Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Na10(Na,Mn)7Mn43(PO4)36 (sodium manganese phosphate) was synthesized hydro­thermally at 873 K and 0.35 GPa. The complex crystal structure is almost identical to that of natural fillowite-type phosphates and can be described as a hexa­gonal packing of three types of rods parallel to the c axis. The rods are constituted by an alternation of five- to seven-coordinated Mn sites [average Mn-O = 2.243 (3) Å], of six- to nine-co­or­dinated Na sites [average Na-O = 2.590 (3) Å], of PO4 tetra­hedra [average P-O = 1.548 (3) Å] and of cation vacancies.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270109027188/fn3021sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109027188/fn3021Isup2.hkl
Contains datablock I

Comment top

Minerals of the fillowite group are phosphates predominantly of Na, Fe, Mn, Mg and Ca, which occur in rare-element granitic pegmatites (see, for example, Araki & Moore, 1981; Fransolet et al., 1998), in high-grade metamorphic rocks (Livingstone, 1980; Grew et al., 2006) and in meteorites (see, for example, McCoy et al., 1994; Olsen & Steele, 1997). In order to understand better the crystallization conditions of Na–Fe–Mn-bearing phosphates, we decided to investigate the Na–Mn–Fe (+PO4) ternary system by hydrothermal methods (Hatert, 2002, 2004; Hatert et al., 2006). These experiments produced several fillowite-type phosphates, among which the compound Na2(Na,Mn)14Mn44(PO4)36.H2O was structurally investigated by Keller et al. (2006). Starting from the composition NaMn4(PO4)3, hydrothermal synthesis at 873 K and 0.35 GPa produced large colourless to pinkish crystals of the title compound, the structure of which is reported herein.

The crystal structure of the title compound refined in space group R3 (No. 148) and is similar to that of fillowite from the Branchville pegmatite, Connecticut, USA, with composition Na12Ca6(Mn,Fe)42(PO4)36 (Araki & Moore, 1981), and to that of the synthetic compound Na2(Na,Mn)14Mn44(PO4)36.H2O (Keller et al., 2006). In order to facilitate comparison, atom labels were chosen similar to those used by Araki & Moore (1981) and by Keller et al. (2006).

The complex structure of Na10(Na,Mn)7Mn43(PO4)36 (Fig. 1) can be readily described using the scheme of hexagonal rod-packing proposed by Moore (1981), which consists of three rods parallel to the c axis. Rod I develops along the threefold axis, and consists of a sequence of face-sharing polyhedra and a few ordered vacancies (indicated by []): Na21–Na4–Mn5–[]–Mn2–[]–Mn5–Na4–Na21–Mn13–Mn3–[]–Mn1–[]–Mn3–Na13–Na21. Rod II develops along the 31 axis and consists of a sequence of corner- and angle-sharing polyhedra: Mn9–Na12–Mn8–Na31–Mn9–Na12–Mn8–Na31–Mn9–Na12–Mn8–Na31–Mn9. Rod III includes all the PO4 tetrahedra, some coordination polyhedra of Mn, and ordered vacancies: P6–Mn11–P4–Mn6–P1–[]–P5–Mn7–P2–Mn10–P3–[].

Mn atoms are mostly located on octahedral sites [average Mn—O distances = 2.063 (2)–2.309 (3) Å] [An average should be only one value? Several instances below also, and in the Abstract], but also occur on five-coordinated (average Mn9—O = 2.14[4] Å, where the number in square brackets is the standard deviation) or seven-coordinated sites (average Mn—O = 2.32[4]–2.39[4] Å). Na atoms occur on large six- to nine-coordinated sites, with average Na—O distances ranging from 2.464[9] to 2.70[3] Å, whereas P atoms occur on tetrahedral sites with average P—O distances in the range 1.544[5]–1.552[16] Å. Bond-valence sums (BVS) were calculated for each ion using the parameters of Brown & Altermatt (1985). The P BVS are between 4.79 and 4.88, and the O BVS are within the normally acceptable range (1.81–2.09), except for atom O17, which shows a low BVS of 1.64. Mn BVS are in the range 1.86–2.12, except for atom Mn13 (BVS = 2.46), whereas Na BVS are in the range 0.86–1.06. The Mn2/Na2 and Na31/Mn31 sites show BVS of 1.50 and 0.94, respectively, thus confirming that the Mn2/Na2 site is occupied by both Mn and Na, and that the Na31/Mn31 site is predominantly occupied by Na.

The title compound shows a chemical composition and a crystal structure close to those of the synthetic Na2(Na,Mn)14Mn44(PO4)36.H2O fillowite-type compound reported by Keller et al. (2006). However, significant differences in site occupancies exist between the two phosphates: Keller et al. (2006) reported Na–Mn miscibility on the Na12, Na13 and Na31 sites and only Mn on the Mn2 and Mn4 sites, whereas the title compound shows Na–Mn miscibility on the Mn2 and Na31 sites and only Na on the Na4 (= Mn4) site. The presence of Na on the Mn2 site has never been reported in the literature, and Na also occurs on the M4 (= Na4, Mn4) site in johnsomervilleite from Loch Quoich, Scotland (Livingstone, 1980). Another difference concerns the presence of molecular water in the phosphate synthesized by Keller et al. (2006), which is absent in the title compound.

Experimental top

The title compound was synthesized under hydrothermal conditions. The starting material was prepared by mixing NaH2PO4.H2O and MnO in 1:4 proportion, and then adding a stoichiometric amount of H3PO4. The resulting solution was evaporated and the dry residue was homogenized in an agate mortar. The homogenized mixture (about 25 mg) was sealed in a gold tube with an outer diameter of 2 mm and a length of 25 mm, containing distilled water (2 mg). The gold capsule was then inserted in a Tuttle-type pressure vessel (Tuttle, 1949) and maintained at a temperature of 873 K and a pressure of 0.35 GPa. After 7 d, the gold tube containing the sample was quenched in the autoclave to room temperature in a stream of cold air. The synthesized products consisted of large colourless to pinkish crystals of fillowite-type phosphate.

The redox conditions encountered in the autoclave, which is made of hard steel, were very close to those controlled by the Ni–NiO buffer (O'Neill & Pownceby, 1993). Such reducing conditions strongly favour the occurrence of Mn2+ instead of Mn3+.

A chemical analysis was performed using a CAMEBAX SX-50 electron microrpobe (15 kV acceleration voltage, 20 nA beam current, analyst J. Wautier, Louvain-la-Neuve, Belgium). The standards used were graftonite from Kabira (sample KF16, Fransolet, 1975) (Mn, P), and oligoclase (Na). The average of nine point analyses gives P2O5 41.52, MnO 51.31, Na2O 7.10, total 99.93wt.%. The chemical composition, calculated on the basis of 36 P, corresponds to Na14.10Mn44.50(PO4)36, and is in fairly good agreement with the composition calculated from the structural data, Na14.05Mn45.31(PO4)36. These formulae are not charge-balanced, since the total number of cations corresponds only to 141.55 and 142.34 O atoms, respectively. This charge deficit probably indicates the presence of small amounts of Mn3+, which is confirmed by the pinkish colour of the synthesized crystals.

Refinement top

Atomic coordinates similar to those given by Araki & Moore (1981) and by Keller et al. (2006) were used during the refinement procedure. The site-occupancy factors indicated, in the early stages of the refinement, that significant amounts of Na+ occupied the Mn2 site and that significant amounts of Mn2+ occupied the Na31 site. Consequently, the site-occupancy factors of both atoms were refined simultaneously on both sites, and the sums of the site-occupancy factors were constrained to be 1.0. The positions of these atoms and their displacement parameters were constrained to be identical using the EXYZ and EADP instructions of SHELXL97 (Sheldrick, 2008).

Computing details top

Data collection: DIF4 (Stoe & Cie, 1991); cell refinement: DIF4 (Stoe & Cie, 1991); data reduction: REDU4 (Stoe & Cie, 1991); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ATOMS (Dowty, 1993); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The crystal structure of Na10(Na,Mn)7Mn43(PO4)36. NaOn polyhedra are white, MnOn polyhedra are light grey, and PO4 tetrahedra are dark grey.
Sodium manganese phosphate top
Crystal data top
Na10(Na·Mn)7Mn43(PO4)36Dx = 3.517 Mg m3
Mr = 6232.86Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3Cell parameters from 5000 reflections
a = 15.3053 (7) Åθ = 2.8–30.0°
c = 43.672 (3) ŵ = 5.38 mm1
V = 8859.7 (8) Å3T = 293 K
Z = 3Isometric crystal, colourless
F(000) = 89700.05 × 0.04 × 0.03 mm
Data collection top
Stoe IPDS
diffractometer
7052 independent reflections
Radiation source: fine-focus sealed tube4405 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.108
ϕ and ω scansθmax = 32.5°, θmin = 3.2°
Absorption correction: ψ scan
(XSCANS; Siemens, 1991)
h = 2321
Tmin = 0.773, Tmax = 0.851k = 2323
41372 measured reflectionsl = 6565
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038 w = 1/[σ2(Fo2) + (0.06P)2 + 2.15P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.081(Δ/σ)max = 0.001
S = 0.86Δρmax = 0.98 e Å3
7052 reflectionsΔρmin = 1.45 e Å3
375 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraintsExtinction coefficient: 0.0000
Crystal data top
Na10(Na·Mn)7Mn43(PO4)36Z = 3
Mr = 6232.86Mo Kα radiation
Trigonal, R3µ = 5.38 mm1
a = 15.3053 (7) ÅT = 293 K
c = 43.672 (3) Å0.05 × 0.04 × 0.03 mm
V = 8859.7 (8) Å3
Data collection top
Stoe IPDS
diffractometer
7052 independent reflections
Absorption correction: ψ scan
(XSCANS; Siemens, 1991)
4405 reflections with I > 2σ(I)
Tmin = 0.773, Tmax = 0.851Rint = 0.108
41372 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.038375 parameters
wR(F2) = 0.0812 restraints
S = 0.86Δρmax = 0.98 e Å3
7052 reflectionsΔρmin = 1.45 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn10.00000.00000.00000.0132 (3)
Mn20.00000.00000.50000.0073 (5)0.666 (14)
Na20.00000.00000.50000.0073 (5)0.33 (2)
Mn30.00000.00000.10168 (2)0.0117 (3)0.894 (5)
Na40.00000.00000.32551 (5)0.0182 (9)0.977 (12)
Mn50.00000.00000.399240 (19)0.0114 (3)
Mn60.41464 (4)0.24021 (4)0.041998 (12)0.01529 (18)0.985 (3)
Mn70.11118 (4)0.55297 (4)0.032559 (12)0.01414 (12)
Mn80.01293 (4)0.34372 (4)0.084704 (11)0.01103 (17)0.988 (3)
Mn90.26644 (4)0.33550 (4)0.080936 (11)0.01249 (11)
Mn100.58341 (4)0.09693 (4)0.114869 (11)0.01373 (12)
Mn110.22225 (4)0.12632 (4)0.128884 (11)0.01476 (12)
Na120.23963 (14)0.25453 (15)0.00158 (3)0.0287 (6)0.982 (8)
Mn130.00000.00000.175181 (19)0.0104 (3)0.982 (5)
Na210.00000.00000.25154 (6)0.0254 (10)
Na310.04168 (7)0.40027 (7)0.167575 (19)0.0156 (4)0.654 (19)
Mn310.04168 (7)0.40027 (7)0.167575 (19)0.0156 (4)0.343 (10)
P10.21534 (7)0.42413 (7)0.032984 (18)0.01158 (17)
P20.54439 (7)0.11516 (7)0.042957 (18)0.01174 (17)
P30.57651 (6)0.10079 (6)0.194289 (17)0.00983 (16)
P40.21817 (7)0.13357 (7)0.205284 (18)0.01145 (17)
P50.21507 (7)0.46676 (7)0.221110 (19)0.01215 (17)
P60.46069 (7)0.22580 (7)0.277653 (18)0.01057 (17)
O10.15670 (19)0.37187 (19)0.06266 (5)0.0158 (5)
O20.24058 (19)0.53569 (19)0.03131 (5)0.0151 (5)
O30.31566 (19)0.42224 (19)0.03514 (5)0.0156 (5)
O40.1569 (2)0.36389 (19)0.00474 (5)0.0172 (5)
O50.5309 (2)0.2075 (2)0.04025 (6)0.0200 (5)
O60.44463 (19)0.01620 (19)0.05071 (5)0.0164 (5)
O70.62536 (19)0.1363 (2)0.06798 (5)0.0179 (5)
O80.5881 (2)0.0987 (2)0.01343 (6)0.0223 (6)
O90.55137 (19)0.04753 (19)0.16284 (5)0.0154 (5)
O100.6307 (2)0.21737 (19)0.19194 (5)0.0188 (5)
O110.47581 (19)0.0648 (2)0.21135 (5)0.0183 (5)
O120.6512 (2)0.0768 (2)0.21043 (5)0.0174 (5)
O130.2422 (2)0.1795 (2)0.17271 (5)0.0203 (6)
O140.11774 (19)0.03031 (19)0.20529 (6)0.0166 (5)
O150.20571 (19)0.20733 (19)0.22631 (5)0.0169 (5)
O160.29861 (19)0.1100 (2)0.21733 (5)0.0175 (5)
O170.2149 (2)0.5274 (2)0.19344 (6)0.0267 (6)
O180.10094 (19)0.37984 (19)0.22550 (6)0.0176 (5)
O190.2781 (2)0.4157 (2)0.21565 (5)0.0185 (5)
O200.2453 (2)0.5246 (2)0.25158 (6)0.0203 (6)
O210.51961 (19)0.25361 (19)0.24695 (5)0.0165 (5)
O220.40176 (19)0.10755 (19)0.28036 (5)0.0150 (5)
O230.37551 (19)0.2531 (2)0.27714 (5)0.0158 (5)
O240.5276 (2)0.2723 (2)0.30529 (6)0.0207 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0138 (4)0.0138 (4)0.0120 (5)0.00691 (19)0.0000.000
Mn20.0077 (6)0.0077 (6)0.0065 (7)0.0038 (3)0.0000.000
Na20.0077 (6)0.0077 (6)0.0065 (7)0.0038 (3)0.0000.000
Mn30.0112 (4)0.0112 (4)0.0127 (5)0.0056 (2)0.0000.000
Na40.0217 (12)0.0217 (12)0.0113 (12)0.0109 (6)0.0000.000
Mn50.0107 (3)0.0107 (3)0.0128 (4)0.00535 (17)0.0000.000
Mn60.0104 (3)0.0161 (3)0.0183 (3)0.0058 (2)0.0018 (2)0.0050 (2)
Mn70.0143 (3)0.0119 (3)0.0173 (2)0.0073 (2)0.00447 (19)0.00245 (19)
Mn80.0125 (3)0.0115 (3)0.0095 (2)0.0064 (2)0.00028 (18)0.00049 (18)
Mn90.0140 (3)0.0136 (3)0.0095 (2)0.0067 (2)0.00015 (18)0.00024 (18)
Mn100.0189 (3)0.0117 (3)0.0108 (2)0.0077 (2)0.00066 (19)0.00040 (18)
Mn110.0149 (3)0.0147 (3)0.0101 (2)0.0040 (2)0.00056 (19)0.00158 (18)
Na120.0387 (12)0.0451 (12)0.0186 (8)0.0332 (10)0.0062 (7)0.0040 (7)
Mn130.0114 (4)0.0114 (4)0.0085 (4)0.00569 (18)0.0000.000
Na210.0295 (13)0.0295 (13)0.0173 (14)0.0148 (6)0.0000.000
Na310.0215 (6)0.0232 (6)0.0104 (5)0.0175 (5)0.0018 (3)0.0019 (3)
Mn310.0215 (6)0.0232 (6)0.0104 (5)0.0175 (5)0.0018 (3)0.0019 (3)
P10.0119 (4)0.0113 (4)0.0110 (3)0.0054 (3)0.0000 (3)0.0002 (3)
P20.0110 (4)0.0123 (4)0.0112 (4)0.0053 (3)0.0010 (3)0.0020 (3)
P30.0108 (4)0.0108 (4)0.0083 (3)0.0058 (3)0.0002 (3)0.0002 (3)
P40.0112 (4)0.0140 (4)0.0097 (3)0.0067 (4)0.0007 (3)0.0010 (3)
P50.0136 (4)0.0113 (4)0.0116 (4)0.0062 (3)0.0008 (3)0.0007 (3)
P60.0117 (4)0.0119 (4)0.0081 (3)0.0059 (3)0.0008 (3)0.0005 (3)
O10.0152 (12)0.0168 (13)0.0141 (11)0.0071 (11)0.0029 (9)0.0033 (9)
O20.0171 (13)0.0131 (12)0.0148 (11)0.0074 (11)0.0023 (9)0.0005 (9)
O30.0141 (12)0.0163 (13)0.0180 (11)0.0089 (11)0.0007 (9)0.0008 (9)
O40.0205 (14)0.0157 (13)0.0147 (11)0.0087 (11)0.0034 (10)0.0022 (9)
O50.0204 (14)0.0152 (13)0.0262 (13)0.0103 (12)0.0031 (11)0.0058 (10)
O60.0151 (12)0.0136 (12)0.0179 (11)0.0051 (10)0.0040 (9)0.0003 (9)
O70.0139 (12)0.0240 (14)0.0155 (11)0.0093 (11)0.0003 (9)0.0026 (10)
O80.0210 (14)0.0340 (16)0.0154 (12)0.0165 (13)0.0059 (10)0.0045 (11)
O90.0190 (13)0.0153 (12)0.0117 (10)0.0084 (11)0.0011 (9)0.0018 (9)
O100.0280 (15)0.0124 (12)0.0137 (11)0.0084 (11)0.0003 (10)0.0004 (9)
O110.0129 (12)0.0271 (15)0.0140 (11)0.0094 (11)0.0022 (9)0.0022 (10)
O120.0178 (13)0.0198 (13)0.0181 (11)0.0120 (11)0.0018 (10)0.0035 (10)
O130.0229 (14)0.0293 (15)0.0131 (11)0.0162 (13)0.0008 (10)0.0019 (10)
O140.0131 (12)0.0155 (13)0.0196 (12)0.0059 (11)0.0031 (9)0.0003 (10)
O150.0144 (13)0.0177 (13)0.0175 (11)0.0070 (11)0.0018 (9)0.0047 (10)
O160.0139 (12)0.0210 (14)0.0190 (12)0.0097 (11)0.0010 (10)0.0053 (10)
O170.0294 (16)0.0307 (17)0.0278 (14)0.0209 (14)0.0093 (12)0.0144 (12)
O180.0148 (13)0.0157 (13)0.0192 (12)0.0053 (11)0.0008 (10)0.0007 (10)
O190.0230 (14)0.0231 (14)0.0151 (11)0.0159 (12)0.0024 (10)0.0040 (10)
O200.0206 (14)0.0166 (13)0.0196 (12)0.0062 (11)0.0027 (10)0.0068 (10)
O210.0143 (13)0.0198 (13)0.0146 (11)0.0078 (11)0.0012 (9)0.0012 (9)
O220.0167 (13)0.0138 (12)0.0150 (11)0.0079 (11)0.0045 (9)0.0023 (9)
O230.0163 (13)0.0186 (13)0.0142 (11)0.0100 (11)0.0007 (9)0.0003 (9)
O240.0182 (14)0.0277 (15)0.0137 (11)0.0096 (12)0.0040 (10)0.0045 (10)
Geometric parameters (Å, º) top
Mn1—O24i2.216 (3)Mn10—O63.356 (3)
Mn1—O24ii2.216 (3)Mn11—O132.042 (2)
Mn1—O24iii2.216 (3)Mn11—O16i2.046 (3)
Mn1—O24iv2.216 (3)Mn11—O21i2.111 (2)
Mn1—O24v2.216 (3)Mn11—O12iii2.342 (3)
Mn1—O24vi2.216 (3)Mn11—O10iii2.408 (3)
Mn2—O17vii2.309 (3)Mn11—O11i2.471 (3)
Mn2—O17viii2.309 (3)Mn11—O10i2.829 (3)
Mn2—O17ix2.309 (3)Na12—O4xiii2.355 (3)
Mn2—O17x2.309 (3)Na12—O22i2.488 (3)
Mn2—O17xi2.309 (3)Na12—O24iv2.492 (3)
Mn2—O17xii2.309 (3)Na12—O23iv2.538 (3)
Mn3—O21i2.063 (3)Na12—O42.570 (3)
Mn3—O21v2.063 (2)Na12—O32.744 (3)
Mn3—O10iii2.342 (3)Na12—O24i2.873 (3)
Mn3—O10v2.342 (3)Mn13—O14xx2.087 (2)
Mn3—O10i2.342 (3)Mn13—O14xvi2.087 (2)
Na4—O5iii2.456 (3)Mn13—O142.087 (2)
Na4—O5i2.456 (3)Mn13—O10iii2.157 (3)
Na4—O5v2.456 (3)Mn13—O10v2.157 (3)
Na4—O2vii2.472 (3)Mn13—O10i2.157 (3)
Na4—O2ix2.472 (3)Mn13—O133.334 (3)
Na4—O2xi2.472 (3)Mn13—O13xx3.334 (3)
Na4—O8iii3.175 (3)Na21—O14xx2.590 (3)
Na4—O8v3.176 (3)Na21—O142.590 (3)
Na4—O8i3.176 (3)Na21—O14xvi2.590 (3)
Mn5—O20viii2.023 (3)Na21—O5iii2.706 (3)
Mn5—O20x2.023 (3)Na21—O5i2.706 (3)
Mn5—O20xii2.023 (3)Na21—O5v2.706 (3)
Mn5—O2vii2.339 (2)Na21—O7iii2.820 (3)
Mn5—O2ix2.339 (2)Na21—O7v2.820 (3)
Mn5—O2xi2.339 (2)Na21—O7i2.820 (3)
Mn6—O52.077 (3)Na21—O153.347 (3)
Mn6—O4xiii2.152 (2)Na31—O19v2.374 (3)
Mn6—O7xiv2.159 (3)Na31—O9i2.516 (3)
Mn6—O22i2.242 (3)Na31—O9xvi2.566 (3)
Mn6—O23i2.308 (3)Na31—O11xvi2.570 (3)
Mn6—O8xiv2.599 (3)Na31—O172.633 (3)
Mn6—O16i3.292 (2)Na31—O13v2.654 (3)
Mn7—O3xv2.050 (3)Na31—O182.758 (3)
Mn7—O6xvi2.085 (3)Na31—O12i2.814 (3)
Mn7—O8xvii2.090 (3)P1—O41.532 (3)
Mn7—O22.126 (3)P1—O11.551 (2)
Mn7—O20v2.415 (3)P1—O21.553 (3)
Mn7—O8xvi2.973 (3)P1—O31.553 (3)
Mn7—O2xv3.003 (3)P2—O81.531 (3)
Mn8—O12i2.148 (2)P2—O51.532 (3)
Mn8—O6xvi2.159 (2)P2—O61.558 (3)
Mn8—O23v2.194 (3)P2—O71.560 (3)
Mn8—O19v2.220 (3)P3—O121.537 (3)
Mn8—O12.237 (3)P3—O111.544 (3)
Mn8—O15v2.281 (3)P3—O91.545 (2)
Mn9—O22i2.067 (2)P3—O101.550 (3)
Mn9—O18xviii2.075 (3)P4—O161.539 (3)
Mn9—O11i2.102 (2)P4—O151.539 (3)
Mn9—O12.169 (3)P4—O131.548 (3)
Mn9—O32.309 (2)P4—O141.559 (3)
Mn9—O16i3.222 (3)P5—O171.524 (3)
Mn9—O20xviii3.223 (3)P5—O191.532 (3)
Mn10—O18i2.096 (3)P5—O201.536 (3)
Mn10—O72.140 (2)P5—O181.592 (3)
Mn10—O14xix2.142 (3)P6—O241.511 (3)
Mn10—O15i2.159 (3)P6—O211.552 (3)
Mn10—O92.198 (2)P6—O231.556 (3)
Mn10—O16xix2.669 (3)P6—O221.572 (3)
Mn10—O19i2.873 (3)
O24i—Mn1—O24ii180.00 (15)O5i—Na4—O2xi107.38 (9)
O24i—Mn1—O24iii92.40 (9)O5v—Na4—O2xi86.84 (9)
O24ii—Mn1—O24iii87.60 (9)O2vii—Na4—O2xi77.46 (10)
O24i—Mn1—O24iv87.60 (9)O2ix—Na4—O2xi77.45 (10)
O24ii—Mn1—O24iv92.40 (9)O5iii—Na4—O8iii51.34 (8)
O24iii—Mn1—O24iv180.00 (15)O5i—Na4—O8iii75.56 (8)
O24i—Mn1—O24v92.40 (9)O5v—Na4—O8iii137.80 (11)
O24ii—Mn1—O24v87.60 (9)O2vii—Na4—O8iii57.88 (7)
O24iii—Mn1—O24v92.40 (9)O2ix—Na4—O8iii88.98 (8)
O24iv—Mn1—O24v87.60 (9)O2xi—Na4—O8iii135.21 (10)
O24i—Mn1—O24vi87.60 (9)O5iii—Na4—O8v75.56 (8)
O24ii—Mn1—O24vi92.40 (9)O5i—Na4—O8v137.80 (11)
O24iii—Mn1—O24vi87.60 (9)O5v—Na4—O8v51.34 (8)
O24iv—Mn1—O24vi92.40 (9)O2vii—Na4—O8v135.20 (10)
O24v—Mn1—O24vi180.00 (15)O2ix—Na4—O8v57.87 (7)
O17vii—Mn2—O17viii180.000 (1)O2xi—Na4—O8v88.97 (8)
O17vii—Mn2—O17ix96.63 (10)O8iii—Na4—O8v119.413 (16)
O17viii—Mn2—O17ix83.37 (10)O5iii—Na4—O8i137.80 (11)
O17vii—Mn2—O17x83.37 (10)O5i—Na4—O8i51.34 (8)
O17viii—Mn2—O17x96.63 (10)O5v—Na4—O8i75.55 (8)
O17ix—Mn2—O17x180.00 (17)O2vii—Na4—O8i88.97 (8)
O17vii—Mn2—O17xi96.63 (10)O2ix—Na4—O8i135.20 (10)
O17viii—Mn2—O17xi83.37 (10)O2xi—Na4—O8i57.87 (7)
O17ix—Mn2—O17xi96.63 (10)O8iii—Na4—O8i119.412 (16)
O17x—Mn2—O17xi83.37 (10)O8v—Na4—O8i119.410 (16)
O17vii—Mn2—O17xii83.37 (10)O20viii—Mn5—O20x108.94 (8)
O17viii—Mn2—O17xii96.63 (10)O20viii—Mn5—O20xii108.94 (8)
O17ix—Mn2—O17xii83.37 (10)O20x—Mn5—O20xii108.94 (8)
O17x—Mn2—O17xii96.63 (10)O20viii—Mn5—O2vii159.19 (10)
O17xi—Mn2—O17xii180.000 (1)O20x—Mn5—O2vii85.72 (10)
O21iii—Mn3—O21i110.05 (7)O20xii—Mn5—O2vii78.62 (10)
O21iii—Mn3—O21v110.04 (7)O20viii—Mn5—O2ix78.62 (10)
O21i—Mn3—O21v110.04 (7)O20x—Mn5—O2ix159.19 (10)
O21iii—Mn3—O10iii91.04 (10)O20xii—Mn5—O2ix85.72 (10)
O21i—Mn3—O10iii80.48 (10)O2vii—Mn5—O2ix82.77 (9)
O21v—Mn3—O10iii150.07 (10)O20viii—Mn5—O2xi85.72 (9)
O21iii—Mn3—O10v80.48 (10)O20x—Mn5—O2xi78.62 (10)
O21i—Mn3—O10v150.08 (10)O20xii—Mn5—O2xi159.19 (10)
O21v—Mn3—O10v91.03 (10)O2vii—Mn5—O2xi82.77 (9)
O10iii—Mn3—O10v71.17 (10)O2ix—Mn5—O2xi82.77 (9)
O21iii—Mn3—O10i150.07 (10)O5—Mn6—O4xiii99.19 (10)
O21i—Mn3—O10i91.03 (10)O5—Mn6—O7xiv89.45 (11)
O21v—Mn3—O10i80.48 (9)O4xiii—Mn6—O7xiv135.81 (10)
O10iii—Mn3—O10i71.17 (10)O5—Mn6—O22i160.23 (10)
O10v—Mn3—O10i71.17 (10)O4xiii—Mn6—O22i87.08 (9)
O5iii—Na4—O5i90.08 (11)O7xiv—Mn6—O22i99.12 (10)
O5iii—Na4—O5v90.08 (11)O5—Mn6—O23i95.72 (10)
O5i—Na4—O5v90.08 (11)O4xiii—Mn6—O23i89.83 (9)
O5iii—Na4—O2vii107.38 (9)O7xiv—Mn6—O23i132.60 (9)
O5i—Na4—O2vii86.84 (9)O22i—Mn6—O23i65.39 (9)
O5v—Na4—O2vii162.26 (9)O5—Mn6—O8xiv96.15 (10)
O5iii—Na4—O2ix86.84 (9)O4xiii—Mn6—O8xiv74.81 (9)
O5i—Na4—O2ix162.26 (9)O7xiv—Mn6—O8xiv61.16 (8)
O5v—Na4—O2ix107.38 (9)O22i—Mn6—O8xiv103.60 (9)
O2vii—Na4—O2ix77.46 (10)O23i—Mn6—O8xiv161.90 (9)
O5iii—Na4—O2xi162.26 (10)
Symmetry codes: (i) x+2/3, y+1/3, z+1/3; (ii) x2/3, y1/3, z1/3; (iii) xy1/3, x2/3, z+1/3; (iv) x+y+1/3, x+2/3, z1/3; (v) y1/3, x+y+1/3, z+1/3; (vi) y+1/3, xy1/3, z1/3; (vii) y+2/3, xy+1/3, z+1/3; (viii) y2/3, x+y1/3, z+2/3; (ix) x1/3, y2/3, z+1/3; (x) x+1/3, y+2/3, z+2/3; (xi) x+y1/3, x+1/3, z+1/3; (xii) xy+1/3, x1/3, z+2/3; (xiii) y, x+y, z; (xiv) x+y+1, x+1, z; (xv) x+y, x+1, z; (xvi) y, xy, z; (xvii) y, x+y+1, z; (xviii) xy+2/3, x+1/3, z+1/3; (xix) y+2/3, x+y+1/3, z+1/3; (xx) x+y, x, z.

Experimental details

Crystal data
Chemical formulaNa10(Na·Mn)7Mn43(PO4)36
Mr6232.86
Crystal system, space groupTrigonal, R3
Temperature (K)293
a, c (Å)15.3053 (7), 43.672 (3)
V3)8859.7 (8)
Z3
Radiation typeMo Kα
µ (mm1)5.38
Crystal size (mm)0.05 × 0.04 × 0.03
Data collection
DiffractometerStoe IPDS
diffractometer
Absorption correctionψ scan
(XSCANS; Siemens, 1991)
Tmin, Tmax0.773, 0.851
No. of measured, independent and
observed [I > 2σ(I)] reflections
41372, 7052, 4405
Rint0.108
(sin θ/λ)max1)0.756
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.081, 0.86
No. of reflections7052
No. of parameters375
No. of restraints2
Δρmax, Δρmin (e Å3)0.98, 1.45

Computer programs: DIF4 (Stoe & Cie, 1991), REDU4 (Stoe & Cie, 1991), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ATOMS (Dowty, 1993), SHELXTL (Sheldrick, 2008).

 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds