Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Two different tautomeric forms of a new Schiff base, C17H19N3O2·C17H19N3O2, are present in the crystal in a 1:1 ratio, namely the enol-imine form 4-(1-{[4-(dimethyl­am­ino)benzyl­idene]­hydra­zono}­eth­yl)benzene-1,3-diol and the keto-amine form 6-[(E)-1-{[4-(dimethyl­amino)benzyl­idene]hy­dra­zino}ethyl­­idene]-3-hydroxy­cyclo­hexa-2,4-dien-1-one. The tautomers are formed by proton transfer between the hydr­oxy O atom and the imine N atom and are hydrogen bonded to each other to form a one-dimensional zigzag chain along the crystallographic b axis via inter­molecular hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270109006696/fn3012sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109006696/fn3012Isup2.hkl
Contains datablock I

CCDC reference: 730088

Comment top

Schiff base ligands are of interest mainly because of the existence of typical hydrogen bonds and tautomerism between the phenol–imine and keto–amine forms (Costamagna et al., 1992; Sridharan et al., 2004; Fita et al., 2005). Tautomerism in o-hydroxy Schiff bases both in solution and in the solid state has been investigated using IR (Ledbetter, 1977; Yildiz et al., 1998), UV (Ottolenghi & McClure, 1967), 1H NMR (Dudek & Holm, 1962; Dudek & Dudek, 1966), 13C NMR (Salman et al., 1991) and X-ray crystallographic techniques (Gavranic et al., 1996; Kaitner & Pavlovic, 1996).

We have synthesized a new Schiff base compound, (I) (Fig. 1). This Schiff base compound undergoes tautomerism by proton transfer between the hydroxy O atom and the imine N atom, forming two tautomers, (Ia) and (Ib), and the two different tautomeric forms of the same molecule co-crystallized in a 1:1 ratio. Form (Ia) is the phenol–imine tautomeric form, while (Ib) is the keto–amine tautomer.

The compound crystallizes in the monoclinic form in space group P21/c. The tautomerism of the compound causes a series of differences between (Ia) and (Ib). When the phenol–imine form is transformed into the keto–amine form, an appreciable increase in the C—N distance is observed [C7—N2 = 1.290 (3) Å versus C24—N4 = 1.305 (3) Å]. A concomitant decrease in the C—O distance is also noted [C5—O1 = 1.344 (3) Å versus C22—O3 = 1.316 (2) Å]. The C7—N2 and C5—O1 distances are similar to the corresponding distances in 2,2'-azinodimethyldiphenol [1.285 (7) and 1.364 (8) Å; Xu et al., 1994] and 2,2'-[(1,2-ethanediyl)bis(nitrilopropylidyne)]bisphenol [1.295 (3) and 1.351 (3) Å; Corden et al., 1997], which exist in the phenol–imine tautomeric form. Likewise, the C24—N4 and C22—O3 bond lengths are similar to the corresponding distances in 2-{[tris(hydroxymethyl)methyl]aminomethylene)cyclohexa-3,5-dien-1(2H)-one [1.2952 (18) and 1.3025 (18) Å, respectively; Odabaşoǧlu et al., 2003] and 3-[(2-oxo-1-naphthylidene)methylamino]benzoic acid [1.319 (3) and 1.290 (2) Å; Pavlović & Sosa, 2000], which show the keto–amine tautomeric form. Hence, the C—O and C—N bond lengths verify the phenol–imine form of (Ia) and keto–amine form of (Ib). In addition, the degrees of planarity for the two molecules in the asymmetric unit are different. The maximum dihedral angle of (Ia) is 7.06 (9)°, for the dihedral angle between the C3-containing benzene ring and the C10-containing benzene ring, while the corresponding dihedral angle of (Ib) is 11.62 (7)°.

Both intramolecular and intermolecular hydrogen bonds are found in the crystal structures of the tautomers (Fig. 2). The intramolecular hydrogen bonds (O—H···N and N—H···O) of the two tautomeric forms are rather short, as expected [O1···N2 = 2.507 (3) Å and N4···O3 = 2.557 (2) Å; Table 1], with respective angles of 146.5 and 138.4° [these are different from the angles given in Table 1]. In (Ia), the hydrogen-bonded ring is nearly coplanar with the adjacent ring, with a dihedral angle of 1.37 (7)°, while (Ib) is not quite as planar, with a dihedral angle of 5.46 (7)° between the two corresponding rings. The two tautomers are connected via intermolecular O—H···O hydrogen bonds (Table 1) into a one-dimensional zigzag chain extended along the crystallographic b axis.

In conclusion, a new Schiff base has been synthesized and characterized by X-ray diffraction analysis. Two different tautomeric forms are found in the solid state, and these are hydrogen bonded to one another to form an infinite chain.

Related literature top

For related literature, see: Costamagna et al. (1992); Diehl et al. (1950); Dudek & Dudek (1966); Dudek & Holm (1962); Fita et al. (2005); Gavranic et al. (1996); Kaitner & Pavlovic (1996); Ottolenghi & McClure (1967); Pavlovic & Sosa (2000); Salman et al. (1991); Xu et al. (1994); Yildiz et al. (1998).

Experimental top

Compound (I) was prepared according to a literature method (Diehl et al., 1950). 2,4-Dihydroxyacetophenone (2.00 g, 13.2 mmol) and hydrazine hydrate (4.00 g, 40 mmol) were dissolved in ethanol (40 ml), and four drops of methanoic acid were added. The mixture was stirred at room temperature for 5 h. A yellow powder [4-(1-hydrazonoethyl)benzene-1,3-diol] was filtered off, washed with ethanol and dried in a vacuum. 4-(1-Hydrazonoethyl)benzene-1,3-diol (0.20 g, 1.3 mmol) and p-dimethylaminobenzaldehyde (0.19 g, 1.3 mmol) were dissolved in ethanol (20 ml), and then four drops of methanoic acid were added and the mixture was stirred at room temperature for 5 h. The resulting yellow powder was filtered off, washed several times with ethanol and then dried in a vacuum (yield 89%, m.p. 482.7–483.9 K. Well shaped crystals were obtained by slow evaporation from ethanol solutions. [Cystal description in CIF is `plan'; this is not a valid description; should it be `plate'?]

Refinement top

H atoms attached to C atoms were idealized and included as riding atoms [C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) (for CH H atoms), and C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) (for CH3)]. H atoms attached to N and O atoms were located in a difference map and refined isotropically with O—H and N—H distance restraints of 0.XX (X) and 0.92 (X) Å [please give actual restraints (with s.u. values) rather than the final obtained distances]; the refined distances are given in Table 1.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : A view of (I), with displacement ellipsoids drawn at the 30% probability level and H atoms shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. : The intra- and intermolecular hydrogen bonding in (I).
4-(1-{[4-(dimethylamino)benzylidene]hydrazono}ethyl)benzene-1,3-diol– 6-[(E)-1-{[4-(dimethylamino)benzylidene]hydrazino}ethylidene]-3- hydroxycyclohexa-2,4-dien-1-one (1/1) top
Crystal data top
C17H19N3O2·C17H19N3O2F(000) = 1264
Mr = 594.70Dx = 1.278 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.872 (3) ÅCell parameters from 1943 reflections
b = 9.630 (2) Åθ = 2.3–21.0°
c = 28.441 (7) ŵ = 0.09 mm1
β = 71.932 (4)°T = 298 K
V = 3091.4 (12) Å3Plate, orange
Z = 40.49 × 0.40 × 0.06 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3429 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.041
Graphite monochromatorθmax = 25.0°, θmin = 1.8°
phi and ω scansh = 1414
12702 measured reflectionsk = 1110
5461 independent reflectionsl = 2733
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0566P)2 + 0.1177P]
where P = (Fo2 + 2Fc2)/3
5461 reflections(Δ/σ)max < 0.001
413 parametersΔρmax = 0.20 e Å3
2 restraintsΔρmin = 0.18 e Å3
Crystal data top
C17H19N3O2·C17H19N3O2V = 3091.4 (12) Å3
Mr = 594.70Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.872 (3) ŵ = 0.09 mm1
b = 9.630 (2) ÅT = 298 K
c = 28.441 (7) Å0.49 × 0.40 × 0.06 mm
β = 71.932 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3429 reflections with I > 2σ(I)
12702 measured reflectionsRint = 0.041
5461 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0522 restraints
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.20 e Å3
5461 reflectionsΔρmin = 0.18 e Å3
413 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.66544 (18)0.3883 (2)0.19607 (8)0.0441 (6)
C20.5671 (2)0.3095 (3)0.21925 (9)0.0561 (7)
H20.52480.32570.25220.067*
C30.53180 (19)0.2066 (2)0.19339 (8)0.0535 (6)
H30.46460.15510.20940.064*
C40.59269 (18)0.1763 (2)0.14404 (8)0.0421 (5)
C50.69385 (19)0.2573 (2)0.12171 (8)0.0488 (6)
C60.72850 (19)0.3609 (2)0.14765 (8)0.0500 (6)
H60.79570.41310.13210.060*
C70.55474 (19)0.0661 (2)0.11686 (8)0.0457 (6)
C80.4417 (2)0.0110 (3)0.13970 (9)0.0659 (7)
H8A0.43130.07930.11680.099*
H8B0.44480.05610.16940.099*
H8C0.37650.05290.14760.099*
C90.6653 (2)0.0844 (2)0.00433 (9)0.0570 (7)
H90.73350.03030.00410.068*
C100.6529 (2)0.1869 (2)0.03110 (8)0.0492 (6)
C110.7386 (2)0.2015 (3)0.07621 (9)0.0603 (7)
H110.80500.14440.08360.072*
C120.7301 (2)0.2965 (3)0.11067 (9)0.0618 (7)
H120.78980.30180.14090.074*
C130.6326 (2)0.3859 (3)0.10098 (8)0.0531 (6)
C140.7002 (3)0.4777 (3)0.18513 (9)0.0806 (9)
H14A0.78160.48160.18600.121*
H14B0.68330.55430.20350.121*
H14C0.68580.39200.19960.121*
C150.5191 (3)0.5692 (3)0.12500 (10)0.0815 (9)
H15A0.45300.51100.12430.122*
H15B0.53030.63720.15070.122*
H15C0.50400.61530.09370.122*
C160.5459 (2)0.3706 (3)0.05555 (9)0.0622 (7)
H160.47940.42760.04780.075*
C170.5558 (2)0.2739 (3)0.02184 (9)0.0604 (7)
H170.49550.26650.00810.072*
C180.02962 (19)0.2198 (2)0.24745 (8)0.0440 (6)
C190.1294 (2)0.1635 (2)0.21285 (8)0.0497 (6)
H190.17600.09860.22240.060*
C200.1576 (2)0.2050 (2)0.16492 (8)0.0505 (6)
H200.22360.16580.14200.061*
C210.09179 (18)0.3043 (2)0.14838 (7)0.0388 (5)
C220.01123 (17)0.3607 (2)0.18416 (7)0.0384 (5)
C230.03927 (19)0.3138 (2)0.23280 (8)0.0453 (6)
H230.10720.34760.25610.054*
C240.13295 (18)0.3544 (2)0.09840 (8)0.0427 (5)
C250.2407 (2)0.3001 (3)0.06073 (9)0.0617 (7)
H25A0.23330.31270.02830.093*
H25B0.24930.20300.06650.093*
H25C0.30900.34940.06300.093*
C260.0544 (2)0.6194 (2)0.03315 (8)0.0474 (6)
H260.01140.64680.05900.057*
C270.08499 (19)0.6960 (2)0.01250 (8)0.0439 (6)
C280.1809 (2)0.6598 (2)0.05314 (8)0.0516 (6)
H280.22780.58440.05080.062*
C290.2077 (2)0.7325 (3)0.09636 (8)0.0539 (6)
H290.27210.70510.12290.065*
C300.1403 (2)0.8476 (2)0.10176 (8)0.0472 (6)
C310.0435 (2)0.8831 (2)0.06110 (8)0.0533 (6)
H310.00400.95810.06330.064*
C320.0176 (2)0.8085 (2)0.01791 (8)0.0520 (6)
H320.04730.83450.00860.062*
C330.2675 (2)0.8834 (3)0.18645 (9)0.0777 (9)
H33A0.33650.87340.17600.117*
H33B0.28100.95470.21120.117*
H33C0.25150.79710.20010.117*
C340.0931 (3)1.0315 (3)0.15178 (10)0.0798 (9)
H34A0.01460.99660.14680.120*
H34B0.12441.06760.18470.120*
H34C0.09061.10410.12830.120*
H10.727 (2)0.170 (2)0.0640 (11)0.109 (12)*
H40.0071 (13)0.481 (2)0.1112 (6)0.059 (7)*
H2A0.777 (2)0.521 (3)0.2036 (10)0.094 (10)*
H4A0.037 (2)0.122 (3)0.3024 (10)0.086 (11)*
N10.58825 (17)0.0640 (2)0.04627 (7)0.0569 (5)
N20.62388 (17)0.0408 (2)0.07282 (7)0.0548 (5)
N30.11490 (16)0.5147 (2)0.03936 (6)0.0483 (5)
N40.07528 (17)0.45527 (19)0.08550 (7)0.0444 (5)
N50.16810 (19)0.9205 (2)0.14490 (7)0.0630 (6)
N60.6246 (2)0.4852 (2)0.13444 (8)0.0680 (6)
O10.76141 (17)0.2369 (2)0.07466 (6)0.0812 (6)
O20.69755 (15)0.49159 (18)0.22200 (6)0.0567 (5)
O30.07616 (12)0.45663 (15)0.17199 (5)0.0453 (4)
O40.00307 (16)0.18630 (18)0.29578 (6)0.0592 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0369 (13)0.0488 (14)0.0461 (14)0.0023 (11)0.0122 (11)0.0028 (11)
C20.0448 (14)0.0713 (18)0.0435 (14)0.0054 (13)0.0012 (12)0.0088 (12)
C30.0407 (13)0.0604 (16)0.0504 (15)0.0097 (12)0.0011 (12)0.0006 (12)
C40.0366 (12)0.0442 (13)0.0429 (13)0.0017 (10)0.0086 (11)0.0028 (10)
C50.0437 (13)0.0589 (15)0.0378 (13)0.0069 (12)0.0040 (11)0.0013 (12)
C60.0401 (13)0.0566 (16)0.0475 (14)0.0122 (11)0.0053 (11)0.0002 (12)
C70.0405 (13)0.0482 (15)0.0475 (14)0.0011 (11)0.0121 (11)0.0049 (11)
C80.0570 (16)0.0705 (18)0.0659 (18)0.0210 (14)0.0130 (14)0.0011 (14)
C90.0547 (15)0.0580 (17)0.0567 (17)0.0054 (13)0.0149 (14)0.0011 (13)
C100.0485 (14)0.0559 (16)0.0418 (14)0.0013 (12)0.0118 (12)0.0011 (11)
C110.0556 (16)0.0686 (18)0.0518 (16)0.0099 (13)0.0094 (13)0.0010 (13)
C120.0582 (16)0.0740 (19)0.0454 (15)0.0043 (15)0.0049 (13)0.0007 (13)
C130.0578 (16)0.0596 (16)0.0425 (14)0.0078 (13)0.0163 (13)0.0010 (12)
C140.103 (2)0.092 (2)0.0466 (17)0.0282 (18)0.0228 (16)0.0141 (15)
C150.097 (2)0.074 (2)0.083 (2)0.0003 (18)0.0419 (18)0.0164 (16)
C160.0572 (16)0.0722 (19)0.0522 (16)0.0125 (14)0.0095 (13)0.0083 (14)
C170.0516 (15)0.0772 (19)0.0445 (14)0.0061 (14)0.0035 (12)0.0071 (13)
C180.0493 (14)0.0414 (14)0.0417 (14)0.0053 (11)0.0148 (12)0.0057 (10)
C190.0485 (14)0.0473 (14)0.0527 (15)0.0071 (11)0.0148 (12)0.0107 (11)
C200.0415 (13)0.0518 (15)0.0524 (15)0.0090 (12)0.0062 (11)0.0030 (12)
C210.0390 (12)0.0383 (13)0.0380 (12)0.0015 (10)0.0104 (10)0.0001 (10)
C220.0382 (12)0.0363 (13)0.0408 (13)0.0006 (10)0.0126 (10)0.0016 (10)
C230.0437 (13)0.0475 (14)0.0391 (13)0.0049 (11)0.0046 (11)0.0004 (11)
C240.0389 (12)0.0439 (14)0.0439 (13)0.0009 (11)0.0109 (11)0.0035 (10)
C250.0534 (15)0.0732 (18)0.0492 (15)0.0109 (13)0.0025 (12)0.0017 (13)
C260.0516 (14)0.0511 (15)0.0357 (13)0.0039 (12)0.0081 (11)0.0008 (11)
C270.0475 (14)0.0470 (14)0.0355 (12)0.0073 (11)0.0102 (11)0.0010 (10)
C280.0512 (14)0.0559 (16)0.0451 (14)0.0051 (12)0.0113 (12)0.0015 (12)
C290.0515 (14)0.0653 (17)0.0373 (13)0.0011 (13)0.0026 (11)0.0024 (12)
C300.0525 (15)0.0493 (15)0.0393 (13)0.0101 (12)0.0133 (12)0.0039 (11)
C310.0561 (15)0.0487 (15)0.0497 (15)0.0056 (12)0.0085 (12)0.0025 (12)
C320.0525 (14)0.0519 (15)0.0440 (14)0.0043 (12)0.0039 (12)0.0004 (11)
C330.091 (2)0.089 (2)0.0424 (16)0.0192 (17)0.0057 (15)0.0125 (14)
C340.099 (2)0.073 (2)0.072 (2)0.0115 (18)0.0329 (17)0.0286 (15)
N10.0558 (13)0.0599 (14)0.0529 (13)0.0041 (10)0.0140 (11)0.0081 (10)
N20.0531 (12)0.0579 (13)0.0527 (13)0.0078 (10)0.0154 (11)0.0066 (10)
N30.0525 (12)0.0549 (13)0.0349 (11)0.0044 (10)0.0099 (9)0.0048 (9)
N40.0463 (12)0.0475 (12)0.0355 (11)0.0003 (10)0.0071 (9)0.0023 (9)
N50.0734 (15)0.0670 (15)0.0436 (13)0.0035 (12)0.0112 (11)0.0149 (10)
N60.0805 (16)0.0718 (16)0.0534 (14)0.0054 (13)0.0232 (12)0.0121 (11)
O10.0731 (13)0.1037 (16)0.0476 (11)0.0424 (12)0.0094 (10)0.0199 (10)
O20.0474 (10)0.0652 (12)0.0526 (11)0.0044 (9)0.0083 (9)0.0133 (8)
O30.0444 (9)0.0489 (9)0.0409 (9)0.0124 (7)0.0106 (7)0.0006 (7)
O40.0723 (12)0.0577 (12)0.0431 (10)0.0095 (10)0.0112 (9)0.0104 (8)
Geometric parameters (Å, º) top
C1—O21.361 (3)C19—C201.359 (3)
C1—C61.374 (3)C19—H190.9300
C1—C21.377 (3)C20—C211.405 (3)
C2—C31.375 (3)C20—H200.9300
C2—H20.9300C21—C221.433 (3)
C3—C41.396 (3)C21—C241.436 (3)
C3—H30.9300C22—O31.316 (2)
C4—C51.407 (3)C22—C231.394 (3)
C4—C71.464 (3)C23—H230.9300
C5—O11.344 (3)C24—N41.305 (3)
C5—C61.378 (3)C24—C251.486 (3)
C6—H60.9300C25—H25A0.9600
C7—N21.290 (3)C25—H25B0.9600
C7—C81.494 (3)C25—H25C0.9600
C8—H8A0.9600C26—N31.282 (3)
C8—H8B0.9600C26—C271.438 (3)
C8—H8C0.9600C26—H260.9300
C9—N11.273 (3)C27—C321.384 (3)
C9—C101.450 (3)C27—C281.392 (3)
C9—H90.9300C28—C291.364 (3)
C10—C111.376 (3)C28—H280.9300
C10—C171.383 (3)C29—C301.403 (3)
C11—C121.367 (3)C29—H290.9300
C11—H110.9300C30—N51.363 (3)
C12—C131.400 (3)C30—C311.397 (3)
C12—H120.9300C31—C321.373 (3)
C13—N61.373 (3)C31—H310.9300
C13—C161.388 (3)C32—H320.9300
C14—N61.444 (3)C33—N51.432 (3)
C14—H14A0.9600C33—H33A0.9600
C14—H14B0.9600C33—H33B0.9600
C14—H14C0.9600C33—H33C0.9600
C15—N61.445 (3)C34—N51.442 (3)
C15—H15A0.9600C34—H34A0.9600
C15—H15B0.9600C34—H34B0.9600
C15—H15C0.9600C34—H34C0.9600
C16—C171.367 (3)N1—N21.403 (3)
C16—H160.9300N3—N41.374 (2)
C17—H170.9300N4—H40.940 (9)
C18—O41.346 (2)O1—H10.864 (10)
C18—C231.369 (3)O2—H2A0.96 (3)
C18—C191.394 (3)O4—H4A0.84 (3)
O2—C1—C6121.8 (2)C21—C20—H20118.4
O2—C1—C2118.8 (2)C20—C21—C22117.45 (19)
C6—C1—C2119.4 (2)C20—C21—C24120.42 (19)
C3—C2—C1119.7 (2)C22—C21—C24121.93 (19)
C3—C2—H2120.2O3—C22—C23120.61 (18)
C1—C2—H2120.2O3—C22—C21121.32 (18)
C2—C3—C4122.7 (2)C23—C22—C21118.05 (19)
C2—C3—H3118.7C18—C23—C22122.3 (2)
C4—C3—H3118.7C18—C23—H23118.8
C3—C4—C5116.2 (2)C22—C23—H23118.8
C3—C4—C7122.3 (2)N4—C24—C21118.78 (19)
C5—C4—C7121.5 (2)N4—C24—C25117.9 (2)
O1—C5—C6117.0 (2)C21—C24—C25123.3 (2)
O1—C5—C4122.0 (2)C24—C25—H25A109.5
C6—C5—C4121.0 (2)C24—C25—H25B109.5
C1—C6—C5121.1 (2)H25A—C25—H25B109.5
C1—C6—H6119.5C24—C25—H25C109.5
C5—C6—H6119.5H25A—C25—H25C109.5
N2—C7—C4116.24 (19)H25B—C25—H25C109.5
N2—C7—C8122.9 (2)N3—C26—C27122.2 (2)
C4—C7—C8120.8 (2)N3—C26—H26118.9
C7—C8—H8A109.5C27—C26—H26118.9
C7—C8—H8B109.5C32—C27—C28117.1 (2)
H8A—C8—H8B109.5C32—C27—C26120.6 (2)
C7—C8—H8C109.5C28—C27—C26122.3 (2)
H8A—C8—H8C109.5C29—C28—C27121.5 (2)
H8B—C8—H8C109.5C29—C28—H28119.3
N1—C9—C10123.9 (2)C27—C28—H28119.3
N1—C9—H9118.1C28—C29—C30121.5 (2)
C10—C9—H9118.1C28—C29—H29119.2
C11—C10—C17116.6 (2)C30—C29—H29119.2
C11—C10—C9120.8 (2)N5—C30—C31121.8 (2)
C17—C10—C9122.6 (2)N5—C30—C29121.3 (2)
C12—C11—C10122.6 (2)C31—C30—C29117.0 (2)
C12—C11—H11118.7C32—C31—C30120.7 (2)
C10—C11—H11118.7C32—C31—H31119.6
C11—C12—C13120.7 (2)C30—C31—H31119.6
C11—C12—H12119.6C31—C32—C27122.2 (2)
C13—C12—H12119.6C31—C32—H32118.9
N6—C13—C16121.9 (2)C27—C32—H32118.9
N6—C13—C12121.5 (2)N5—C33—H33A109.5
C16—C13—C12116.6 (2)N5—C33—H33B109.5
N6—C14—H14A109.5H33A—C33—H33B109.5
N6—C14—H14B109.5N5—C33—H33C109.5
H14A—C14—H14B109.5H33A—C33—H33C109.5
N6—C14—H14C109.5H33B—C33—H33C109.5
H14A—C14—H14C109.5N5—C34—H34A109.5
H14B—C14—H14C109.5N5—C34—H34B109.5
N6—C15—H15A109.5H34A—C34—H34B109.5
N6—C15—H15B109.5N5—C34—H34C109.5
H15A—C15—H15B109.5H34A—C34—H34C109.5
N6—C15—H15C109.5H34B—C34—H34C109.5
H15A—C15—H15C109.5C9—N1—N2111.5 (2)
H15B—C15—H15C109.5C7—N2—N1116.83 (19)
C17—C16—C13121.7 (2)C26—N3—N4114.76 (18)
C17—C16—H16119.2C24—N4—N3121.64 (19)
C13—C16—H16119.2C24—N4—H4112.0 (13)
C16—C17—C10121.8 (2)N3—N4—H4126.3 (14)
C16—C17—H17119.1C30—N5—C33121.4 (2)
C10—C17—H17119.1C30—N5—C34121.1 (2)
O4—C18—C23117.3 (2)C33—N5—C34117.3 (2)
O4—C18—C19122.7 (2)C13—N6—C14120.1 (2)
C23—C18—C19120.0 (2)C13—N6—C15120.2 (2)
C20—C19—C18119.0 (2)C14—N6—C15116.6 (2)
C20—C19—H19120.5C5—O1—H1105 (2)
C18—C19—H19120.5C1—O2—H2A108.2 (16)
C19—C20—C21123.1 (2)C18—O4—H4A113.7 (19)
C19—C20—H20118.4
O2—C1—C2—C3178.6 (2)C24—C21—C22—C23174.86 (19)
C6—C1—C2—C31.5 (3)O4—C18—C23—C22177.19 (19)
C1—C2—C3—C40.9 (4)C19—C18—C23—C222.4 (3)
C2—C3—C4—C50.2 (3)O3—C22—C23—C18176.38 (19)
C2—C3—C4—C7179.7 (2)C21—C22—C23—C181.9 (3)
C3—C4—C5—O1178.8 (2)C20—C21—C24—N4174.0 (2)
C7—C4—C5—O10.7 (3)C22—C21—C24—N40.7 (3)
C3—C4—C5—C60.6 (3)C20—C21—C24—C254.0 (3)
C7—C4—C5—C6179.9 (2)C22—C21—C24—C25178.7 (2)
O2—C1—C6—C5179.1 (2)N3—C26—C27—C32180.0 (2)
C2—C1—C6—C51.1 (3)N3—C26—C27—C281.2 (3)
O1—C5—C6—C1179.4 (2)C32—C27—C28—C290.3 (3)
C4—C5—C6—C10.0 (3)C26—C27—C28—C29179.1 (2)
C3—C4—C7—N2174.5 (2)C27—C28—C29—C300.4 (4)
C5—C4—C7—N25.0 (3)C28—C29—C30—N5179.5 (2)
C3—C4—C7—C85.6 (3)C28—C29—C30—C310.9 (3)
C5—C4—C7—C8174.9 (2)N5—C30—C31—C32179.7 (2)
N1—C9—C10—C11178.7 (2)C29—C30—C31—C320.8 (3)
N1—C9—C10—C171.1 (4)C30—C31—C32—C270.1 (4)
C17—C10—C11—C120.0 (4)C28—C27—C32—C310.5 (3)
C9—C10—C11—C12179.8 (2)C26—C27—C32—C31179.3 (2)
C10—C11—C12—C130.9 (4)C10—C9—N1—N2179.7 (2)
C11—C12—C13—N6177.7 (2)C4—C7—N2—N1179.66 (18)
C11—C12—C13—C161.1 (3)C8—C7—N2—N10.2 (3)
N6—C13—C16—C17178.3 (2)C9—N1—N2—C7177.1 (2)
C12—C13—C16—C170.5 (4)C27—C26—N3—N4178.59 (18)
C13—C16—C17—C100.4 (4)C21—C24—N4—N3175.20 (18)
C11—C10—C17—C160.7 (4)C25—C24—N4—N32.9 (3)
C9—C10—C17—C16179.6 (2)C26—N3—N4—C24174.93 (19)
O4—C18—C19—C20178.7 (2)C31—C30—N5—C33179.9 (2)
C23—C18—C19—C200.9 (3)C29—C30—N5—C330.4 (3)
C18—C19—C20—C211.0 (4)C31—C30—N5—C344.8 (3)
C19—C20—C21—C221.5 (3)C29—C30—N5—C34174.8 (2)
C19—C20—C21—C24173.5 (2)C16—C13—N6—C14165.4 (2)
C20—C21—C22—O3178.32 (18)C12—C13—N6—C1415.9 (3)
C24—C21—C22—O33.4 (3)C16—C13—N6—C155.8 (4)
C20—C21—C22—C230.1 (3)C12—C13—N6—C15175.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N20.86 (1)1.71 (2)2.507 (3)152 (3)
N4—H4···O30.94 (1)1.72 (2)2.557 (2)147 (2)
O2—H2A···O3i0.96 (3)1.71 (3)2.668 (2)170 (2)
O4—H4A···O3ii0.84 (3)1.87 (3)2.674 (2)161 (3)
Symmetry codes: (i) x+1, y1, z; (ii) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H19N3O2·C17H19N3O2
Mr594.70
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)11.872 (3), 9.630 (2), 28.441 (7)
β (°) 71.932 (4)
V3)3091.4 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.49 × 0.40 × 0.06
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
12702, 5461, 3429
Rint0.041
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.137, 1.02
No. of reflections5461
No. of parameters413
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.18

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N20.864 (10)1.711 (17)2.507 (3)152 (3)
N4—H4···O30.940 (9)1.720 (15)2.557 (2)146.6 (19)
O2—H2A···O3i0.96 (3)1.71 (3)2.668 (2)170 (2)
O4—H4A···O3ii0.84 (3)1.87 (3)2.674 (2)161 (3)
Symmetry codes: (i) x+1, y1, z; (ii) x, y1/2, z+1/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds