Download citation
Download citation
link to html
A new polymorph is reported of the pharmaceutically active sulfa­pyridine derivative, N-(6-methyl­pyridin-2-yl)mesityl­ene­sulfon­amide, in the zwitterionic form 2-methyl-6-{[(2,4,6-tri­­methyl­benzene)­sulfon­yl]aza­nid­yl}pyridin-1-ium, C15H18N2O2S. The observed dimorphism is solvent dependent. The phase described previously [Beloso, Castro, García-Vázquez, Pérez-Lourido, Romero & Sousa (2003). Z. Anorg. Allg. Chem. 629, 275-284] crystallizes from ethanol and several other organic solvents, whereas the new form described here is obtained as a phase-pure product from methanol. The mol­ecules in both dimorphic phases are very similar and adopt the conformation which is also predicted for an individual mol­ecule by force field calculations. However, the two forms differ in their packing and hydrogen bonding. Results from solvent-assisted grinding indicate that the new form is less stable than the previously published phase.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270113025936/fm3002sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113025936/fm3002Isup2.hkl
Contains datablock I

CCDC reference: 920529

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SMART (Bruker, 2001); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2012 (Sheldrick, 2008).

2-Methyl-6-{[(2,4,6-trimethylbenzene)sulfonyl]azanidyl}pyridin-1-ium top
Crystal data top
C15H18N2O2SZ = 2
Mr = 290.37F(000) = 308
Triclinic, P1Dx = 1.383 Mg m3
a = 7.9753 (11) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.1446 (11) ÅCell parameters from 1269 reflections
c = 11.7776 (16) Åθ = 2.7–25.4°
α = 86.829 (3)°µ = 0.24 mm1
β = 81.600 (3)°T = 100 K
γ = 67.124 (3)°Block, colourless
V = 697.29 (16) Å30.19 × 0.10 × 0.09 mm
Data collection top
Bruker D8
diffractometer with APEX CCD detector
3195 independent reflections
Radiation source: Incoatec microsource2527 reflections with I > 2σ(I)
Multilayer optics monochromatorRint = 0.043
ω scansθmax = 27.8°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1010
Tmin = 0.957, Tmax = 0.979k = 1010
9103 measured reflectionsl = 1514
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0461P)2 + 0.4133P]
where P = (Fo2 + 2Fc2)/3
3195 reflections(Δ/σ)max < 0.001
189 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.39 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.82705 (7)0.55137 (6)0.30180 (4)0.01535 (14)
O10.92771 (19)0.36086 (18)0.31141 (12)0.0192 (3)
O20.63729 (18)0.60458 (19)0.28521 (12)0.0205 (3)
N10.8318 (2)0.8557 (2)0.53085 (14)0.0159 (4)
H1N0.902 (3)0.772 (3)0.570 (2)0.020 (6)*
N20.8525 (2)0.6346 (2)0.41429 (14)0.0168 (4)
C10.7867 (3)0.8102 (3)0.43271 (16)0.0159 (4)
C20.7785 (3)1.0257 (3)0.56965 (17)0.0173 (4)
C30.6797 (3)1.1637 (3)0.50479 (17)0.0192 (4)
H30.64361.28340.52870.023*
C40.6325 (3)1.1258 (3)0.40230 (18)0.0200 (4)
H40.56451.22130.35640.024*
C50.6820 (3)0.9540 (3)0.36666 (17)0.0186 (4)
H50.64620.93140.29760.022*
C60.8320 (3)1.0474 (3)0.68275 (18)0.0235 (5)
H6A0.78371.17420.70240.035*
H6B0.96620.99800.67780.035*
H6C0.78110.98400.74220.035*
C70.9465 (3)0.6237 (3)0.18139 (16)0.0147 (4)
C81.1358 (3)0.5800 (3)0.18110 (17)0.0164 (4)
C91.2314 (3)0.6356 (3)0.08962 (17)0.0171 (4)
H91.35830.60890.09040.021*
C101.1491 (3)0.7289 (3)0.00333 (17)0.0179 (4)
C110.9640 (3)0.7663 (3)0.00193 (17)0.0188 (4)
H110.90620.82850.06520.023*
C120.8585 (3)0.7172 (3)0.08756 (17)0.0170 (4)
C131.2450 (3)0.4724 (3)0.27382 (18)0.0198 (4)
H13A1.36010.49100.26910.030*
H13B1.27250.34560.26300.030*
H13C1.17310.51100.34930.030*
C141.2579 (3)0.7826 (3)0.10316 (18)0.0236 (5)
H14A1.18010.89700.13360.035*
H14B1.30020.69150.16330.035*
H14C1.36430.79430.07750.035*
C150.6587 (3)0.7662 (3)0.07493 (18)0.0213 (5)
H15A0.63260.82910.00220.032*
H15B0.58070.84350.13880.032*
H15C0.63340.65760.07560.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0155 (3)0.0159 (3)0.0150 (2)0.0066 (2)0.00188 (18)0.00050 (18)
O10.0232 (8)0.0151 (7)0.0206 (8)0.0089 (6)0.0042 (6)0.0029 (6)
O20.0148 (7)0.0257 (8)0.0215 (8)0.0088 (6)0.0014 (6)0.0003 (6)
N10.0155 (8)0.0153 (9)0.0164 (9)0.0057 (7)0.0022 (7)0.0026 (7)
N20.0199 (9)0.0156 (9)0.0142 (8)0.0060 (7)0.0031 (7)0.0005 (7)
C10.0132 (9)0.0208 (10)0.0136 (9)0.0077 (8)0.0013 (7)0.0004 (8)
C20.0142 (9)0.0183 (10)0.0182 (10)0.0059 (8)0.0014 (8)0.0020 (8)
C30.0187 (10)0.0166 (10)0.0201 (10)0.0053 (8)0.0009 (8)0.0011 (8)
C40.0170 (10)0.0180 (11)0.0207 (11)0.0032 (8)0.0012 (8)0.0049 (8)
C50.0164 (10)0.0217 (11)0.0155 (10)0.0056 (8)0.0016 (8)0.0013 (8)
C60.0269 (12)0.0210 (11)0.0228 (11)0.0084 (9)0.0054 (9)0.0016 (9)
C70.0171 (10)0.0134 (10)0.0139 (9)0.0065 (8)0.0010 (8)0.0008 (7)
C80.0183 (10)0.0128 (10)0.0179 (10)0.0054 (8)0.0022 (8)0.0026 (8)
C90.0137 (9)0.0188 (10)0.0195 (10)0.0069 (8)0.0008 (8)0.0028 (8)
C100.0231 (11)0.0156 (10)0.0157 (10)0.0087 (8)0.0004 (8)0.0021 (8)
C110.0227 (11)0.0171 (10)0.0153 (10)0.0056 (9)0.0051 (8)0.0015 (8)
C120.0177 (10)0.0154 (10)0.0173 (10)0.0052 (8)0.0036 (8)0.0018 (8)
C130.0168 (10)0.0198 (11)0.0220 (11)0.0060 (9)0.0047 (8)0.0037 (8)
C140.0267 (11)0.0254 (12)0.0207 (11)0.0139 (10)0.0013 (9)0.0004 (9)
C150.0206 (11)0.0251 (12)0.0178 (10)0.0074 (9)0.0064 (8)0.0022 (9)
Geometric parameters (Å, º) top
S1—O11.4504 (15)C7—C121.418 (3)
S1—O21.4434 (14)C8—C91.386 (3)
S1—N21.5940 (17)C8—C131.516 (3)
S1—C71.793 (2)C9—C101.392 (3)
N1—C21.365 (3)C9—H90.9500
N1—C11.370 (3)C10—C111.384 (3)
N1—H1N0.86 (2)C10—C141.506 (3)
N2—C11.336 (3)C11—C121.391 (3)
C1—C51.415 (3)C11—H110.9500
C2—C31.364 (3)C12—C151.513 (3)
C2—C61.496 (3)C13—H13A0.9800
C3—C41.400 (3)C13—H13B0.9800
C3—H30.9500C13—H13C0.9800
C4—C51.370 (3)C14—H14A0.9800
C4—H40.9500C14—H14B0.9800
C5—H50.9500C14—H14C0.9800
C6—H6A0.9800C15—H15A0.9800
C6—H6B0.9800C15—H15B0.9800
C6—H6C0.9800C15—H15C0.9800
C7—C81.410 (3)
O1—S1—O2115.15 (9)C9—C8—C7118.65 (18)
O1—S1—N2105.04 (9)C9—C8—C13116.94 (17)
O2—S1—N2113.34 (9)C7—C8—C13124.40 (18)
O1—S1—C7106.20 (9)C8—C9—C10122.68 (18)
O2—S1—C7109.16 (9)C8—C9—H9118.7
N2—S1—C7107.44 (9)C10—C9—H9118.7
C2—N1—C1124.98 (18)C11—C10—C9117.36 (18)
C2—N1—H1N117.0 (15)C11—C10—C14121.18 (18)
C1—N1—H1N118.0 (15)C9—C10—C14121.43 (18)
C1—N2—S1122.42 (14)C10—C11—C12123.24 (19)
N2—C1—N1113.68 (17)C10—C11—H11118.4
N2—C1—C5130.48 (19)C12—C11—H11118.4
N1—C1—C5115.83 (18)C11—C12—C7117.89 (18)
C3—C2—N1118.79 (19)C11—C12—C15116.56 (18)
C3—C2—C6124.28 (19)C7—C12—C15125.54 (18)
N1—C2—C6116.93 (18)C8—C13—H13A109.5
C2—C3—C4118.86 (19)C8—C13—H13B109.5
C2—C3—H3120.6H13A—C13—H13B109.5
C4—C3—H3120.6C8—C13—H13C109.5
C5—C4—C3121.48 (19)H13A—C13—H13C109.5
C5—C4—H4119.3H13B—C13—H13C109.5
C3—C4—H4119.3C10—C14—H14A109.5
C4—C5—C1119.99 (19)C10—C14—H14B109.5
C4—C5—H5120.0H14A—C14—H14B109.5
C1—C5—H5120.0C10—C14—H14C109.5
C2—C6—H6A109.5H14A—C14—H14C109.5
C2—C6—H6B109.5H14B—C14—H14C109.5
H6A—C6—H6B109.5C12—C15—H15A109.5
C2—C6—H6C109.5C12—C15—H15B109.5
H6A—C6—H6C109.5H15A—C15—H15B109.5
H6B—C6—H6C109.5C12—C15—H15C109.5
C8—C7—C12120.14 (18)H15A—C15—H15C109.5
C8—C7—S1117.37 (14)H15B—C15—H15C109.5
C12—C7—S1122.46 (15)
O1—S1—N2—C1176.23 (15)O1—S1—C7—C12124.46 (16)
O2—S1—N2—C157.23 (18)N2—S1—C7—C12123.54 (17)
C7—S1—N2—C163.45 (17)C12—C7—C8—C92.2 (3)
S1—N2—C1—N1176.39 (13)S1—C7—C8—C9179.41 (14)
S1—N2—C1—C52.4 (3)C12—C7—C8—C13176.71 (18)
C2—N1—C1—N2178.80 (17)S1—C7—C8—C131.7 (3)
C2—N1—C1—C52.2 (3)C7—C8—C9—C101.7 (3)
C1—N1—C2—C33.1 (3)C13—C8—C9—C10177.32 (18)
C1—N1—C2—C6176.22 (18)C8—C9—C10—C110.2 (3)
N1—C2—C3—C41.6 (3)C8—C9—C10—C14178.12 (18)
C6—C2—C3—C4177.67 (19)C9—C10—C11—C120.8 (3)
C2—C3—C4—C50.5 (3)C14—C10—C11—C12179.10 (19)
C3—C4—C5—C11.3 (3)C10—C11—C12—C70.3 (3)
N2—C1—C5—C4178.71 (19)C10—C11—C12—C15179.20 (19)
N1—C1—C5—C40.0 (3)C8—C7—C12—C111.3 (3)
O1—S1—C7—C853.92 (17)S1—C7—C12—C11179.59 (14)
O2—S1—C7—C8178.64 (14)C8—C7—C12—C15177.58 (18)
N2—S1—C7—C858.08 (17)S1—C7—C12—C150.8 (3)
O2—S1—C7—C120.26 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.86 (2)2.05 (2)2.879 (2)161.9
Symmetry code: (i) x+2, y+1, z+1.
Comparison of the experimentally observed molecular conformation in form (I) (Beloso et al., 2003; average over two independent molecules), in form (II) (this work) and for the minimum-energy conformation (force field calculations). top
Torsion angle (°)X-ray (I)X-ray (II)Force field minimum
N1—C1—N2—S1-177.3-176.39 (13)-177.5
C1—N2—S1—C762.163.45 (17)61.1
N2—S1—C7—C854.958.08 (17)41.8
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds