0.0005 (11)
C90.0193 (13)0.0173 (15)0.0186 (13)0.0001 (11)0.0024 (10)0.0024 (11)
C100.0176 (13)0.0162 (14)0.0169 (12)0.0023 (11)0.0026 (10)0.0007 (11)
C110.0238 (14)0.0209 (15)0.0215 (13)0.0011 (12)0.0048 (11)0.0040 (12)
C120.0252 (15)0.0282 (17)0.0232 (14)0.0073 (13)0.0007 (12)0.0051 (12)
C130.0136 (13)0.0334 (18)0.0203 (13)0.0057 (12)0.0018 (10)0.0066 (12)
C140.0183 (13)0.0212 (16)0.0259 (14)0.0011 (11)0.0036 (11)0.0034 (12)
C150.0184 (13)0.0208 (15)0.0186 (13)0.0014 (11)0.0035 (10)0.0016 (11)
C160.0189 (13)0.0157 (14)0.0216 (13)0.0022 (11)0.0028 (11)0.0021 (11)
C170.0174 (13)0.0181 (15)0.0217 (13)0.0035 (11)0.0015 (10)0.0002 (11)
C180.0144 (12)0.0117 (14)0.0229 (14)0.0036 (10)0.0014 (10)0.0001 (11)
Br510.01818 (16)0.0604 (3)0.0445 (2)0.00678 (14)0.01157 (13)0.01223 (17)
S510.0265 (3)0.0133 (3)0.0180 (3)0.0033 (3)0.0002 (3)0.0009 (3)
O510.0447 (12)0.0140 (10)0.0266 (10)0.0014 (9)0.0089 (9)0.0037 (8)
O520.0301 (11)0.0232 (11)0.0301 (11)0.0073 (9)0.0079 (9)0.0023 (9)
O530.0212 (10)0.0305 (12)0.0412 (12)0.0035 (9)0.0068 (9)0.0151 (10)
O540.0176 (9)0.0208 (11)0.0343 (11)0.0077 (8)0.0059 (8)0.0063 (9)
N510.0152 (11)0.0164 (12)0.0188 (10)0.0017 (9)0.0012 (8)0.0021 (9)
N520.0139 (10)0.0143 (12)0.0192 (11)0.0000 (9)0.0012 (8)0.0008 (9)
N530.0228 (12)0.0216 (13)0.0207 (12)0.0000 (11)0.0015 (10)0.0026 (10)
C510.0184 (13)0.0152 (14)0.0171 (12)0.0030 (11)0.0014 (10)0.0026 (10)
C520.0174 (13)0.0147 (14)0.0228 (13)0.0014 (11)0.0014 (10)0.0039 (11)
C530.0175 (13)0.0135 (14)0.0171 (12)0.0017 (10)0.0028 (10)0.0027 (10)
C540.0179 (12)0.0124 (13)0.0146 (12)0.0008 (10)0.0032 (10)0.0029 (10)
C550.0186 (13)0.0159 (15)0.0208 (13)0.0021 (11)0.0022 (10)0.0004 (11)
C560.0196 (13)0.0167 (15)0.0217 (13)0.0008 (11)0.0050 (11)0.0014 (11)
C570.0225 (14)0.0154 (14)0.0140 (12)0.0021 (11)0.0025 (10)0.0014 (10)
C580.0220 (14)0.0162 (15)0.0182 (13)0.0037 (11)0.0001 (10)0.0009 (11)
C590.0178 (13)0.0187 (15)0.0157 (12)0.0003 (11)0.0023 (10)0.0009 (11)
C600.0166 (13)0.0172 (14)0.0210 (13)0.0025 (11)0.0004 (10)0.0053 (11)
C610.0204 (14)0.0174 (15)0.0256 (14)0.0006 (11)0.0005 (11)0.0032 (11)
C620.0186 (14)0.0281 (17)0.0340 (16)0.0035 (12)0.0001 (12)0.0074 (13)
C630.0137 (13)0.0365 (18)0.0283 (15)0.0053 (12)0.0070 (11)0.0131 (13)
C640.0298 (16)0.0270 (17)0.0277 (15)0.0061 (13)0.0093 (12)0.0034 (13)
C650.0262 (15)0.0184 (15)0.0243 (14)0.0011 (12)0.0036 (11)0.0020 (12)
C660.0174 (13)0.0193 (15)0.0229 (13)0.0002 (11)0.0004 (11)0.0037 (11)
C670.0160 (13)0.0166 (14)0.0185 (12)0.0001 (11)0.0011 (10)0.0015 (11)
C680.0180 (13)0.0179 (15)0.0159 (12)0.0031 (11)0.0006 (10)0.0033 (11)
O700.0277 (11)0.0464 (15)0.0352 (12)0.0004 (10)0.0051 (9)0.0110 (11)
C730.044 (2)0.042 (2)0.0291 (16)0.0014 (16)0.0039 (14)0.0079 (15)
C700.0313 (18)0.055 (3)0.071 (3)0.0071 (17)0.0131 (18)0.017 (2)
C720.042 (2)0.040 (2)0.047 (2)0.0008 (16)0.0131 (16)0.0127 (16)
C710.0365 (19)0.061 (3)0.0431 (19)0.0124 (17)0.0086 (16)0.0072 (18)
Cl10.0474 (9)0.0938 (14)0.0966 (13)0.0122 (8)0.0075 (8)0.0056 (10)
Cl20.0996 (14)0.0839 (14)0.0610 (10)0.0189 (10)0.0115 (9)0.0005 (9)
C740.055 (4)0.072 (4)0.058 (3)0.006 (3)0.001 (3)0.009 (3)
O70.0326 (12)0.0317 (14)0.0369 (12)0.0045 (11)0.0013 (10)0.0037 (10)
Geometric parameters (Å, º) top
Br1—C131.898 (3)N52—C511.371 (3)
S1—O11.435 (2)N52—C541.427 (3)
S1—O21.436 (2)N53—H53A0.84 (3)
S1—N31.612 (3)N53—H53B0.79 (3)
S1—C71.775 (3)C51—C521.380 (4)
O3—C181.214 (3)C51—C601.466 (4)
O4—H4O0.816 (10)C52—H520.950
O4—C181.324 (3)C52—C531.400 (4)
N1—N21.368 (3)C53—C661.494 (4)
N1—C31.333 (3)C54—C551.395 (4)
N2—C11.370 (3)C54—C591.384 (4)
N2—C41.430 (3)C55—H550.950
N3—H3A0.84 (3)C55—C561.386 (4)
N3—H3B0.88 (3)C56—H560.950
C1—C21.372 (4)C56—C571.394 (4)
C1—C101.470 (4)C57—C581.384 (4)
C2—H20.950C58—H580.950
C2—C31.403 (4)C58—C591.387 (4)
C3—C161.501 (4)C59—H590.950
C4—C51.384 (4)C60—C611.399 (4)
C4—C91.392 (4)C60—C651.398 (4)
C5—H50.950C61—H610.950
C5—C61.390 (4)C61—C621.375 (4)
C6—H60.950C62—H620.950
C6—C71.384 (4)C62—C631.379 (4)
C7—C81.392 (4)C63—C641.377 (4)
C8—H80.950C64—H640.950
C8—C91.383 (4)C64—C651.378 (4)
C9—H90.950C65—H650.950
C10—C111.393 (4)C66—H66A0.990
C10—C151.400 (4)C66—H66B0.990
C11—H110.950C66—C671.509 (4)
C11—C121.390 (4)C67—H67A0.990
C12—H120.950C67—H67B0.990
C12—C131.381 (4)C67—C681.501 (3)
C13—C141.387 (4)O70—C701.416 (4)
C14—H140.950O70—C721.432 (4)
C14—C151.383 (4)C73—H73A0.980
C15—H150.950C73—H73B0.980
C16—H16A0.990C73—H73C0.980
C16—H16B0.990C73—C721.478 (5)
C16—C171.527 (4)C70—H70A0.990
C17—H17A0.990C70—H70B0.990
C17—H17B0.990C70—C711.489 (5)
C17—C181.502 (4)C72—H72A0.990
Br51—C631.899 (3)C72—H72B0.990
S51—O511.432 (2)C71—H71A0.980
S51—O521.429 (2)C71—H71B0.980
S51—N531.615 (2)C71—H71C0.980
S51—C571.773 (3)Cl1—C741.712 (6)
O53—C681.216 (3)Cl2—C741.722 (6)
O54—H54O0.814 (10)C74—H74A0.990
O54—C681.317 (3)C74—H74B0.990
N51—N521.365 (3)O7—H7A0.86 (4)
N51—C531.334 (3)O7—H7B0.98 (4)
O1—S1—O2118.06 (12)C52—C51—C60129.8 (2)
O1—S1—N3106.76 (14)C51—C52—H52126.9
O1—S1—C7109.42 (12)C51—C52—C53106.2 (2)
O2—S1—N3108.15 (13)H52—C52—C53126.9
O2—S1—C7106.98 (12)N51—C53—C52110.6 (2)
N3—S1—C7106.99 (13)N51—C53—C66118.6 (2)
H4O—O4—C18110 (2)C52—C53—C66130.8 (2)
N2—N1—C3105.5 (2)N52—C54—C55120.3 (2)
N1—N2—C1111.2 (2)N52—C54—C59118.7 (2)
N1—N2—C4118.1 (2)C55—C54—C59121.0 (2)
C1—N2—C4130.5 (2)C54—C55—H55120.4
S1—N3—H3A114 (2)C54—C55—C56119.2 (2)
S1—N3—H3B111 (2)H55—C55—C56120.4
H3A—N3—H3B107 (3)C55—C56—H56120.2
N2—C1—C2106.3 (2)C55—C56—C57119.5 (2)
N2—C1—C10123.9 (2)H56—C56—C57120.2
C2—C1—C10129.8 (2)S51—C57—C56119.8 (2)
C1—C2—H2126.9S51—C57—C58119.1 (2)
C1—C2—C3106.3 (2)C56—C57—C58121.1 (2)
H2—C2—C3126.9C57—C58—H58120.3
N1—C3—C2110.7 (2)C57—C58—C59119.4 (2)
N1—C3—C16119.8 (2)H58—C58—C59120.3
C2—C3—C16129.5 (2)C54—C59—C58119.8 (2)
N2—C4—C5120.1 (2)C54—C59—H59120.1
N2—C4—C9118.3 (2)C58—C59—H59120.1
C5—C4—C9121.7 (2)C51—C60—C61119.0 (2)
C4—C5—H5120.4C51—C60—C65122.5 (2)
C4—C5—C6119.1 (2)C61—C60—C65118.4 (2)
H5—C5—C6120.4C60—C61—H61119.6
C5—C6—H6120.3C60—C61—C62120.8 (3)
C5—C6—C7119.3 (2)H61—C61—C62119.6
H6—C6—C7120.3C61—C62—H62120.4
S1—C7—C6120.2 (2)C61—C62—C63119.3 (3)
S1—C7—C8118.3 (2)H62—C62—C63120.4
C6—C7—C8121.5 (2)Br51—C63—C62119.5 (2)
C7—C8—H8120.4Br51—C63—C64119.2 (2)
C7—C8—C9119.3 (2)C62—C63—C64121.3 (3)
H8—C8—C9120.4C63—C64—H64120.3
C4—C9—C8119.1 (2)C63—C64—C65119.4 (3)
C4—C9—H9120.4H64—C64—C65120.3
C8—C9—H9120.4C60—C65—C64120.6 (3)
C1—C10—C11119.1 (2)C60—C65—H65119.7
C1—C10—C15122.0 (2)C64—C65—H65119.7
C11—C10—C15118.9 (2)C53—C66—H66A108.7
C10—C11—H11119.6C53—C66—H66B108.7
C10—C11—C12120.9 (3)C53—C66—C67114.1 (2)
H11—C11—C12119.6H66A—C66—H66B107.6
C11—C12—H12120.6H66A—C66—C67108.7
C11—C12—C13118.8 (3)H66B—C66—C67108.7
H12—C12—C13120.6C66—C67—H67A109.1
Br1—C13—C12119.6 (2)C66—C67—H67B109.1
Br1—C13—C14118.7 (2)C66—C67—C68112.4 (2)
C12—C13—C14121.7 (2)H67A—C67—H67B107.9
C13—C14—H14120.5H67A—C67—C68109.1
C13—C14—C15119.1 (3)H67B—C67—C68109.1
H14—C14—C15120.5O53—C68—O54123.0 (2)
C10—C15—C14120.7 (2)O53—C68—C67124.3 (2)
C10—C15—H15119.7O54—C68—C67112.7 (2)
C14—C15—H15119.7C70—O70—C72113.3 (2)
C3—C16—H16A109.2H73A—C73—H73B109.5
C3—C16—H16B109.2H73A—C73—H73C109.5
C3—C16—C17112.0 (2)H73A—C73—C72109.5
H16A—C16—H16B107.9H73B—C73—H73C109.5
H16A—C16—C17109.2H73B—C73—C72109.5
H16B—C16—C17109.2H73C—C73—C72109.5
C16—C17—H17A108.9O70—C70—H70A109.7
C16—C17—H17B108.9O70—C70—H70B109.7
C16—C17—C18113.3 (2)O70—C70—C71110.0 (3)
H17A—C17—H17B107.7H70A—C70—H70B108.2
H17A—C17—C18108.9H70A—C70—C71109.7
H17B—C17—C18108.9H70B—C70—C71109.7
O3—C18—O4122.9 (2)O70—C72—C73109.0 (3)
O3—C18—C17124.8 (2)O70—C72—H72A109.9
O4—C18—C17112.3 (2)O70—C72—H72B109.9
O51—S51—O52119.66 (13)C73—C72—H72A109.9
O51—S51—N53106.84 (13)C73—C72—H72B109.9
O51—S51—C57106.46 (12)H72A—C72—H72B108.3
O52—S51—N53107.28 (13)C70—C71—H71A109.5
O52—S51—C57107.51 (12)C70—C71—H71B109.5
N53—S51—C57108.74 (12)C70—C71—H71C109.5
H54O—O54—C68117 (2)H71A—C71—H71B109.5
N52—N51—C53105.9 (2)H71A—C71—H71C109.5
N51—N52—C51111.1 (2)H71B—C71—H71C109.5
N51—N52—C54118.1 (2)Cl1—C74—Cl2115.8 (3)
C51—N52—C54130.4 (2)Cl1—C74—H74A108.3
S51—N53—H53A110 (2)Cl1—C74—H74B108.3
S51—N53—H53B110 (2)Cl2—C74—H74A108.3
H53A—N53—H53B122 (3)Cl2—C74—H74B108.3
N52—C51—C52106.2 (2)H74A—C74—H74B107.4
N52—C51—C60123.9 (2)H7A—O7—H7B111 (3)
C3—N1—N2—C10.4 (3)C53—N51—N52—C54172.4 (2)
C3—N1—N2—C4177.1 (2)N51—N52—C51—C521.0 (3)
N1—N2—C1—C20.5 (3)N51—N52—C51—C60176.8 (2)
N1—N2—C1—C10179.2 (2)C54—N52—C51—C52171.3 (2)
C4—N2—C1—C2176.6 (2)C54—N52—C51—C6010.9 (4)
C4—N2—C1—C103.1 (4)N52—C51—C52—C530.7 (3)
N2—C1—C2—C30.3 (3)C60—C51—C52—C53176.9 (3)
C10—C1—C2—C3179.4 (2)N52—N51—C53—C520.4 (3)
N2—N1—C3—C20.2 (3)N52—N51—C53—C66178.8 (2)
N2—N1—C3—C16179.9 (2)C51—C52—C53—N510.2 (3)
C1—C2—C3—N10.0 (3)C51—C52—C53—C66179.3 (3)
C1—C2—C3—C16179.8 (2)N51—N52—C54—C55127.4 (2)
N1—N2—C4—C5134.3 (2)N51—N52—C54—C5950.9 (3)
N1—N2—C4—C944.5 (3)C51—N52—C54—C5544.5 (4)
C1—N2—C4—C549.7 (4)C51—N52—C54—C59137.2 (3)
C1—N2—C4—C9131.4 (3)N52—C54—C55—C56179.6 (2)
N2—C4—C5—C6178.4 (2)C59—C54—C55—C562.1 (4)
C9—C4—C5—C60.4 (4)C54—C55—C56—C571.7 (4)
C4—C5—C6—C70.6 (4)C55—C56—C57—S51178.8 (2)
C5—C6—C7—S1178.47 (19)C55—C56—C57—C580.0 (4)
C5—C6—C7—C80.3 (4)O51—S51—C57—C56172.0 (2)
O1—S1—C7—C6114.7 (2)O51—S51—C57—C586.8 (2)
O1—S1—C7—C867.1 (2)O52—S51—C57—C5642.6 (2)
O2—S1—C7—C614.3 (2)O52—S51—C57—C58136.2 (2)
O2—S1—C7—C8164.0 (2)N53—S51—C57—C5673.2 (2)
N3—S1—C7—C6130.0 (2)N53—S51—C57—C58108.0 (2)
N3—S1—C7—C848.2 (2)S51—C57—C58—C59177.40 (19)
S1—C7—C8—C9178.05 (19)C56—C57—C58—C591.4 (4)
C6—C7—C8—C90.2 (4)N52—C54—C59—C58179.0 (2)
C7—C8—C9—C40.3 (4)C55—C54—C59—C580.7 (4)
N2—C4—C9—C8178.9 (2)C57—C58—C59—C541.0 (4)
C5—C4—C9—C80.0 (4)N52—C51—C60—C61146.7 (3)
N2—C1—C10—C11136.1 (3)N52—C51—C60—C6535.0 (4)
N2—C1—C10—C1545.3 (4)C52—C51—C60—C6136.0 (4)
C2—C1—C10—C1144.3 (4)C52—C51—C60—C65142.2 (3)
C2—C1—C10—C15134.3 (3)C51—C60—C61—C62179.8 (2)
C1—C10—C11—C12178.2 (2)C65—C60—C61—C621.8 (4)
C15—C10—C11—C123.2 (4)C60—C61—C62—C630.7 (4)
C10—C11—C12—C130.5 (4)C61—C62—C63—Br51177.5 (2)
C11—C12—C13—Br1176.5 (2)C61—C62—C63—C642.6 (4)
C11—C12—C13—C142.4 (4)Br51—C63—C64—C65178.3 (2)
Br1—C13—C14—C15176.4 (2)C62—C63—C64—C651.8 (4)
C12—C13—C14—C152.6 (4)C63—C64—C65—C600.9 (4)
C13—C14—C15—C100.2 (4)C51—C60—C65—C64179.1 (3)
C1—C10—C15—C14178.4 (2)C61—C60—C65—C642.6 (4)
C11—C10—C15—C143.1 (4)N51—C53—C66—C67157.0 (2)
N1—C3—C16—C1792.2 (3)C52—C53—C66—C6724.0 (4)
C2—C3—C16—C1787.9 (3)C53—C66—C67—C68166.6 (2)
C3—C16—C17—C18172.5 (2)C66—C67—C68—O536.2 (4)
C16—C17—C18—O310.5 (4)C66—C67—C68—O54172.8 (2)
C16—C17—C18—O4170.1 (2)C72—O70—C70—C71175.6 (3)
C53—N51—N52—C510.9 (3)C70—O70—C72—C73177.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O530.86 (4)2.02 (4)2.874 (3)171 (3)
O7—H7B···O4i0.98 (4)2.28 (4)3.164 (3)149 (3)
O4—H4O···N51ii0.82 (1)1.91 (1)2.708 (3)165 (3)
O54—H54O···N10.81 (1)1.92 (1)2.726 (3)169 (3)
N3—H3A···O70.84 (3)1.97 (3)2.796 (4)166 (3)
N3—H3B···O3iii0.88 (3)2.22 (3)3.094 (3)170 (3)
N53—H53A···O2iv0.84 (3)2.21 (3)3.028 (3)165 (3)
N53—H53B···O70iv0.79 (3)2.12 (3)2.910 (3)172 (3)
C8—H8···O3iii0.952.393.327 (3)169
C9—H9···O54iii0.952.423.364 (3)173
C15—H15···O51v0.952.433.187 (3)137
C52—H52···O51ii0.952.473.395 (3)164
C59—H59···O3i0.952.533.443 (3)160
C5—H5···N51vi0.952.603.465 (3)152
C17—H17B···O7vi0.992.573.415 (4)143
C67—H67A···O2vi0.992.423.398 (3)169
C71—H71C···O52vi0.982.513.451 (4)160
C67—H67A···O2vi0.992.423.398 (3)169
C71—H71C···O52vi0.982.513.451 (4)160
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z; (iii) x+1/2, y+3/2, z+1; (iv) x+1/2, y+1/2, z+1/2; (v) x+1/2, y+5/2, z+1; (vi) x+1/2, y1/2, z+1/2.

Experimental details

(I)(II)
Crystal data
Chemical formulaC19H19N3O4S2C18H16BrN3O4S·0.72CH2Cl2·C4H10O·H2O
Mr385.431054.11
Crystal system, space groupTriclinic, P1Monoclinic, C2/c
Temperature (K)115115
a, b, c (Å)5.8382 (14), 12.582 (3), 13.279 (3)49.255 (15), 11.702 (3), 16.181 (5)
α, β, γ (°)106.928 (3), 97.777 (3), 101.077 (3)90, 95.567 (4), 90
V3)896.5 (4)9283 (5)
Z28
Radiation typeMo KαMo Kα
µ (mm1)0.211.98
Crystal size (mm)0.52 × 0.25 × 0.150.51 × 0.31 × 0.05
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Bruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionNumerical
(SADABS Version 2008/1; Sheldrick, 1996)
Numerical
(SADABS, Version 2008/1; Sheldrick, 1996)
Tmin, Tmax0.898, 0.9890.432, 0.908
No. of measured, independent and
observed [I > 2σ(I)] reflections
6690, 3300, 2824 23405, 8605, 6781
Rint0.0250.033
(sin θ/λ)max1)0.6060.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.109, 1.06 0.037, 0.105, 1.02
No. of reflections33008605
No. of parameters320595
No. of restraints02
H-atom treatmentAll H-atom parameters refinedH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.0648P)2 + 0.3322P]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.0604P)2 + 10.1055P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.43, 0.410.84, 0.43

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Version 2.2; Macrae et al., 2008), SHELXTL (Sheldrick, 2008) and local programs.

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O4—H4O···O1i0.90 (3)1.83 (3)2.705 (2)164 (3)
N3—H3A···N1ii0.82 (3)2.16 (3)2.941 (2)160 (2)
N3—H3B···O3iii0.85 (3)2.07 (3)2.910 (2)170 (2)
C8—H8···O2iv0.95 (2)2.44 (2)3.167 (2)132.6 (16)
Symmetry codes: (i) x+2, y+1, z; (ii) x, y+1, z+1; (iii) x1, y1, z; (iv) x1, y+1, z+1.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O530.86 (4)2.02 (4)2.874 (3)171 (3)
O7—H7B···O4i0.98 (4)2.28 (4)3.164 (3)149 (3)
O4—H4O···N51ii0.816 (10)1.910 (13)2.708 (3)165 (3)
O54—H54O···N10.814 (10)1.924 (12)2.726 (3)169 (3)
N3—H3A···O70.84 (3)1.97 (3)2.796 (4)166 (3)
N3—H3B···O3iii0.88 (3)2.22 (3)3.094 (3)170 (3)
N53—H53A···O2iv0.84 (3)2.21 (3)3.028 (3)165 (3)
N53—H53B···O70iv0.79 (3)2.12 (3)2.910 (3)172 (3)
C8—H8···O3iii0.952.393.327 (3)168.5
C9—H9···O54iii0.952.423.364 (3)173.2
C15—H15···O51v0.952.433.187 (3)136.8
C52—H52···O51ii0.952.473.395 (3)164.0
C59—H59···O3i0.952.533.443 (3)160.1
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z; (iii) x+1/2, y+3/2, z+1; (iv) x+1/2, y+1/2, z+1/2; (v) x+1/2, y+5/2, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds