Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Controlled introduction of proton transfer into the design of a series of mol­ecular complexes is described, delivering the systematic production of ionic mol­ecular complexes (mol­ecular salts). The controlled production of mol­ecular salts has relevance as a potential strategy in the design of pharmaceutical materials. In nine mol­ecular complexes consisting of bromanilic acid with the N-heterocyclic compounds 2-, 3- and 4-picoline [bis(2/3/4-methylpyridinium) 2,5-dibromo-3,6-di­oxo­cyclohexa-1,4-diene-1,4-diolate, 2C6H8N+·C6Br2O42−], 2,3-, 2,4-, 2,5- and 3,5-lutidine [2,3/2,4/2,5/3,5-dimethylpyridin­ium 2,5-dibromo-4-hydroxy-3,6-dioxocyclohexa-1,4-dien-1-ol­ate, C7H10N+·C6HBr2O4], and 3-bromo-4-methylpyridine [3-bromo-4-methylpyridinium 2,5-dibromo-4-hydroxy-3,6-di­oxocyclohexa-1,4-dien-1-ol­ate, C6H7BrN+·C6HBr2O4] and 2-bromo-3-methyl­pyridine [2-bromo-3-methyl­pyridine–2,5-di­bromo-3,6-dihydroxycyclohexa-2,5-diene-1,4-dione (1/1), C6H6BrN·C6H2Br2O4], proton transfer occurs readily between the bromanilic acid mol­ecule and the N heteroatom of the pyri­dine ring, in all cases producing a charge-assisted bifurcated N—H...O hydrogen bond. This reinforces the value of this motif as a design tool in the crystal engineering of such complexes. The protonation state (and stoichiometry) significantly affect the supra­molecular synthons obtained, but 1:2 stoichiometries reliably give rise to PBP synthons and 1:1 stoichiometries to PBBP synthons (where P indicates a methyl­pyridine co-mol­ecule and B a bromanilic acid mol­ecule). The influence of halogen inter­actions on the wider crystal packing is also discussed, with C—H...Br and Br...O inter­actions the most prevalent; only one Br...Br inter­action is found.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270113029533/fm3015sup1.cif
Contains datablocks global, ba2pic_100k_1-1, ba3pic100k1121apr_0m, br3p14jan_0m, ba24lut, ba25lut_100k_11aug_0m, ba_35lut, ba_3br4mepyr, ba23lut, ba_2br3mepyr

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113029533/fm3015ba2pic_100k_1-1sup2.hkl
Contains datablock ba2pic_100k_1-1

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113029533/fm3015ba3pic100k1121apr_0msup3.hkl
Contains datablock ba3pic100k1121apr_0m

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113029533/fm3015br3p14jan_0msup4.hkl
Contains datablock br3p14jan_0m

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113029533/fm3015ba24lutsup6.hkl
Contains datablock ba24lut

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113029533/fm3015ba25lut_100k_11aug_0msup7.hkl
Contains datablock ba25lut_100k_11aug_0m

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113029533/fm3015ba_35lutsup8.hkl
Contains datablock ba_35lut

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113029533/fm3015ba_3br4mepyrsup10.hkl
Contains datablock ba_3br4mepyr

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113029533/fm3015ba23lutsup5.hkl
Contains datablock ba23lut

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113029533/fm3015ba_2br3mepyrsup9.hkl
Contains datablock ba_2br3mepyr

CCDC references: 968745; 968746; 968747; 968748; 968749; 968750; 968751; 968752; 968753

Computing details top

For all compounds, data collection: APEX2 (Bruker, 2009); cell refinement: APEX2 (Bruker, 2009); data reduction: APEX2 (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008). Program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008) for ba2pic_100k_1-1, ba24lut, ba_3br4mepyr; SHELXL97 (Sheldrick, 2008) for ba3pic100k1121apr_0m, br3p14jan_0m, ba25lut_100k_11aug_0m, ba_35lut, ba23lut, ba_2br3mepyr.

(ba2pic_100k_1-1) Bis(2-picolinium) bromanilate top
Crystal data top
2C6H8N+·C6Br2O42Z = 4
Mr = 484.15F(000) = 960
Monoclinic, P21/cDx = 1.799 Mg m3
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 16.3604 (13) ŵ = 4.56 mm1
b = 7.7452 (6) ÅT = 100 K
c = 14.3658 (9) ÅBlock, purple
β = 100.911 (3)°0.3 × 0.25 × 0.15 mm
V = 1787.4 (2) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3506 reflections with I > 2σ(I)
CCD; rotation images scansRint = 0.056
Absorption correction: multi-scan
(SADABS; Blessing, 1995)
θmax = 29.4°, θmin = 1.3°
Tmin = 0.567, Tmax = 1.000h = 2222
20956 measured reflectionsk = 1010
4883 independent reflectionsl = 1917
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.0356P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
4883 reflectionsΔρmax = 0.64 e Å3
245 parametersΔρmin = 0.45 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C140.37734 (17)0.6533 (4)0.6404 (2)0.0225 (6)
H140.35490.64630.69510.027*
N20.47738 (15)0.7632 (3)0.55824 (16)0.0154 (5)
H20.5221 (18)0.819 (3)0.555 (2)0.014 (8)*
C130.44575 (17)0.7605 (3)0.6381 (2)0.0182 (6)
C160.37626 (17)0.5683 (3)0.4798 (2)0.0198 (6)
H160.3530.50580.4260.024*
C170.44378 (18)0.6720 (3)0.4803 (2)0.0190 (6)
H170.4670.67990.42610.023*
C150.34340 (18)0.5586 (4)0.5619 (2)0.0228 (6)
H150.2980.48730.56370.027*
C180.48453 (18)0.8700 (4)0.7190 (2)0.0233 (6)
H18A0.5180.79950.76650.035*
H18B0.44180.92560.74570.035*
H18C0.51890.9560.69740.035*
Br10.77406 (2)1.20048 (3)0.68748 (2)0.01821 (8)
Br20.69958 (2)0.79178 (3)0.26985 (2)0.01666 (8)
O30.59107 (12)0.8222 (2)0.42497 (13)0.0183 (4)
O10.87359 (12)1.1929 (2)0.52699 (13)0.0204 (4)
O20.84955 (12)1.0180 (3)0.36536 (13)0.0235 (5)
O40.62485 (11)0.9647 (2)0.59632 (13)0.0184 (4)
C50.65969 (16)0.8970 (3)0.44594 (18)0.0136 (5)
C60.67803 (17)0.9850 (3)0.54532 (18)0.0143 (5)
C40.71999 (16)0.9081 (3)0.38883 (18)0.0147 (5)
C20.80862 (16)1.1020 (3)0.50893 (18)0.0154 (5)
C10.75152 (17)1.0828 (3)0.56894 (18)0.0151 (5)
C30.79362 (16)1.0039 (3)0.41342 (18)0.0151 (5)
N10.96988 (16)1.2838 (3)0.40231 (18)0.0191 (5)
H10.934 (3)1.254 (5)0.426 (3)0.058 (14)*
C101.09443 (19)1.2292 (4)0.3478 (2)0.0225 (6)
H101.13571.15310.33710.027*
C91.09745 (17)1.4029 (4)0.32392 (18)0.0206 (6)
H91.14081.44440.29660.025*
C81.03543 (17)1.5140 (3)0.34108 (18)0.0191 (6)
H81.03791.63050.32620.023*
C70.97025 (17)1.4529 (3)0.37997 (18)0.0166 (5)
C111.02907 (18)1.1726 (3)0.3874 (2)0.0202 (6)
H111.02581.0570.40390.024*
C120.89918 (18)1.5601 (4)0.3976 (2)0.0241 (6)
H12A0.85141.53850.34890.036*
H12B0.91391.68010.3970.036*
H12C0.88651.5310.45820.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C140.0175 (15)0.0271 (15)0.0244 (16)0.0084 (12)0.0076 (12)0.0078 (13)
N20.0142 (12)0.0156 (11)0.0167 (12)0.0021 (9)0.0037 (9)0.0031 (9)
C130.0193 (15)0.0181 (13)0.0176 (14)0.0080 (10)0.0046 (11)0.0043 (11)
C160.0147 (14)0.0196 (13)0.0248 (15)0.0022 (11)0.0028 (11)0.0003 (11)
C170.0188 (15)0.0183 (13)0.0201 (15)0.0065 (11)0.0038 (11)0.0032 (11)
C150.0176 (15)0.0217 (14)0.0305 (17)0.0022 (11)0.0081 (12)0.0073 (12)
C180.0213 (16)0.0280 (15)0.0206 (15)0.0060 (12)0.0036 (11)0.0019 (13)
Br10.02134 (16)0.02129 (14)0.01274 (14)0.00143 (11)0.00508 (10)0.00220 (11)
Br20.01661 (15)0.01926 (13)0.01452 (14)0.00167 (11)0.00401 (10)0.00316 (11)
O30.0170 (10)0.0197 (10)0.0187 (10)0.0032 (8)0.0046 (8)0.0016 (8)
O10.0224 (11)0.0223 (10)0.0176 (10)0.0088 (8)0.0069 (8)0.0054 (8)
O20.0206 (11)0.0298 (11)0.0226 (11)0.0077 (9)0.0103 (8)0.0060 (9)
O40.0168 (10)0.0237 (10)0.0166 (10)0.0008 (8)0.0078 (8)0.0018 (8)
C50.0127 (13)0.0112 (11)0.0170 (13)0.0037 (10)0.0028 (10)0.0028 (10)
C60.0184 (15)0.0126 (11)0.0127 (13)0.0040 (10)0.0043 (10)0.0039 (10)
C40.0160 (14)0.0172 (12)0.0108 (13)0.0002 (10)0.0024 (10)0.0006 (10)
C20.0169 (14)0.0139 (12)0.0155 (13)0.0023 (10)0.0030 (10)0.0011 (10)
C10.0206 (15)0.0148 (12)0.0111 (13)0.0009 (10)0.0057 (10)0.0010 (10)
C30.0159 (14)0.0157 (12)0.0145 (13)0.0005 (10)0.0046 (10)0.0004 (10)
N10.0160 (13)0.0221 (12)0.0198 (13)0.0042 (10)0.0050 (10)0.0015 (10)
C100.0236 (16)0.0272 (15)0.0156 (14)0.0044 (12)0.0011 (11)0.0013 (12)
C90.0181 (15)0.0298 (15)0.0141 (14)0.0074 (12)0.0036 (10)0.0014 (12)
C80.0224 (15)0.0179 (13)0.0152 (14)0.0029 (11)0.0005 (11)0.0002 (11)
C70.0177 (14)0.0198 (13)0.0109 (13)0.0004 (11)0.0010 (10)0.0002 (10)
C110.0210 (15)0.0169 (13)0.0217 (15)0.0009 (11)0.0021 (11)0.0015 (11)
C120.0243 (16)0.0285 (15)0.0177 (15)0.0033 (12)0.0005 (12)0.0033 (12)
Geometric parameters (Å, º) top
C14—C151.371 (4)C5—C41.400 (4)
C14—C131.399 (4)C5—C61.559 (4)
C14—H140.93C6—C11.407 (4)
N2—C131.346 (3)C4—C31.402 (4)
N2—C171.350 (4)C2—C11.394 (4)
N2—H20.86 (3)C2—C31.547 (4)
C13—C181.481 (4)N1—C111.343 (4)
C16—C171.365 (4)N1—C71.349 (3)
C16—C151.388 (4)N1—H10.77 (4)
C16—H160.93C10—C111.375 (4)
C17—H170.93C10—C91.392 (4)
C15—H150.93C10—H100.93
C18—H18A0.96C9—C81.387 (4)
C18—H18B0.96C9—H90.93
C18—H18C0.96C8—C71.378 (4)
Br1—C11.905 (2)C8—H80.93
Br2—C41.905 (3)C7—C121.489 (4)
O3—C51.249 (3)C11—H110.93
O1—C21.260 (3)C12—H12A0.96
O2—C31.251 (3)C12—H12B0.96
O4—C61.249 (3)C12—H12C0.96
C15—C14—C13120.0 (3)O1—C2—C1124.8 (2)
C15—C14—H14120O1—C2—C3116.3 (2)
C13—C14—H14120C1—C2—C3118.9 (2)
C13—N2—C17122.5 (3)C2—C1—C6123.4 (2)
C13—N2—H2121.9 (19)C2—C1—Br1117.56 (19)
C17—N2—H2115.5 (19)C6—C1—Br1119.02 (19)
N2—C13—C14117.9 (3)O2—C3—C4126.2 (2)
N2—C13—C18118.9 (3)O2—C3—C2115.9 (2)
C14—C13—C18123.2 (3)C4—C3—C2117.9 (2)
C17—C16—C15118.1 (3)C11—N1—C7123.3 (3)
C17—C16—H16121C11—N1—H1121 (3)
C15—C16—H16121C7—N1—H1116 (3)
N2—C17—C16121.0 (3)C11—C10—C9118.5 (3)
N2—C17—H17119.5C11—C10—H10120.8
C16—C17—H17119.5C9—C10—H10120.8
C14—C15—C16120.6 (3)C8—C9—C10119.6 (3)
C14—C15—H15119.7C8—C9—H9120.2
C16—C15—H15119.7C10—C9—H9120.2
C13—C18—H18A109.5C7—C8—C9120.5 (3)
C13—C18—H18B109.5C7—C8—H8119.7
H18A—C18—H18B109.5C9—C8—H8119.7
C13—C18—H18C109.5N1—C7—C8117.9 (3)
H18A—C18—H18C109.5N1—C7—C12117.5 (3)
H18B—C18—H18C109.5C8—C7—C12124.5 (3)
O3—C5—C4126.0 (2)N1—C11—C10120.2 (3)
O3—C5—C6115.6 (2)N1—C11—H11119.9
C4—C5—C6118.4 (2)C10—C11—H11119.9
O4—C6—C1125.8 (2)C7—C12—H12A109.5
O4—C6—C5116.6 (2)C7—C12—H12B109.5
C1—C6—C5117.6 (2)H12A—C12—H12B109.5
C5—C4—C3123.5 (2)C7—C12—H12C109.5
C5—C4—Br2118.27 (19)H12A—C12—H12C109.5
C3—C4—Br2118.22 (19)H12B—C12—H12C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O40.86 (3)2.02 (3)2.838 (3)159 (3)
N2—H2···O30.86 (3)2.36 (3)2.946 (3)126 (2)
N1—H1···O10.77 (4)1.96 (4)2.693 (3)160 (4)
N1—H1···O20.77 (4)2.36 (4)2.828 (3)121 (4)
(ba3pic100k1121apr_0m) Bis(3-picolinium) bromanilate top
Crystal data top
2C6H8N+·C6Br2O42Z = 2
Mr = 484.15F(000) = 480
Monoclinic, P21/cDx = 1.846 Mg m3
a = 8.9526 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.6149 (8) ŵ = 4.68 mm1
c = 10.4275 (8) ÅT = 100 K
β = 103.935 (4)°Block, purple
V = 871.17 (12) Å30.3 × 0.25 × 0.15 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2018 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
CCD; rotation images scansθmax = 28.9°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Blessing, 1995)
h = 1212
Tmin = 0.671, Tmax = 1.000k = 1311
9784 measured reflectionsl = 1114
2280 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: mixed
wR(F2) = 0.061H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0286P)2 + 0.5432P]
where P = (Fo2 + 2Fc2)/3
2280 reflections(Δ/σ)max < 0.001
123 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.63 e Å3
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H50.893 (4)0.515 (3)0.285 (3)0.057 (10)*
Br10.43444 (2)0.23608 (2)0.18610 (2)0.01678 (7)
O10.71755 (15)0.42622 (14)0.21943 (13)0.0185 (3)
O20.23321 (14)0.35789 (14)0.07254 (14)0.0182 (3)
C10.4732 (2)0.38635 (18)0.07990 (18)0.0137 (3)
C30.3575 (2)0.41949 (18)0.03428 (18)0.0136 (3)
C61.2623 (2)0.61801 (19)0.47325 (18)0.0158 (4)
H61.35810.64540.52370.019*
C20.6123 (2)0.45631 (18)0.11904 (18)0.0135 (3)
N10.98369 (19)0.53679 (17)0.32431 (16)0.0179 (3)
C40.9917 (2)0.64850 (19)0.40243 (19)0.0160 (4)
H40.90210.69630.40470.019*
C51.1315 (2)0.69418 (19)0.47996 (18)0.0141 (3)
C71.2510 (2)0.5025 (2)0.39267 (19)0.0181 (4)
H71.33840.45210.38860.022*
C91.1387 (2)0.8178 (2)0.5686 (2)0.0210 (4)
H9A1.15190.90070.52130.031*
H9B1.22390.80770.64410.031*
H9C1.04480.82420.59740.031*
C81.1086 (2)0.4633 (2)0.31852 (19)0.0195 (4)
H81.09920.38540.26420.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01435 (10)0.01840 (11)0.01676 (11)0.00363 (7)0.00212 (7)0.00366 (7)
O10.0149 (6)0.0217 (7)0.0159 (7)0.0044 (5)0.0021 (5)0.0023 (5)
O20.0133 (6)0.0184 (7)0.0207 (7)0.0043 (5)0.0004 (5)0.0005 (5)
C10.0145 (8)0.0134 (8)0.0136 (9)0.0027 (6)0.0042 (7)0.0001 (7)
C30.0129 (8)0.0138 (8)0.0138 (9)0.0005 (6)0.0027 (6)0.0032 (7)
C60.0113 (8)0.0192 (9)0.0159 (9)0.0013 (7)0.0011 (7)0.0013 (7)
C20.0136 (8)0.0142 (8)0.0127 (8)0.0006 (6)0.0034 (7)0.0025 (7)
N10.0150 (8)0.0223 (8)0.0138 (8)0.0055 (6)0.0016 (6)0.0051 (6)
C40.0127 (8)0.0177 (9)0.0168 (9)0.0015 (7)0.0023 (7)0.0072 (7)
C50.0151 (8)0.0138 (8)0.0140 (9)0.0009 (7)0.0044 (7)0.0035 (7)
C70.0175 (9)0.0182 (9)0.0190 (9)0.0034 (7)0.0055 (7)0.0016 (7)
C90.0212 (9)0.0177 (9)0.0259 (11)0.0002 (7)0.0091 (8)0.0029 (8)
C80.0258 (10)0.0172 (9)0.0151 (9)0.0035 (7)0.0044 (8)0.0009 (7)
Geometric parameters (Å, º) top
Br1—C11.9025 (18)N1—C41.339 (3)
O1—C21.262 (2)N1—H50.85 (3)
O2—C31.238 (2)C4—C51.387 (3)
C1—C21.387 (2)C4—H40.9300
C1—C31.414 (2)C5—C91.498 (3)
C3—C2i1.548 (3)C7—C81.375 (3)
C6—C71.381 (3)C7—H70.9300
C6—C51.397 (3)C9—H9A0.9600
C6—H60.9300C9—H9B0.9600
C2—C3i1.548 (3)C9—H9C0.9600
N1—C81.336 (3)C8—H80.9300
C2—C1—C3124.22 (16)C5—C4—H4119.4
C2—C1—Br1118.27 (13)C4—C5—C6117.00 (17)
C3—C1—Br1117.51 (13)C4—C5—C9120.62 (17)
O2—C3—C1125.66 (17)C6—C5—C9122.36 (16)
O2—C3—C2i116.88 (16)C8—C7—C6118.99 (18)
C1—C3—C2i117.47 (15)C8—C7—H7120.5
C7—C6—C5120.83 (17)C6—C7—H7120.5
C7—C6—H6119.6C5—C9—H9A109.5
C5—C6—H6119.6C5—C9—H9B109.5
O1—C2—C1124.82 (17)H9A—C9—H9B109.5
O1—C2—C3i116.88 (15)C5—C9—H9C109.5
C1—C2—C3i118.30 (15)H9A—C9—H9C109.5
C8—N1—C4121.90 (16)H9B—C9—H9C109.5
C8—N1—H5124 (2)N1—C8—C7120.14 (18)
C4—N1—H5114 (2)N1—C8—H8119.9
N1—C4—C5121.13 (17)C7—C8—H8119.9
N1—C4—H4119.4
C2—C1—C3—O2179.04 (18)C8—N1—C4—C50.9 (3)
Br1—C1—C3—O21.0 (3)N1—C4—C5—C60.4 (3)
C2—C1—C3—C2i1.2 (3)N1—C4—C5—C9178.95 (17)
Br1—C1—C3—C2i178.77 (12)C7—C6—C5—C40.1 (3)
C3—C1—C2—O1178.72 (18)C7—C6—C5—C9178.45 (18)
Br1—C1—C2—O11.4 (3)C5—C6—C7—C80.1 (3)
C3—C1—C2—C3i1.2 (3)C4—N1—C8—C70.9 (3)
Br1—C1—C2—C3i178.76 (12)C6—C7—C8—N10.4 (3)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H5···O10.84 (3)1.78 (3)2.598 (2)165 (3)
N1—H5···O2i0.84 (3)2.54 (3)3.039 (2)119 (3)
C4—H4···Br1ii0.932.963.7977 (18)151
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1/2, z+1/2.
(br3p14jan_0m) Bis(4-picolinium) bromanilate top
Crystal data top
2C6H8N+·C6Br2O42Z = 2
Mr = 484.15F(000) = 480
Monoclinic, P21/cDx = 1.817 Mg m3
a = 8.1345 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 6.1517 (6) ŵ = 4.61 mm1
c = 17.7868 (17) ÅT = 100 K
β = 96.177 (7)°Block, purple
V = 884.90 (15) Å30.35 × 0.25 × 0.2 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2464 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
CCD; rotation images scansθmax = 32.8°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Blessing, 1995)
h = 1112
Tmin = 0.576, Tmax = 1.000k = 98
14105 measured reflectionsl = 2625
3234 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: mixed
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.040P)2 + 0.2356P]
where P = (Fo2 + 2Fc2)/3
3234 reflections(Δ/σ)max < 0.001
123 parametersΔρmax = 0.82 e Å3
0 restraintsΔρmin = 0.54 e Å3
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H30.105 (4)0.310 (6)0.2171 (19)0.047 (10)*
Br10.25110 (3)0.07121 (3)0.02493 (2)0.01863 (8)
O10.07011 (19)0.2668 (2)0.12123 (8)0.0186 (3)
O20.1218 (2)0.6144 (3)0.14197 (9)0.0189 (3)
C30.0715 (3)0.5690 (3)0.07520 (12)0.0154 (4)
C50.3229 (3)0.0633 (3)0.26829 (13)0.0196 (4)
H50.35460.20000.25280.024*
C60.2127 (3)0.0570 (4)0.22235 (13)0.0215 (5)
H60.16850.00140.17590.026*
C20.0452 (2)0.3690 (3)0.06305 (12)0.0146 (4)
N10.1680 (3)0.2553 (3)0.24406 (11)0.0214 (4)
C40.3880 (3)0.0175 (4)0.33817 (13)0.0176 (4)
C10.1120 (3)0.3196 (3)0.01073 (12)0.0157 (4)
C70.2265 (3)0.3409 (4)0.31087 (13)0.0213 (4)
H70.19250.47810.32470.026*
C80.3370 (3)0.2240 (4)0.35860 (12)0.0195 (4)
H80.37830.28270.40500.023*
C90.5047 (3)0.1147 (4)0.39065 (15)0.0275 (5)
H9A0.44640.17450.43000.041*
H9B0.59300.02370.41260.041*
H9C0.54940.23060.36300.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02148 (12)0.01545 (11)0.01885 (12)0.00438 (8)0.00160 (8)0.00058 (8)
O10.0216 (8)0.0192 (7)0.0148 (7)0.0018 (6)0.0013 (6)0.0037 (6)
O20.0247 (8)0.0181 (7)0.0134 (7)0.0011 (6)0.0003 (6)0.0014 (6)
C30.0152 (10)0.0133 (9)0.0176 (10)0.0028 (7)0.0019 (8)0.0003 (8)
C50.0230 (11)0.0147 (10)0.0222 (11)0.0006 (8)0.0080 (9)0.0022 (8)
C60.0255 (12)0.0250 (12)0.0141 (10)0.0041 (9)0.0021 (9)0.0035 (8)
C20.0130 (9)0.0139 (9)0.0168 (9)0.0020 (7)0.0015 (8)0.0001 (8)
N10.0219 (10)0.0261 (11)0.0165 (9)0.0058 (8)0.0030 (8)0.0047 (8)
C40.0155 (10)0.0185 (10)0.0196 (10)0.0018 (8)0.0048 (8)0.0046 (8)
C10.0151 (10)0.0125 (9)0.0193 (10)0.0015 (7)0.0001 (8)0.0000 (8)
C70.0251 (11)0.0171 (11)0.0221 (11)0.0041 (9)0.0045 (9)0.0014 (9)
C80.0212 (11)0.0211 (11)0.0160 (10)0.0010 (8)0.0016 (8)0.0039 (8)
C90.0214 (12)0.0289 (12)0.0319 (13)0.0045 (9)0.0015 (10)0.0092 (10)
Geometric parameters (Å, º) top
Br1—C11.902 (2)N1—C71.339 (3)
O1—C21.246 (2)N1—H30.74 (3)
O2—C31.246 (3)C4—C81.396 (3)
C3—C1i1.405 (3)C4—C91.498 (3)
C3—C21.554 (3)C1—C3i1.405 (3)
C5—C61.364 (3)C7—C81.372 (3)
C5—C41.390 (3)C7—H70.9300
C5—H50.9300C8—H80.9300
C6—N11.341 (3)C9—H9A0.9600
C6—H60.9300C9—H9B0.9600
C2—C11.399 (3)C9—H9C0.9600
O2—C3—C1i125.9 (2)C8—C4—C9121.2 (2)
O2—C3—C2116.31 (18)C2—C1—C3i123.93 (19)
C1i—C3—C2117.75 (18)C2—C1—Br1117.69 (15)
C6—C5—C4120.3 (2)C3i—C1—Br1118.15 (15)
C6—C5—H5119.9N1—C7—C8119.3 (2)
C4—C5—H5119.9N1—C7—H7120.3
N1—C6—C5120.1 (2)C8—C7—H7120.3
N1—C6—H6119.9C7—C8—C4120.6 (2)
C5—C6—H6119.9C7—C8—H8119.7
O1—C2—C1126.0 (2)C4—C8—H8119.7
O1—C2—C3115.80 (18)C4—C9—H9A109.5
C1—C2—C3118.17 (18)C4—C9—H9B109.5
C7—N1—C6122.1 (2)H9A—C9—H9B109.5
C7—N1—H3123 (3)C4—C9—H9C109.5
C6—N1—H3115 (3)H9A—C9—H9C109.5
C5—C4—C8117.6 (2)H9B—C9—H9C109.5
C5—C4—C9121.2 (2)
C4—C5—C6—N10.8 (3)O1—C2—C1—C3i175.6 (2)
O2—C3—C2—O13.6 (3)C3—C2—C1—C3i4.4 (3)
C1i—C3—C2—O1175.83 (19)O1—C2—C1—Br11.1 (3)
O2—C3—C2—C1176.4 (2)C3—C2—C1—Br1178.82 (14)
C1i—C3—C2—C14.1 (3)C6—N1—C7—C80.7 (3)
C5—C6—N1—C71.0 (3)N1—C7—C8—C40.2 (3)
C6—C5—C4—C80.3 (3)C5—C4—C8—C70.0 (3)
C6—C5—C4—C9177.9 (2)C9—C4—C8—C7178.2 (2)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H3···O10.74 (3)2.12 (3)2.760 (3)145 (4)
N1—H3···O20.74 (3)2.31 (3)2.859 (3)131 (3)
(ba24lut) 2,4-Dimethylpyridinium bromanilate top
Crystal data top
C7H10N+·C6HBr2O4Z = 4
Mr = 405.04F(000) = 792
Monoclinic, P21/cDx = 1.962 Mg m3
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 8.2948 (2) ŵ = 5.92 mm1
b = 12.1560 (4) ÅT = 100 K
c = 13.9544 (5) ÅBlock, purple
β = 102.966 (2)°0.25 × 0.2 × 0.1 mm
V = 1371.17 (8) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4537 reflections with I > 2σ(I)
CCD; rotation images scansRint = 0.042
Absorption correction: multi-scan
(SADABS; Blessing, 1995)
θmax = 36.0°, θmin = 2.3°
Tmin = 0.631, Tmax = 1.000h = 1312
22482 measured reflectionsk = 2019
6064 independent reflectionsl = 2222
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.0416P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.002
6064 reflectionsΔρmax = 0.85 e Å3
191 parametersΔρmin = 0.56 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9045 (2)0.19237 (15)0.55371 (13)0.0139 (3)
C61.0303 (2)0.18822 (15)0.49598 (13)0.0143 (3)
C51.00553 (19)0.10938 (15)0.40704 (12)0.0128 (3)
C40.8566 (2)0.05013 (15)0.38346 (12)0.0128 (3)
C30.73806 (19)0.05285 (15)0.44130 (12)0.0124 (3)
C20.77015 (19)0.12614 (15)0.53102 (12)0.0122 (3)
O10.65618 (16)0.12722 (12)0.58359 (10)0.0172 (3)
O20.60467 (15)0.00124 (12)0.42410 (9)0.0180 (3)
Br20.81175 (2)0.03915 (2)0.26962 (2)0.01608 (5)
O31.12026 (14)0.10678 (11)0.36234 (9)0.0160 (3)
O41.15299 (15)0.24626 (13)0.51291 (10)0.0211 (3)
Br10.93387 (2)0.29327 (2)0.65786 (2)0.01894 (5)
C70.4727 (2)0.23284 (18)0.31075 (13)0.0184 (4)
C80.6120 (2)0.29544 (18)0.30788 (15)0.0226 (4)
H80.66270.28680.25530.027*
C90.6772 (2)0.37030 (18)0.38125 (17)0.0246 (4)
C100.5959 (2)0.38279 (17)0.45817 (17)0.0233 (4)
H100.63530.43280.50840.028*
C110.4577 (2)0.32110 (17)0.45937 (15)0.0195 (4)
H110.40380.32950.51060.023*
N10.39987 (18)0.24877 (15)0.38719 (12)0.0157 (3)
C130.8327 (3)0.4343 (2)0.3811 (2)0.0379 (6)
H13A0.92590.39720.42130.057*
H13B0.82350.50670.40680.057*
H13C0.84780.43970.3150.057*
C120.4002 (2)0.1503 (2)0.23501 (14)0.0271 (5)
H12A0.3520.09160.26510.041*
H12B0.48540.12140.20560.041*
H12C0.31640.18460.18530.041*
H10.595 (4)0.091 (3)0.565 (2)0.050 (10)*
H20.332 (3)0.211 (2)0.3888 (18)0.023 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0158 (7)0.0135 (9)0.0136 (7)0.0006 (6)0.0059 (6)0.0020 (6)
C60.0143 (7)0.0151 (9)0.0141 (7)0.0005 (6)0.0046 (6)0.0010 (6)
C50.0135 (6)0.0135 (9)0.0117 (7)0.0013 (6)0.0030 (5)0.0020 (6)
C40.0152 (6)0.0128 (9)0.0107 (7)0.0010 (6)0.0034 (5)0.0008 (6)
C30.0147 (7)0.0115 (8)0.0113 (7)0.0002 (6)0.0032 (5)0.0006 (6)
C20.0130 (6)0.0113 (8)0.0134 (7)0.0007 (6)0.0055 (5)0.0000 (6)
O10.0162 (5)0.0178 (7)0.0205 (6)0.0055 (5)0.0100 (5)0.0057 (6)
O20.0168 (5)0.0204 (7)0.0178 (6)0.0071 (5)0.0060 (5)0.0027 (5)
Br20.01998 (8)0.01664 (10)0.01232 (8)0.00307 (6)0.00512 (6)0.00285 (6)
O30.0151 (5)0.0199 (7)0.0146 (6)0.0007 (5)0.0065 (4)0.0012 (5)
O40.0179 (6)0.0250 (8)0.0229 (7)0.0080 (5)0.0097 (5)0.0073 (6)
Br10.02109 (9)0.01842 (10)0.02018 (9)0.00729 (7)0.01073 (7)0.00876 (7)
C70.0149 (7)0.0253 (11)0.0158 (8)0.0077 (7)0.0052 (6)0.0057 (7)
C80.0162 (7)0.0307 (12)0.0236 (9)0.0079 (7)0.0103 (7)0.0126 (8)
C90.0157 (7)0.0214 (11)0.0390 (11)0.0032 (7)0.0109 (7)0.0132 (9)
C100.0179 (8)0.0169 (10)0.0365 (11)0.0020 (7)0.0091 (7)0.0020 (9)
C110.0191 (7)0.0170 (10)0.0251 (9)0.0001 (7)0.0107 (7)0.0008 (8)
N10.0138 (6)0.0166 (8)0.0181 (7)0.0002 (6)0.0065 (5)0.0023 (6)
C130.0202 (9)0.0312 (14)0.0657 (18)0.0011 (9)0.0168 (10)0.0192 (13)
C120.0233 (9)0.0417 (14)0.0159 (8)0.0069 (9)0.0037 (7)0.0048 (9)
Geometric parameters (Å, º) top
C1—C21.353 (2)C3—C21.511 (2)
C1—C61.455 (2)C2—O11.3204 (19)
C1—Br11.8753 (18)C7—N11.352 (2)
C6—O41.217 (2)C7—C81.392 (3)
C6—C51.545 (2)C7—C121.483 (3)
C5—O31.2499 (19)C8—C91.386 (3)
C5—C41.404 (2)C9—C101.398 (3)
C4—C31.405 (2)C9—C131.506 (3)
C4—Br21.8907 (17)C10—C111.373 (3)
C3—O21.248 (2)C11—N11.342 (3)
C2—C1—C6120.32 (16)C4—C3—C2118.29 (14)
C2—C1—Br1121.83 (12)O1—C2—C1121.24 (16)
C6—C1—Br1117.85 (12)O1—C2—C3116.83 (14)
O4—C6—C1123.00 (16)C1—C2—C3121.83 (14)
O4—C6—C5118.05 (14)N1—C7—C8117.71 (19)
C1—C6—C5118.92 (14)N1—C7—C12118.54 (17)
O3—C5—C4126.77 (16)C8—C7—C12123.75 (17)
O3—C5—C6115.96 (14)C9—C8—C7121.78 (17)
C4—C5—C6117.26 (14)C8—C9—C10117.57 (17)
C5—C4—C3123.06 (15)C8—C9—C13122.0 (2)
C5—C4—Br2119.22 (12)C10—C9—C13120.4 (2)
C3—C4—Br2117.72 (12)C11—C10—C9119.9 (2)
O2—C3—C4125.60 (16)N1—C11—C10120.51 (18)
O2—C3—C2116.09 (14)C11—N1—C7122.55 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.68 (3)2.03 (3)2.6509 (18)151 (3)
O1—H1···O20.68 (3)2.26 (3)2.6559 (19)119 (3)
N1—H2···O3ii0.72 (2)2.14 (2)2.849 (2)168 (3)
N1—H2···O4ii0.72 (2)2.56 (2)2.9807 (18)119 (2)
Symmetry codes: (i) x+1, y, z+1; (ii) x1, y, z.
(ba25lut_100k_11aug_0m) 2,5-Dimethylpyridinium bromanilate top
Crystal data top
C7H10N+·C6HBr2O4Z = 4
Mr = 405.05F(000) = 792
Monoclinic, P21/cDx = 1.981 Mg m3
a = 7.7357 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.1416 (6) ŵ = 5.98 mm1
c = 15.8011 (9) ÅT = 100 K
β = 94.269 (3)°Block, purple
V = 1358.09 (13) Å30.35 × 0.25 × 0.15 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
6083 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
CCD; rotation images scansθmax = 42.1°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Blessing, 1995)
h = 1414
Tmin = 0.404, Tmax = 1.000k = 2020
38096 measured reflectionsl = 2829
9404 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0448P)2 + 0.0632P]
where P = (Fo2 + 2Fc2)/3
9404 reflections(Δ/σ)max = 0.001
184 parametersΔρmax = 1.34 e Å3
0 restraintsΔρmin = 1.29 e Å3
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.47843 (2)0.233106 (16)0.109383 (11)0.01484 (4)
Br20.31634 (2)0.007081 (16)0.274211 (11)0.01501 (4)
C30.2818 (2)0.10008 (15)0.01690 (11)0.0119 (3)
C60.5275 (2)0.11978 (14)0.14671 (11)0.0123 (3)
O10.09913 (16)0.00774 (12)0.12129 (9)0.0173 (3)
H10.04730.010.07790.026*
C40.4370 (2)0.16251 (15)0.00124 (11)0.0122 (3)
N10.96656 (18)0.26704 (13)0.16218 (11)0.0155 (3)
H1A0.88040.21910.15840.019*
O30.70419 (18)0.22877 (14)0.04465 (10)0.0258 (3)
O20.16434 (16)0.08351 (13)0.03197 (9)0.0195 (3)
C10.3631 (2)0.05998 (14)0.16580 (10)0.0117 (3)
C20.24886 (19)0.04840 (14)0.10558 (11)0.0117 (3)
C50.5638 (2)0.17603 (16)0.05714 (11)0.0141 (3)
O40.63921 (16)0.12894 (12)0.19711 (9)0.0187 (3)
C71.0291 (2)0.28251 (16)0.23903 (12)0.0156 (3)
C81.1653 (2)0.36261 (16)0.24409 (13)0.0177 (3)
H81.21130.37620.2960.021*
C101.1676 (2)0.40233 (16)0.09342 (12)0.0165 (3)
C111.0320 (2)0.32284 (16)0.09082 (12)0.0162 (3)
H110.98490.30730.03950.019*
C120.9487 (3)0.21602 (18)0.31284 (13)0.0212 (4)
H12A0.95960.13130.30260.032*
H12B1.00610.23670.36260.032*
H12C0.82820.23690.32120.032*
C131.2407 (3)0.46639 (19)0.01483 (14)0.0233 (4)
H13A1.16820.45160.03080.035*
H13B1.2450.55110.02580.035*
H13C1.35560.43730.00060.035*
C91.2329 (2)0.42230 (17)0.17244 (12)0.0173 (3)
H91.32310.47660.17680.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01520 (7)0.01706 (8)0.01267 (8)0.00345 (6)0.00383 (5)0.00279 (6)
Br20.01336 (7)0.02117 (9)0.01085 (8)0.00387 (6)0.00315 (5)0.00109 (6)
C30.0101 (6)0.0137 (7)0.0126 (7)0.0014 (5)0.0046 (5)0.0004 (5)
C60.0107 (6)0.0128 (7)0.0139 (7)0.0009 (5)0.0047 (5)0.0004 (5)
O10.0122 (5)0.0264 (7)0.0141 (6)0.0088 (5)0.0056 (4)0.0027 (5)
C40.0106 (6)0.0134 (7)0.0130 (7)0.0015 (5)0.0033 (5)0.0013 (5)
N10.0104 (5)0.0156 (6)0.0206 (7)0.0011 (5)0.0030 (5)0.0043 (5)
O30.0161 (6)0.0394 (8)0.0232 (7)0.0155 (6)0.0089 (5)0.0115 (6)
O20.0149 (5)0.0284 (7)0.0164 (6)0.0087 (5)0.0086 (4)0.0036 (5)
C10.0102 (6)0.0125 (7)0.0126 (7)0.0016 (5)0.0034 (5)0.0008 (5)
C20.0089 (6)0.0122 (7)0.0144 (7)0.0015 (5)0.0037 (5)0.0007 (5)
C50.0112 (6)0.0163 (7)0.0154 (8)0.0030 (5)0.0049 (5)0.0018 (6)
O40.0137 (5)0.0258 (7)0.0179 (6)0.0056 (5)0.0098 (4)0.0045 (5)
C70.0117 (6)0.0160 (7)0.0195 (8)0.0045 (5)0.0048 (6)0.0026 (6)
C80.0133 (7)0.0199 (8)0.0211 (9)0.0024 (6)0.0094 (6)0.0057 (7)
C100.0098 (6)0.0179 (8)0.0220 (9)0.0013 (6)0.0013 (6)0.0051 (6)
C110.0118 (6)0.0193 (8)0.0178 (8)0.0002 (6)0.0033 (6)0.0051 (6)
C120.0208 (8)0.0214 (9)0.0216 (9)0.0021 (7)0.0040 (7)0.0025 (7)
C130.0202 (8)0.0280 (10)0.0214 (9)0.0036 (7)0.0010 (7)0.0036 (8)
C90.0111 (6)0.0178 (8)0.0236 (9)0.0003 (6)0.0043 (6)0.0054 (6)
Geometric parameters (Å, º) top
Br1—C41.8868 (17)C7—C81.387 (2)
Br2—C11.8792 (17)C7—C121.479 (3)
C3—O21.2495 (19)C8—C91.382 (3)
C3—C41.398 (2)C8—H80.93
C3—C21.519 (2)C10—C111.376 (2)
C6—O41.2224 (19)C10—C91.399 (3)
C6—C11.447 (2)C10—C131.506 (3)
C6—C51.554 (2)C11—H110.93
O1—C21.3235 (19)C12—H12A0.96
O1—H10.82C12—H12B0.96
C4—C51.403 (2)C12—H12C0.96
N1—C71.351 (2)C13—H13A0.96
N1—C111.352 (2)C13—H13B0.96
N1—H1A0.86C13—H13C0.96
O3—C51.238 (2)C9—H90.93
C1—C21.352 (2)
O2—C3—C4126.84 (16)C9—C8—C7120.33 (17)
O2—C3—C2115.73 (14)C9—C8—H8119.8
C4—C3—C2117.41 (14)C7—C8—H8119.8
O4—C6—C1123.74 (16)C11—C10—C9117.11 (17)
O4—C6—C5118.11 (14)C11—C10—C13121.42 (17)
C1—C6—C5118.15 (13)C9—C10—C13121.47 (16)
C2—O1—H1109.5N1—C11—C10120.66 (16)
C3—C4—C5123.35 (15)N1—C11—H11119.7
C3—C4—Br1118.58 (12)C10—C11—H11119.7
C5—C4—Br1118.07 (12)C7—C12—H12A109.5
C7—N1—C11123.63 (15)C7—C12—H12B109.5
C7—N1—H1A118.2H12A—C12—H12B109.5
C11—N1—H1A118.2C7—C12—H12C109.5
C2—C1—C6120.49 (15)H12A—C12—H12C109.5
C2—C1—Br2120.78 (12)H12B—C12—H12C109.5
C6—C1—Br2118.67 (11)C10—C13—H13A109.5
O1—C2—C1121.46 (15)C10—C13—H13B109.5
O1—C2—C3115.90 (13)H13A—C13—H13B109.5
C1—C2—C3122.63 (14)C10—C13—H13C109.5
O3—C5—C4126.44 (16)H13A—C13—H13C109.5
O3—C5—C6115.69 (14)H13B—C13—H13C109.5
C4—C5—C6117.88 (14)C8—C9—C10120.99 (16)
N1—C7—C8117.26 (17)C8—C9—H9119.5
N1—C7—C12119.15 (16)C10—C9—H9119.5
C8—C7—C12123.59 (17)
O2—C3—C4—C5179.27 (17)Br1—C4—C5—O31.3 (3)
C2—C3—C4—C52.0 (2)C3—C4—C5—C60.8 (3)
O2—C3—C4—Br11.1 (2)Br1—C4—C5—C6178.86 (12)
C2—C3—C4—Br1177.66 (11)O4—C6—C5—O31.5 (3)
O4—C6—C1—C2176.91 (17)C1—C6—C5—O3178.24 (16)
C5—C6—C1—C23.3 (2)O4—C6—C5—C4178.34 (16)
O4—C6—C1—Br20.4 (2)C1—C6—C5—C41.9 (2)
C5—C6—C1—Br2179.37 (12)C11—N1—C7—C81.6 (2)
C6—C1—C2—O1178.85 (15)C11—N1—C7—C12179.42 (16)
Br2—C1—C2—O11.6 (2)N1—C7—C8—C90.5 (2)
C6—C1—C2—C32.2 (2)C12—C7—C8—C9179.45 (17)
Br2—C1—C2—C3179.44 (12)C7—N1—C11—C101.3 (3)
O2—C3—C2—O10.4 (2)C9—C10—C11—N10.1 (3)
C4—C3—C2—O1178.49 (15)C13—C10—C11—N1179.28 (16)
O2—C3—C2—C1179.37 (16)C7—C8—C9—C100.8 (3)
C4—C3—C2—C10.5 (2)C11—C10—C9—C81.2 (3)
C3—C4—C5—O3179.05 (18)C13—C10—C9—C8179.70 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.822.012.6994 (17)141
O1—H1···O20.822.162.6403 (19)117
N1—H1A···O40.862.172.9794 (19)158
N1—H1A···O30.862.342.883 (2)122
Symmetry code: (i) x, y, z.
(ba_35lut) 3,5-Dimethylpyridinium bromanilate top
Crystal data top
C7H10N+·C6HBr2O4Z = 4
Mr = 405.04F(000) = 792
Monoclinic, P21/cDx = 1.929 Mg m3
a = 11.6766 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.4926 (5) ŵ = 5.82 mm1
c = 11.5221 (5) ÅT = 100 K
β = 98.834 (2)°Block, purple
V = 1394.92 (11) Å30.25 × 0.2 × 0.1 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3131 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
CCD; rotation images scansθmax = 31.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Blessing, 1995)
h = 1312
Tmin = 0.684, Tmax = 1.000k = 1415
14020 measured reflectionsl = 1616
3817 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0335P)2 + 0.6408P]
where P = (Fo2 + 2Fc2)/3
3817 reflections(Δ/σ)max = 0.001
191 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.45 e Å3
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

H atoms were placed on calculated positions modelled as riding on the atoms to which they were bonded except those involved in hydrogen bonding H1 and H2 (bonded to O1 and N1, respectively) which were identified in a Fourier difference map and the position and isotropic thermal parameters allowed to freely refine.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1510 (2)0.0322 (2)0.38903 (18)0.0123 (5)
C60.0825 (2)0.1413 (2)0.41310 (18)0.0123 (4)
C50.1428 (2)0.2483 (2)0.49363 (18)0.0123 (4)
C40.2597 (2)0.2332 (2)0.53947 (18)0.0112 (4)
C30.3269 (2)0.1288 (2)0.51195 (18)0.0120 (5)
C20.2658 (2)0.0288 (2)0.42894 (18)0.0122 (5)
O10.33345 (18)0.06415 (16)0.40007 (15)0.0165 (4)
O20.43032 (15)0.10769 (16)0.55024 (13)0.0158 (3)
Br20.32803 (2)0.35454 (2)0.649891 (18)0.01431 (7)
O30.08053 (15)0.33992 (15)0.51253 (15)0.0173 (4)
O40.01960 (15)0.15499 (16)0.37320 (14)0.0183 (4)
Br10.07565 (2)0.09875 (2)0.295328 (19)0.01606 (7)
C100.3537 (2)0.6732 (2)0.55142 (19)0.0144 (5)
C90.3628 (2)0.6104 (2)0.44682 (19)0.0155 (5)
H90.43590.59710.42630.019*
C80.2654 (2)0.5670 (2)0.37211 (18)0.0151 (5)
C70.1590 (2)0.5907 (2)0.40512 (19)0.0144 (5)
H70.0920.56310.35740.017*
N10.15066 (19)0.65280 (18)0.50482 (16)0.0137 (4)
C110.2440 (2)0.6936 (2)0.57811 (19)0.0142 (5)
H110.23470.73580.6470.017*
C120.2730 (2)0.4943 (3)0.2616 (2)0.0239 (6)
H12A0.27010.40450.2770.036*
H12B0.34460.51440.23440.036*
H12C0.20920.51740.20250.036*
C130.4582 (2)0.7162 (3)0.6358 (2)0.0230 (6)
H13A0.46060.80760.63790.034*
H13B0.52730.68420.61040.034*
H13C0.45310.6840.71290.034*
H20.078 (3)0.664 (3)0.528 (3)0.037 (9)*
H10.393 (3)0.058 (3)0.428 (3)0.026 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0128 (14)0.0138 (10)0.0105 (9)0.0014 (8)0.0030 (8)0.0005 (7)
C60.0116 (14)0.0143 (10)0.0115 (9)0.0005 (9)0.0030 (8)0.0019 (8)
C50.0120 (13)0.0126 (10)0.0132 (9)0.0006 (8)0.0045 (8)0.0022 (8)
C40.0086 (13)0.0133 (10)0.0120 (9)0.0000 (8)0.0023 (8)0.0001 (7)
C30.0101 (14)0.0153 (10)0.0114 (9)0.0018 (8)0.0044 (8)0.0050 (8)
C20.0143 (14)0.0112 (10)0.0118 (9)0.0040 (8)0.0046 (8)0.0035 (7)
O10.0109 (11)0.0174 (8)0.0212 (8)0.0056 (7)0.0021 (7)0.0023 (6)
O20.0097 (10)0.0202 (8)0.0177 (7)0.0050 (7)0.0024 (6)0.0006 (6)
Br20.01108 (15)0.01456 (11)0.01695 (11)0.00013 (8)0.00107 (8)0.00140 (8)
O30.0115 (10)0.0145 (8)0.0259 (8)0.0028 (6)0.0028 (7)0.0038 (6)
O40.0117 (10)0.0202 (8)0.0220 (8)0.0041 (7)0.0012 (7)0.0033 (7)
Br10.01622 (16)0.01440 (11)0.01679 (11)0.00185 (9)0.00011 (9)0.00278 (8)
C100.0115 (14)0.0145 (10)0.0165 (10)0.0007 (9)0.0003 (9)0.0033 (8)
C90.0094 (14)0.0203 (11)0.0175 (10)0.0042 (9)0.0043 (9)0.0052 (9)
C80.0182 (15)0.0146 (10)0.0126 (9)0.0049 (9)0.0028 (9)0.0020 (8)
C70.0138 (14)0.0128 (10)0.0156 (10)0.0014 (9)0.0012 (9)0.0005 (8)
N10.0077 (12)0.0167 (9)0.0171 (9)0.0023 (8)0.0034 (8)0.0004 (7)
C110.0149 (14)0.0132 (10)0.0149 (9)0.0002 (9)0.0037 (9)0.0010 (8)
C120.0264 (16)0.0267 (13)0.0187 (11)0.0071 (11)0.0036 (10)0.0055 (10)
C130.0160 (15)0.0315 (14)0.0204 (11)0.0066 (11)0.0008 (10)0.0020 (10)
Geometric parameters (Å, º) top
C1—C21.349 (3)C3—C21.522 (3)
C1—C61.447 (3)C2—O11.329 (3)
C1—Br11.881 (2)C10—C111.379 (3)
C6—O41.219 (3)C10—C91.392 (3)
C6—C51.554 (3)C10—C131.507 (3)
C5—O31.245 (3)C9—C81.394 (3)
C5—C41.395 (3)C8—C71.376 (4)
C4—C31.412 (3)C8—C121.499 (3)
C4—Br21.888 (2)C7—N11.337 (3)
C3—O21.240 (3)N1—C111.343 (3)
C2—C1—C6120.4 (2)C4—C3—C2116.9 (2)
C2—C1—Br1121.94 (17)O1—C2—C1122.1 (2)
C6—C1—Br1117.65 (17)O1—C2—C3115.1 (2)
O4—C6—C1124.0 (2)C1—C2—C3122.8 (2)
O4—C6—C5117.8 (2)C11—C10—C9117.6 (2)
C1—C6—C5118.2 (2)C11—C10—C13119.8 (2)
O3—C5—C4125.8 (2)C9—C10—C13122.6 (2)
O3—C5—C6116.0 (2)C10—C9—C8121.7 (2)
C4—C5—C6118.1 (2)C7—C8—C9117.1 (2)
C5—C4—C3123.3 (2)C7—C8—C12120.0 (2)
C5—C4—Br2117.77 (16)C9—C8—C12122.8 (2)
C3—C4—Br2118.86 (17)N1—C7—C8120.9 (2)
O2—C3—C4127.1 (2)C7—N1—C11122.5 (2)
O2—C3—C2115.96 (19)N1—C11—C10120.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H2···O3i0.93 (3)1.84 (3)2.677 (3)148 (3)
N1—H2···O4i0.93 (3)2.37 (3)3.008 (3)125 (3)
O1—H1···O2ii0.72 (3)2.11 (3)2.768 (3)152 (3)
O1—H1···O20.72 (3)2.23 (3)2.631 (2)116 (3)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y, z+1.
(ba_3br4mepyr) 3-Bromo-4-methylpyridinium bromanilate top
Crystal data top
C6H7BrN+·C6HBr2O4Z = 4
Mr = 469.91F(000) = 896
Monoclinic, P21/cDx = 2.244 Mg m3
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 10.2229 (4) ŵ = 8.71 mm1
b = 5.5760 (2) ÅT = 100 K
c = 24.5300 (9) ÅBlock, purple
β = 95.802 (3)°0.25 × 0.15 × 0.1 mm
V = 1391.12 (9) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3311 reflections with I > 2σ(I)
CCD; rotation images scansRint = 0.057
Absorption correction: multi-scan
(SADABS; Blessing, 1995)
θmax = 32.2°, θmin = 1.7°
Tmin = 0.499, Tmax = 1.000h = 1515
19916 measured reflectionsk = 86
4796 independent reflectionsl = 3636
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.0482P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.002
4796 reflectionsΔρmax = 1.23 e Å3
190 parametersΔρmin = 1.13 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C40.2394 (3)0.2669 (7)0.91013 (13)0.0159 (7)
C30.1456 (3)0.1217 (7)0.93350 (13)0.0167 (7)
C20.0747 (3)0.0693 (7)0.89770 (13)0.0168 (7)
C10.1034 (3)0.1083 (7)0.84602 (13)0.0157 (7)
C60.2048 (3)0.0288 (7)0.82360 (13)0.0158 (7)
C50.2691 (3)0.2388 (7)0.85643 (13)0.0158 (7)
O30.3444 (3)0.3718 (5)0.83178 (9)0.0205 (6)
O40.2426 (3)0.0150 (5)0.77843 (9)0.0200 (6)
Br10.01728 (3)0.34997 (7)0.80172 (2)0.01880 (10)
O10.0141 (3)0.1955 (5)0.92133 (10)0.0217 (6)
O20.1142 (2)0.1390 (5)0.98099 (9)0.0203 (6)
Br20.31926 (4)0.51666 (7)0.95403 (2)0.01953 (10)
C80.7096 (3)0.1138 (7)0.86016 (14)0.0171 (7)
C90.6171 (3)0.0257 (7)0.88470 (13)0.0174 (7)
C100.5522 (4)0.2030 (7)0.85268 (14)0.0201 (8)
H100.490.29910.86730.024*
C110.5796 (4)0.2372 (7)0.79908 (14)0.0211 (8)
H110.5380.35950.77820.025*
N10.6657 (3)0.0950 (6)0.77734 (13)0.0208 (7)
C70.7321 (4)0.0788 (7)0.80625 (14)0.0194 (8)
H70.79240.17390.79020.023*
C120.5888 (4)0.0144 (8)0.94276 (14)0.0240 (9)
H12A0.56010.17670.9470.036*
H12B0.66710.01380.96690.036*
H12C0.5210.09390.95160.036*
Br30.80539 (4)0.35718 (7)0.89969 (2)0.02332 (10)
H10.027 (4)0.120 (8)0.9513 (18)0.031 (13)*
H50.681 (5)0.102 (9)0.746 (2)0.039 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C40.0167 (16)0.020 (2)0.0113 (15)0.0020 (14)0.0024 (11)0.0030 (13)
C30.0160 (16)0.024 (2)0.0099 (14)0.0002 (14)0.0005 (11)0.0011 (13)
C20.0186 (17)0.017 (2)0.0146 (16)0.0008 (14)0.0012 (12)0.0012 (13)
C10.0190 (17)0.015 (2)0.0127 (15)0.0025 (14)0.0012 (12)0.0008 (13)
C60.0162 (16)0.020 (2)0.0117 (15)0.0027 (14)0.0027 (12)0.0014 (13)
C50.0174 (16)0.017 (2)0.0130 (15)0.0007 (14)0.0032 (12)0.0012 (13)
O30.0263 (14)0.0234 (16)0.0124 (11)0.0063 (11)0.0055 (9)0.0011 (10)
O40.0253 (13)0.0241 (16)0.0116 (11)0.0030 (11)0.0069 (9)0.0005 (10)
Br10.02324 (18)0.0218 (2)0.01161 (15)0.00572 (15)0.00313 (12)0.00253 (13)
O10.0270 (14)0.0285 (17)0.0109 (11)0.0101 (12)0.0085 (10)0.0047 (11)
O20.0224 (13)0.0304 (17)0.0088 (11)0.0073 (11)0.0052 (9)0.0036 (10)
Br20.02441 (18)0.0226 (2)0.01180 (15)0.00683 (15)0.00318 (12)0.00302 (14)
C80.0183 (17)0.019 (2)0.0146 (15)0.0029 (14)0.0028 (12)0.0006 (13)
C90.0184 (17)0.020 (2)0.0132 (15)0.0006 (14)0.0009 (12)0.0007 (14)
C100.0229 (18)0.023 (2)0.0154 (16)0.0045 (15)0.0065 (13)0.0004 (14)
C110.0223 (18)0.023 (2)0.0178 (17)0.0000 (16)0.0008 (13)0.0060 (15)
N10.0246 (16)0.025 (2)0.0134 (14)0.0067 (14)0.0058 (12)0.0001 (13)
C70.0212 (18)0.021 (2)0.0162 (16)0.0007 (15)0.0044 (13)0.0009 (14)
C120.029 (2)0.033 (3)0.0117 (15)0.0061 (17)0.0074 (13)0.0020 (15)
Br30.0249 (2)0.0231 (2)0.02254 (19)0.00646 (16)0.00484 (14)0.00396 (15)
Geometric parameters (Å, º) top
C4—C51.390 (4)C6—C51.531 (5)
C4—C31.420 (5)C5—O31.266 (4)
C4—Br21.894 (4)C8—C71.379 (5)
C3—O21.243 (4)C8—C91.406 (5)
C3—C21.517 (5)C8—Br31.884 (4)
C2—O11.327 (4)C9—C101.389 (5)
C2—C11.347 (5)C9—C121.499 (5)
C1—C61.442 (5)C10—C111.385 (5)
C1—Br11.892 (3)C11—N11.335 (5)
C6—O41.234 (4)N1—C71.344 (5)
C5—C4—C3122.7 (3)C1—C6—C5119.5 (3)
C5—C4—Br2119.9 (3)O3—C5—C4126.0 (3)
C3—C4—Br2117.4 (2)O3—C5—C6116.5 (3)
O2—C3—C4125.7 (3)C4—C5—C6117.5 (3)
O2—C3—C2116.3 (3)C7—C8—C9121.2 (3)
C4—C3—C2118.0 (3)C7—C8—Br3117.8 (3)
O1—C2—C1123.3 (3)C9—C8—Br3121.0 (3)
O1—C2—C3115.3 (3)C10—C9—C8117.1 (3)
C1—C2—C3121.4 (3)C10—C9—C12121.1 (3)
C2—C1—C6120.4 (3)C8—C9—C12121.8 (3)
C2—C1—Br1121.5 (3)C11—C10—C9120.3 (3)
C6—C1—Br1118.0 (2)N1—C11—C10120.2 (4)
O4—C6—C1122.7 (3)C11—N1—C7122.4 (3)
O4—C6—C5117.9 (3)N1—C7—C8118.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.87 (5)1.97 (5)2.717 (3)144 (4)
O1—H1···O20.87 (5)2.12 (4)2.637 (4)118 (4)
N1—H5···O3ii0.79 (5)1.91 (5)2.675 (4)161 (5)
N1—H5···O4ii0.79 (5)2.53 (5)2.915 (4)112 (4)
Symmetry codes: (i) x, y, z+2; (ii) x+1, y1/2, z+3/2.
(ba23lut) 2,3-Dimethylpyridinium bromanilate top
Crystal data top
C7H10N+·C6HBr2O4Z = 4
Mr = 405.04F(000) = 792
Monoclinic, P21/nDx = 1.932 Mg m3
a = 4.9786 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 23.181 (3) ŵ = 5.83 mm1
c = 12.2811 (13) ÅT = 100 K
β = 100.794 (3)°Block, purple
V = 1392.3 (2) Å30.2 × 0.1 × 0.05 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1664 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
CCD; rotation images scansθmax = 23.6°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Blessing, 1995)
h = 55
Tmin = 0.791, Tmax = 1.000k = 2625
9783 measured reflectionsl = 1313
2053 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0301P)2 + 0.8134P]
where P = (Fo2 + 2Fc2)/3
2053 reflections(Δ/σ)max = 0.001
182 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.32 e Å3
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

All H atoms were placed on calculated positions and refined as riding on the atom to which they were bonded with the exception of H1 where the position was allowed to freely refine but the thermal parameter was constrained to take a value of 1.2 times the Ueq of the atom to which it was bonded (O1).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6253 (8)0.29473 (17)0.0801 (3)0.0161 (9)
C20.6786 (8)0.29433 (17)0.1910 (3)0.0163 (9)
C30.5234 (8)0.33215 (18)0.2594 (3)0.0182 (10)
C40.3191 (8)0.36859 (17)0.2012 (3)0.0174 (10)
C50.2523 (8)0.37123 (17)0.0857 (3)0.0173 (9)
C60.4239 (8)0.33427 (17)0.0198 (3)0.0174 (10)
O40.3842 (6)0.33949 (12)0.0808 (2)0.0226 (7)
O30.0655 (6)0.40095 (12)0.0294 (2)0.0232 (7)
Br20.11288 (8)0.413330 (18)0.28551 (3)0.02328 (15)
O20.5924 (6)0.32675 (12)0.3614 (2)0.0226 (7)
O10.8656 (6)0.25996 (12)0.2500 (2)0.0222 (7)
H10.88170.26790.3160.033*
Br10.81832 (8)0.247086 (17)0.00350 (3)0.01960 (14)
C70.6455 (8)0.43225 (18)0.2235 (3)0.0188 (10)
C80.5129 (8)0.43486 (17)0.3345 (3)0.0179 (9)
C90.5929 (9)0.39720 (18)0.4105 (3)0.0226 (10)
H90.50420.39810.48420.027*
C100.8046 (8)0.35822 (19)0.3772 (3)0.0260 (11)
H100.85960.33330.42810.031*
C110.9303 (8)0.35721 (18)0.2685 (3)0.0220 (10)
H111.07250.33150.24470.026*
N10.8484 (7)0.39346 (15)0.1956 (3)0.0211 (8)
H1A0.930.39180.12740.025*
C130.2859 (9)0.47821 (18)0.3707 (4)0.0270 (11)
H13A0.21210.4730.44810.041*
H13B0.35770.51660.35860.041*
H13C0.14410.47250.32850.041*
C120.5747 (9)0.46959 (18)0.1333 (3)0.0244 (10)
H12A0.69720.46130.06490.037*
H12B0.39020.46190.1250.037*
H12C0.59150.50940.15220.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.017 (2)0.016 (2)0.016 (2)0.0026 (18)0.0050 (18)0.0026 (18)
C20.015 (2)0.015 (2)0.019 (2)0.0042 (19)0.0012 (18)0.0037 (19)
C30.018 (2)0.019 (2)0.019 (3)0.0088 (19)0.0044 (19)0.0001 (19)
C40.015 (2)0.017 (2)0.021 (2)0.0028 (18)0.0053 (18)0.0057 (19)
C50.014 (2)0.018 (2)0.020 (2)0.0024 (19)0.0030 (18)0.001 (2)
C60.018 (2)0.013 (2)0.020 (3)0.0045 (18)0.0005 (19)0.0008 (19)
O40.0213 (17)0.0315 (18)0.0144 (17)0.0028 (13)0.0022 (12)0.0009 (13)
O30.0213 (17)0.0252 (17)0.0208 (16)0.0035 (14)0.0015 (13)0.0016 (14)
Br20.0204 (3)0.0277 (3)0.0230 (3)0.0018 (2)0.00735 (18)0.0073 (2)
O20.0240 (17)0.0306 (18)0.0128 (16)0.0069 (14)0.0021 (13)0.0015 (13)
O10.0238 (17)0.0273 (18)0.0137 (15)0.0049 (14)0.0008 (13)0.0021 (14)
Br10.0197 (3)0.0216 (3)0.0173 (2)0.00247 (19)0.00311 (17)0.0020 (2)
C70.015 (2)0.019 (2)0.024 (2)0.0028 (19)0.0073 (18)0.001 (2)
C80.014 (2)0.016 (2)0.022 (2)0.0031 (18)0.0009 (18)0.0011 (19)
C90.023 (3)0.026 (3)0.017 (2)0.001 (2)0.0019 (18)0.001 (2)
C100.024 (3)0.031 (3)0.022 (3)0.001 (2)0.003 (2)0.006 (2)
C110.021 (3)0.023 (3)0.020 (2)0.006 (2)0.0002 (19)0.001 (2)
N10.018 (2)0.027 (2)0.0167 (19)0.0008 (17)0.0005 (15)0.0006 (17)
C130.022 (3)0.028 (3)0.029 (3)0.005 (2)0.002 (2)0.000 (2)
C120.026 (3)0.023 (3)0.026 (2)0.002 (2)0.009 (2)0.002 (2)
Geometric parameters (Å, º) top
C1—C21.338 (5)C5—C61.542 (6)
C1—C61.455 (6)C6—O41.220 (5)
C1—Br11.889 (4)C7—N11.348 (5)
C2—O11.332 (4)C7—C81.399 (6)
C2—C31.522 (6)C7—C121.499 (5)
C3—O21.242 (4)C8—C91.390 (6)
C3—C41.409 (6)C8—C131.515 (6)
C4—C51.397 (5)C9—C101.391 (6)
C4—Br21.897 (4)C10—C111.364 (5)
C5—O31.255 (5)C11—N11.346 (5)
C2—C1—C6120.6 (4)C4—C5—C6117.3 (4)
C2—C1—Br1121.7 (3)O4—C6—C1122.9 (4)
C6—C1—Br1117.7 (3)O4—C6—C5118.4 (4)
O1—C2—C1122.9 (4)C1—C6—C5118.7 (3)
O1—C2—C3114.8 (3)N1—C7—C8118.1 (4)
C1—C2—C3122.3 (4)N1—C7—C12117.7 (4)
O2—C3—C4127.5 (4)C8—C7—C12124.1 (4)
O2—C3—C2115.2 (4)C9—C8—C7119.0 (4)
C4—C3—C2117.3 (3)C9—C8—C13120.7 (4)
C5—C4—C3123.6 (4)C7—C8—C13120.3 (4)
C5—C4—Br2118.7 (3)C8—C9—C10120.5 (4)
C3—C4—Br2117.6 (3)C11—C10—C9118.9 (4)
O3—C5—C4126.4 (4)N1—C11—C10120.0 (4)
O3—C5—C6116.2 (3)C11—N1—C7123.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.822.132.611 (4)117
O1—H1···Br1i0.822.823.423 (3)132
N1—H1A···O3ii0.861.932.777 (4)168
N1—H1A···O4ii0.862.543.043 (4)119
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y, z.
(ba_2br3mepyr) 2-Bromo-3-methylpyridine–bromanilic acid (1/1) top
Crystal data top
C6H6BrN·C6H2Br2O4Z = 4
Mr = 469.91F(000) = 896
Monoclinic, P21/cDx = 2.168 Mg m3
a = 5.2866 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.3814 (8) ŵ = 8.42 mm1
c = 20.3576 (13) ÅT = 100 K
β = 91.556 (4)°Block, red
V = 1439.61 (15) Å30.25 × 0.2 × 0.1 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2267 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.071
CCD; rotation images scansθmax = 27.2°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Blessing, 1995)
h = 65
Tmin = 0.465, Tmax = 1.000k = 1717
14350 measured reflectionsl = 2626
3202 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0324P)2]
where P = (Fo2 + 2Fc2)/3
3202 reflections(Δ/σ)max = 0.001
188 parametersΔρmax = 0.77 e Å3
1 restraintΔρmin = 0.67 e Å3
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

All H atoms were placed on calculated positions and modelled as riding on the atoms to which they were bonded except H1 and H2. H1 was constrained to take a thermal parameter 1.2 times the Ueq of the atom to which it was bonded (O1) to ensure that a sensible thermal parameter was obtained. The methyl group positons were based on the electron density but with the bond lengths and angles constrained to take standard values for a methyl group.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6951 (8)0.5218 (3)0.4532 (2)0.0142 (10)
C30.6017 (8)0.5990 (3)0.4964 (2)0.0153 (10)
C20.6005 (8)0.4285 (3)0.4553 (2)0.0134 (10)
O10.6758 (6)0.3552 (2)0.41693 (17)0.0226 (8)
O20.6701 (6)0.6863 (2)0.49613 (16)0.0244 (8)
Br10.95526 (9)0.55598 (3)0.39596 (2)0.01783 (14)
C40.6894 (8)0.0737 (3)0.5152 (2)0.0149 (10)
C60.5333 (8)0.0834 (3)0.4566 (2)0.0148 (10)
C50.3339 (8)0.0032 (3)0.4423 (2)0.0141 (10)
O30.1920 (6)0.0119 (2)0.38894 (16)0.0188 (8)
O40.5461 (6)0.1528 (2)0.41714 (16)0.0190 (7)
Br20.93951 (9)0.17269 (3)0.52850 (2)0.01781 (14)
C70.3385 (8)0.1755 (3)0.2548 (2)0.0169 (11)
C80.3281 (9)0.2589 (4)0.2135 (2)0.0205 (11)
C90.1496 (9)0.3294 (4)0.2290 (2)0.0244 (12)
H90.12960.38580.20270.029*
C100.0000 (9)0.3180 (3)0.2830 (2)0.0239 (12)
H100.11940.36610.29330.029*
C110.0310 (9)0.2333 (4)0.3214 (2)0.0233 (12)
H110.06580.22590.35860.028*
N10.1966 (7)0.1620 (3)0.30642 (18)0.0161 (9)
C120.4994 (9)0.2719 (4)0.1563 (2)0.0308 (13)
H12A0.40700.25770.11620.046*
H12B0.64000.22680.16090.046*
H12C0.56040.33940.15540.046*
Br30.56870 (10)0.06825 (4)0.23905 (3)0.02778 (16)
H10.601 (8)0.301 (2)0.427 (2)0.033*
H20.227 (10)0.064 (4)0.361 (3)0.042 (17)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.013 (3)0.018 (2)0.012 (2)0.0009 (19)0.0048 (19)0.0018 (19)
C30.014 (3)0.015 (2)0.018 (3)0.0006 (19)0.001 (2)0.005 (2)
C20.012 (3)0.013 (2)0.015 (2)0.0030 (18)0.0001 (19)0.0026 (19)
O10.028 (2)0.0113 (17)0.029 (2)0.0051 (15)0.0139 (16)0.0011 (15)
O20.029 (2)0.0144 (19)0.030 (2)0.0055 (15)0.0083 (16)0.0055 (15)
Br10.0156 (3)0.0173 (3)0.0208 (3)0.00355 (18)0.0055 (2)0.0019 (2)
C40.015 (3)0.013 (2)0.017 (2)0.0071 (18)0.004 (2)0.0015 (19)
C60.009 (3)0.013 (2)0.022 (3)0.0018 (18)0.005 (2)0.001 (2)
C50.015 (3)0.011 (2)0.017 (3)0.0012 (19)0.005 (2)0.002 (2)
O30.021 (2)0.0135 (18)0.022 (2)0.0048 (14)0.0002 (16)0.0040 (15)
O40.023 (2)0.0131 (17)0.0206 (18)0.0049 (14)0.0025 (15)0.0047 (14)
Br20.0172 (3)0.0130 (2)0.0234 (3)0.00624 (19)0.0034 (2)0.0012 (2)
C70.011 (3)0.018 (3)0.022 (3)0.0001 (19)0.002 (2)0.002 (2)
C80.021 (3)0.026 (3)0.014 (3)0.007 (2)0.004 (2)0.003 (2)
C90.030 (3)0.019 (3)0.024 (3)0.008 (2)0.001 (2)0.004 (2)
C100.025 (3)0.017 (3)0.029 (3)0.003 (2)0.003 (2)0.004 (2)
C110.025 (3)0.025 (3)0.020 (3)0.001 (2)0.007 (2)0.001 (2)
N10.019 (2)0.013 (2)0.017 (2)0.0002 (16)0.0008 (17)0.0014 (17)
C120.029 (3)0.044 (3)0.019 (3)0.008 (3)0.001 (2)0.014 (3)
Br30.0233 (3)0.0317 (3)0.0284 (3)0.0097 (2)0.0017 (2)0.0022 (2)
Geometric parameters (Å, º) top
C1—C21.346 (6)O3—H20.92 (5)
C1—C31.453 (6)C7—N11.321 (6)
C1—Br11.882 (4)C7—C81.397 (6)
C3—O21.223 (5)C7—Br31.914 (4)
C3—C2i1.517 (6)C8—C91.378 (7)
C2—O11.322 (5)C8—C121.504 (7)
C2—C3i1.517 (6)C9—C101.379 (7)
O1—H10.857 (19)C9—H90.9300
C4—C5ii1.353 (6)C10—C111.384 (6)
C4—C61.437 (6)C10—H100.9300
C4—Br21.886 (4)C11—N11.336 (6)
C6—O41.230 (5)C11—H110.9300
C6—C51.527 (6)C12—H12A0.9600
C5—O31.308 (5)C12—H12B0.9600
C5—C4ii1.353 (6)C12—H12C0.9600
C2—C1—C3120.5 (4)N1—C7—Br3114.1 (3)
C2—C1—Br1121.6 (3)C8—C7—Br3120.9 (4)
C3—C1—Br1117.9 (3)C9—C8—C7115.2 (4)
O2—C3—C1124.9 (4)C9—C8—C12121.9 (4)
O2—C3—C2i116.6 (4)C7—C8—C12122.9 (4)
C1—C3—C2i118.5 (4)C8—C9—C10121.2 (5)
O1—C2—C1123.4 (4)C8—C9—H9119.4
O1—C2—C3i115.6 (4)C10—C9—H9119.4
C1—C2—C3i121.0 (4)C9—C10—C11118.7 (5)
C2—O1—H1110 (4)C9—C10—H10120.7
C5ii—C4—C6122.7 (4)C11—C10—H10120.7
C5ii—C4—Br2121.2 (3)N1—C11—C10121.6 (5)
C6—C4—Br2116.1 (3)N1—C11—H11119.2
O4—C6—C4124.7 (4)C10—C11—H11119.2
O4—C6—C5117.1 (4)C7—N1—C11118.3 (4)
C4—C6—C5118.2 (4)C8—C12—H12A109.5
O3—C5—C4ii122.6 (4)C8—C12—H12B109.5
O3—C5—C6118.3 (4)H12A—C12—H12B109.5
C4ii—C5—C6119.1 (4)C8—C12—H12C109.5
C5—O3—H2117 (3)H12A—C12—H12C109.5
N1—C7—C8125.1 (4)H12B—C12—H12C109.5
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O40.86 (2)2.01 (3)2.794 (4)151 (5)
O1—H1···O2i0.86 (2)2.15 (5)2.638 (5)115 (4)
O3—H2···N10.92 (5)1.73 (5)2.619 (5)163 (5)
Symmetry code: (i) x+1, y+1, z+1.
Bond lengths for the bromanilic acid molecule contrasting bromanilic acid in its neutral form (VAGTUS; Robl, 1987) with the doubly deprotonated bromanilic acid in 1:2 complex with the picoline isomers top
The numbering scheme is as in Fig. 5 and does not necessarily relate to the CIF entries as some molecules have internal inversion symmetry.
VAGTUS BAH22-picoline BA2-3-picoline BA2-4-picoline BA2-
C1-Br11.868 (4)1.905 (2)1.902 (2)1.902 (2)
C1-C21.347 (6)1.394 (4)1.387 (2)1.399 (3)
C2-O11.323 (5)1.260 (3)1.262 (2)1.246 (3)
C2-C31.504 (5)1.547 (4)1.548 (3)1.555 (3)
C3-O21.225 (5)1.251 (4)1.239 (2)1.246 (3)
C3-C41.449 (5)1.402 (3)1.414 (2)1.405 (3)
C4-Br21.868 (4)*1.905 (3)1.902 (2)*1.902 (2)*
C4-C51.347 (6)*1.400 (4)1.387 (2)*1.399 (3)*
C5-O31.323 (5)*1.249 (3)1.262 (2)*1.246 (3)*
C5-C61.504 (5)*1.559 (4)1.548 (3)*1.555 (3)*
C6-O41.225 (5)*1.249 (4)1.239 (2)*1.246 (3)*
C1-C61.449 (5)*1.407 (4)1.414 (2)*1.405 (3)*
* Related by inversion symmetry to the other half of the bromanilic acid molecule
Bond lengths for the bromanilic acid molecule contrasting bromanilic acid in its neutral form (VAGTUS; Robl, 1987) with the singly deprotonated bromanilic acid in 1:1 complex with the lutidine isomers top
The numbering scheme is as in Fig. 5 and does not necessarily relate to the CIF entries as some molecules have internal inversion symmetry.
VAGTUS BAH22,3-lutidine BAH-2,4-lutidine BAH-2,5-lutidine BAH-3,5-lutidine BAH-
C1-Br11.868 (4)1.889 (4)1.875 (2)1.879 (2)1.879 (2)
C1-C21.347 (6)1.338 (5)1.354 (2)1.352 (2)1.352 (2)
C2-O11.323 (5)1.332 (5)1.320 (2)1.323 (2)1.323 (2)
C2-C31.504 (5)1.521 (6)1.511 (2)1.519 (2)1.519 (2)
C3-O21.225 (5)1.242 (4)1.247 (2)1.249 (2)1.249 (2)
C3-C41.449 (5)1.409 (5)1.406 (3)1.399 (2)1.399 (2)
C4-Br21.868 (4)*1.897 (4)1.891 (2)1.887 (2)1.887 (2)
C4-C51.347 (6)*1.396 (5)1.404 (2)1.404 (2)1.404 (2)
C5-O31.323 (5)*1.256 (5)1.250 (2)1.238 (2)1.238 (2)
C5-C61.504 (5)*1.542 (6)1.545 (2)1.554 (2)1.554 (2)
C6-O41.225 (5)*1.220 (4)1.217 (2)1.222 (2)1.222 (2)
C1-C61.449 (5)*1.455 (5)1.455 (3)1.447 (2)1.447 (2)
* Related by inversion symmetry to the other half of the bromanilic acid molecule.
Bond lengths for the bromanilic acid molecule contrasting bromanilic acid in its neutral form (VAGTUS; Robl, 1987) with the doubly deprotonated bromanilic acid in 1:1 complex with the bromomethylpyridine isomers top
The numbering scheme is as in Fig. 5 and does not necessarily relate to the CIF entries as some molecules have internal inversion symmetry.
VAGTUS BAH22-bromo-3-methylpyridine (i) BAH22-bromo-3-methylpyridine (ii) BAH23-bromo-4-methylpyridine BAH-
C1-Br11.868 (4)1.883 (4)1.886 (4)1.892 (3)
C1-C21.347 (6)1.346 (6)1.352 (6)1.347 (5)
C2-O11.323 (5)1.322 (5)1.308 (5)1.327 (5)
C2-C31.504 (5)1.517 (6)1.527 (6)1.517 (5)
C3-O21.225 (5)1.223 (5)1.231 (5)1.243 (4)
C3-C41.449 (5)1.452 (6)1.438 (6)1.419 (5)
C4-Br21.868 (4)*1.883 (4)*1.886 (4)*1.894 (4)
C4-C51.347 (6)*1.346 (6)*1.352 (6)*1.390 (5)
C5-O31.323 (5)*1.322 (5)*1.308 (5)*1.266 (5)
C5-C61.504 (5)*1.517 (6)*1.527 (6)*1.531 (5)
C6-O41.225 (5)*1.223 (5)*1.231 (5)*1.234 (4)
C1-C61.449 (5)*1.452 (6)*1.438 (6)*1.441 (5)
* Related by inversion symmetry to the other half of the bromanilic acid molecule. (i) and (ii) represent the two independent bromanilic acid molecules in the 2-bromo-3-methylpyridine molecular complex.
Selected hydrogen-bond parameters (Å, °) top
D—H···AD—H (Å)H···A (Å)D···A (Å)D—H···A (°)
2-picoline
N2—H2···O40.86 (3)2.02 (3)2.838 (3)159 (3)
N2—H2···O30.86 (3)2.36 (3)2.946 (3)126 (2)
N1—H1···O10.77 (4)1.96 (4)2.693 (3)160 (4)
N1—H1···O20.77 (4)2.36 (4)2.828 (3)121 (4)
3-picoline
N1—H5···O10.84 (3)1.78 (3)2.598 (2)165 (3)
N1—H5···O2i0.84 (3)2.54 (3)3.039 (2)119 (3)
C4—H4···Br1ii0.932.963.7977 (18)151.0
4-picoline
N1—H3···O10.74 (3)2.12 (3)2.760 (3)145 (4)
N1—H3···O20.74 (3)2.31 (3)2.859 (3)131 (3)
2,4-lutidine
O1—H1···O2iii0.68 (3)2.03 (3)2.6509 (18)151 (3)
O1—H1···O20.68 (3)2.26 (3)2.6559 (19)119 (3)
N1—H2···O3iv0.72 (2)2.14 (2)2.849 (2)168 (3)
N1—H2···O4iv0.72 (2)2.56 (2)2.9807 (18)119 (2)
2,5-lutidine
O1—H1···O2v0.822.012.6994 (17)140.8
O1—H1···O20.822.162.6403 (19)117
N1—H1A···O40.862.172.9794 (19)157.6
N1—H1A···O30.862.342.883 (2)121.6
3,5-lutidine
N1—H2···O3vi0.93 (3)1.84 (3)2.677 (3)148 (3)
N1—H2···O4vi0.93 (3)2.37 (3)3.008 (3)125 (3)
O1—H1···O2iii0.72 (3)2.11 (3)2.768 (3)152 (3)
O1—H1···O20.72 (3)2.23 (3)2.631 (2)116 (3)
3-bromo-4-methylpyridine
O1—H1···O2vii0.87 (5)1.97 (5)2.717 (3)144 (4)
O1—H1···O20.87 (5)2.12 (4)2.637 (4)118 (4)
N1—H5···O3viii0.79 (5)1.91 (5)2.675 (4)161 (5)
N1—H5···O4viii0.79 (5)2.53 (5)2.915 (4)112 (4)
2,3-lutidine
O1—H1···O20.822.132.611 (4)117.1
O1—H1···Br1ix0.822.823.423 (3)131.9
N1—H1A···O3x0.861.932.777 (4)168.4
N1—H1A···O4x0.862.543.043 (4)118.7
2-bromo-3-methylpyridine
O1—H1···O40.857 (19)2.01 (3)2.794 (4)151 (5)
O1—H1···O2xi0.857 (19)2.15 (5)2.638 (5)115 (4)
O3—H2···N10.92 (5)1.73 (5)2.619 (5)163 (5)
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+1, y+1/2, -z+1/2; (iii) -x+1, -y, -z+1; (iv) x-1, y, z; (v) -x, -y, -z; (vi) -x, -y+1, -z+1; (vii) -x, -y, -z+2; (viii) -x+1, y-1/2, -z+3/2; (ix) x+1/2, -y+1/2, z+1/2; (x) x+1, y, z; (xi) -x+1, -y+1, -z+1.
A summary of the Br interactions in the molecular complexes with bromanilic acid top
No data available in manuscript - please supply missing values.
Br···BrBr···OC-H···BrBr···πO-H···Br
VAGTUS (Robl, 1987)
2-picoline
3-picoline
4-picoline?(x2)
2,3-lutidine?(x2)
2,4-lutidine
2,5-lutidine?(x4)
3,5-lutidine?(x2)
2-bromo-3-methylpyridine
3-bromo-4-methylpyridine?(x2)
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds