Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The tridentate Schiff base ligand derived from the condens­ation of salicyl­aldehyde and L-phenyl­alanine, in the presence of piperidine, when reacted with copper sulfate pentahydrate, forms a polymeric square pyramidal five-coord­inate copper complex, [Cu(C17H14O3)(C4H10N2)]. The axial position of the square pyramid is occupied by the carboxyl O atoms of a neighboring mol­ecule.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803000710/fl6014sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803000710/fl6014Isup2.hkl
Contains datablock I

CCDC reference: 204656

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.036
  • wR factor = 0.082
  • Data-to-parameter ratio = 14.7

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
PLAT_420 Alert C D-H Without Acceptor N(2) - H(2A) ? PLAT_710 Alert C Delete 1-2-3 or 2-3-4 (CIF) Linear Torsion Angle # 2 O2 -CU -O1 -C2 9.80 1.20 1.555 1.555 1.555 1.555 PLAT_710 Alert C Delete 1-2-3 or 2-3-4 (CIF) Linear Torsion Angle # 4 O1 -CU -O2 -C9 19.80 1.20 1.555 1.555 1.555 1.555 PLAT_710 Alert C Delete 1-2-3 or 2-3-4 (CIF) Linear Torsion Angle # 9 N2 -CU -N1 -C7 -161.50 1.50 1.555 1.555 1.555 1.555 PLAT_710 Alert C Delete 1-2-3 or 2-3-4 (CIF) Linear Torsion Angle # 12 N2 -CU -N1 -C8 31.10 1.80 1.555 1.555 1.555 1.555 PLAT_710 Alert C Delete 1-2-3 or 2-3-4 (CIF) Linear Torsion Angle # 14 N1 -CU -N2 -C25 -25.00 1.80 1.555 1.555 1.555 1.555 PLAT_710 Alert C Delete 1-2-3 or 2-3-4 (CIF) Linear Torsion Angle # 17 N1 -CU -N2 -C21 105.80 1.60 1.555 1.555 1.555 1.555 PLAT_711 Alert C BOND Unknown or Inconsistent Label ........ O3A CU O3A PLAT_712 Alert C ANGLE Unknown or Inconsistent Label ........ O3A O3A CU O1 PLAT_712 Alert C ANGLE Unknown or Inconsistent Label ........ O3A O3A CU O2 PLAT_712 Alert C ANGLE Unknown or Inconsistent Label ........ O3A O3A CU N1 PLAT_712 Alert C ANGLE Unknown or Inconsistent Label ........ O3A O3A CU N2 General Notes
ABSTM_02 When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 1.663 Tmax scaled 0.790 Tmin scaled 0.562 REFLT_03 From the CIF: _diffrn_reflns_theta_max 32.50 From the CIF: _reflns_number_total 3609 Count of symmetry unique reflns 3429 Completeness (_total/calc) 105.25% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 180 Fraction of Friedel pairs measured 0.052 Are heavy atom types Z>Si present yes WARNING: Large fraction of Friedel related reflns may be needed to determine absolute structure
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
12 Alert Level C = Please check

Comment top

Galactose oxidase is a type II copper protein that catalyzes the oxidation of primary alcohols to aldehydes with a concomitant reduction of molecular oxygen (Whittaker, 1994). Its crystal structure (Ito et al., 1994) reveals a unique mononuclear Cu site with two N donors (from histidine imidazole groups), two O donors (one axial and one equatorial tyrosine group), and an exogenous water or acetate molecule, all arranged in a distorted square-pyramidal coordination. Several different theories have been proposed to explain how galactose oxidase, which contains a single Cu atom, can catalyze a two-electron redox reaction. The currently accepted theory (Whittaker & Whittaker, 2001) suggests that the `inactive' form of galactose oxidase is oxidized by the loss of one electron to produce the `active' form which contains a tyrosine (tyrosine 272) free radical ion coupled to the CuII ion. The active form is then reduced to the CuI species and the alcohol oxidized to the corresponding aldehyde.

There has been considerable interest in the study of model compounds of galactose oxidase in recent years (Butcher et al., 2003a,b; Kruse et al., 2002; Shimazaki et al., 2002; Thomas et al., 2002). One group of compounds that have attracted considerable interest consist of five-coordinate copper complexes with tridentate Schiff base ligands derived from the condensation of amino acids with substituted salicylaldehydes. In this type of complex, the Cu coordination sphere also contains a monodentate Lewis base. With two exceptions (Plesch et al., 1997; Sivy et al., 1994), X-ray crystallographic studies have shown that these CuII compounds contain CuII in a distorted square-pyramidal environment and fit into three main types:

(i) monomeric with a water molecule occupying the fifth coordination site (Butcher et al., 2003a; Dawes et al., 1982; Fujimaki et al., 1971; Garcia-Raso et al., 1996; Korhonen & Hamalainen, 1979; Ueki et al., 1969; Warda et al., 1996; Warda, 1997 g; Warda, 1998a,d,e,f);

(ii) dimeric with an adjacent phenolic O atom occupying the fifth coordination site (Butcher et al., 2003b; Davies, 1984; Hamalainen et al., 1978; Hill & Warda, 1999; Warda, 1997b,e; Warda, 1998b,c,e,g; Warda, 1999; Warda et al., 1998);

(iii) polymeric with the fifth coordination site occupied by an adjacent carboxyl O atom (Ukei et al., 1967; Kettman et al., 1993; Korhonen et al., 1984; Plesch et al., 1998; Warda et al., 1997; Warda, 1997a,b,c,d,f; Sivy et al., 1990).

The tridentate Schiff base ligand derived from the condensation of salicylaldehyde and l-phenylalanine, in the presence of piperidine, forms a square-pyramidal five-coordinate Cu complex of type iii. In this complex, the carboxyl O from an adjacent molecule occupies the apical site, at a distance of 2.674 (2) Å, forming a polymeric zigzag chain in the c direction. Unlike other square-pyramidal five-coordinate analogs, in this example, the Cu is only slightly displaced [0.012 (1) Å] from the basal plane formed by atoms O1, O2, N1, and N2, due to the comparatively weak out-of-plane bond to a neighboring carbonyl O donor. Neither the Cu—O1, Cu—O2, and Cu—N1 bond distances [1.918 (2), 1.964 (2), and 1.935 (2) Å, respectively] nor the Cu—N2 bond distance [2.002 (3) Å] differ significantly from those of similar type iii polymeric compounds mentioned above.

Experimental top

The title complex was synthesized in two stages. In the first stage, 10 g of l-phenylalanine (phenala) and an equimolar amount of sodium hydroxide were dissolved in 300 ml of hot water. To this solution was added an equimolar quantity of copper sulfate pentahydrate dissolved in 100 ml of water. The blue–purple [Cu(phenala)2].nH2O compound precipitated on cooling the solution. 6 g of this compound, two mole equivalents of salicylaldehyde, triethylamine (10 ml) and piperidine (10 ml) were refluxed in methanol for 1 h. The hot solution was filtered and allowed to stand until the dark-green product precipitated from solution. X-ray quality crystals were grown by slow evaporation from a methanol–acetonitrile solution.

Refinement top

All H atoms were included in calculated positions with C—H distances ranging from 0.93 to 0.98 Å and N—H distances of 0.91 Å. The H atoms were then included in the refinement using a riding-motion approximation, with Uiso = 1.2Ueq of the carrier atom.

Computing details top

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. View of the coordination sphere of the Cu, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 20% probability level. H atoms are represented by circles of arbitrary size.
[Figure 2] Fig. 2. The molecular packing viewed along the a axis, showing the zigzag chain of complexes in the c direction, linked through the carboxyl O atoms.
(Piperidine-κN)[N-(salicylidene)phenylalaninato-κ3O,N,O']copper(II) top
Crystal data top
[Cu(C17H14O3)(C4H10N2)]F(000) = 868
Mr = 415.96Dx = 1.462 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
a = 8.7002 (9) ÅCell parameters from 72 reflections
b = 22.6624 (15) Åθ = 5.3–14.0°
c = 9.9711 (8) ŵ = 1.18 mm1
β = 106.010 (7)°T = 293 K
V = 1889.7 (3) Å3Chunk, dark green
Z = 40.58 × 0.28 × 0.20 mm
Data collection top
Siemens P4S
diffractometer
2912 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 32.5°, θmin = 2.8°
ω scansh = 130
Absorption correction: empirical (using intensity measurements)
(North et al., 1968)
k = 034
Tmin = 0.338, Tmax = 0.475l = 1415
3692 measured reflections3 standard reflections every 97 reflections
3609 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.036 w = 1/[σ2(Fo2) + (0.0338P)2 + 0.1576P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.082(Δ/σ)max = 0.002
S = 1.02Δρmax = 0.21 e Å3
3609 reflectionsΔρmin = 0.21 e Å3
245 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraintsExtinction coefficient: 0.0019 (5)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.001 (13)
Crystal data top
[Cu(C17H14O3)(C4H10N2)]V = 1889.7 (3) Å3
Mr = 415.96Z = 4
Monoclinic, CcMo Kα radiation
a = 8.7002 (9) ŵ = 1.18 mm1
b = 22.6624 (15) ÅT = 293 K
c = 9.9711 (8) Å0.58 × 0.28 × 0.20 mm
β = 106.010 (7)°
Data collection top
Siemens P4S
diffractometer
2912 reflections with I > 2σ(I)
Absorption correction: empirical (using intensity measurements)
(North et al., 1968)
Rint = 0.000
Tmin = 0.338, Tmax = 0.4753 standard reflections every 97 reflections
3692 measured reflections intensity decay: 1%
3609 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.082Δρmax = 0.21 e Å3
S = 1.02Δρmin = 0.21 e Å3
3609 reflectionsAbsolute structure: Flack (1983)
245 parametersAbsolute structure parameter: 0.001 (13)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.17566 (3)0.913602 (14)0.10216 (3)0.03518 (10)
O10.0359 (3)0.88176 (11)0.0657 (2)0.0458 (5)
O20.2992 (3)0.95101 (10)0.2762 (2)0.0421 (5)
O30.2759 (3)1.00042 (11)0.4630 (2)0.0505 (6)
N10.0040 (3)0.94124 (11)0.1639 (2)0.0341 (5)
N20.3710 (3)0.88281 (13)0.0524 (3)0.0421 (6)
H2A0.39070.91010.00770.051*
C10.2022 (3)0.93480 (13)0.0599 (3)0.0349 (5)
C20.1095 (4)0.89996 (12)0.1268 (3)0.0376 (6)
C30.1813 (5)0.88563 (15)0.2689 (3)0.0485 (8)
H3A0.12640.86150.31550.058*
C40.3304 (5)0.90656 (16)0.3396 (4)0.0580 (10)
H4A0.37250.89700.43320.070*
C50.4193 (4)0.94164 (18)0.2741 (4)0.0543 (9)
H5A0.51920.95580.32350.065*
C60.3571 (4)0.95504 (15)0.1351 (4)0.0454 (7)
H6A0.41680.97760.08970.054*
C70.1458 (3)0.95207 (12)0.0847 (3)0.0351 (6)
H7A0.21620.97230.12340.042*
C80.0384 (4)0.96191 (13)0.3086 (3)0.0392 (6)
H8A0.01650.99930.31270.047*
C810.0095 (4)0.91695 (17)0.4063 (4)0.0494 (8)
H81A0.00140.93600.49510.059*
H81B0.12060.90610.36620.059*
C820.0897 (4)0.86149 (15)0.4325 (3)0.0429 (7)
C830.2191 (5)0.85677 (18)0.5497 (4)0.0582 (9)
H83A0.24120.88740.61420.070*
C840.3160 (5)0.8072 (2)0.5724 (4)0.0676 (11)
H84A0.40210.80510.65200.081*
C850.2869 (6)0.76152 (19)0.4795 (5)0.0656 (11)
H85A0.35380.72870.49450.079*
C860.1574 (6)0.76452 (18)0.3632 (4)0.0607 (10)
H86A0.13530.73330.30030.073*
C870.0600 (4)0.81386 (17)0.3398 (4)0.0517 (8)
H87A0.02690.81540.26080.062*
C90.2186 (4)0.97250 (12)0.3537 (3)0.0379 (6)
C210.3506 (5)0.82616 (19)0.0273 (4)0.0564 (10)
H21A0.44120.82000.06460.068*
H21B0.25460.82800.10480.068*
C220.3383 (6)0.77587 (17)0.0666 (4)0.0631 (10)
H22A0.32840.73920.01470.076*
H22B0.24260.78060.09750.076*
C230.4818 (5)0.77236 (16)0.1921 (4)0.0581 (10)
H23A0.57480.76080.16260.070*
H23B0.46360.74250.25570.070*
C240.5134 (4)0.83102 (15)0.2666 (4)0.0472 (7)
H24A0.42920.83910.31060.057*
H24C0.61380.82900.33920.057*
C250.5209 (4)0.88044 (16)0.1679 (4)0.0471 (8)
H25C0.53630.91760.21790.056*
H25A0.61110.87440.13000.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.02850 (13)0.03775 (16)0.03588 (15)0.00512 (17)0.00315 (10)0.00671 (17)
O10.0381 (11)0.0491 (13)0.0445 (12)0.0069 (10)0.0018 (9)0.0146 (10)
O20.0329 (10)0.0505 (12)0.0396 (11)0.0027 (9)0.0043 (9)0.0074 (10)
O30.0571 (15)0.0456 (12)0.0405 (12)0.0065 (11)0.0004 (11)0.0125 (10)
N10.0310 (11)0.0370 (12)0.0322 (11)0.0024 (9)0.0049 (9)0.0062 (10)
N20.0419 (14)0.0442 (14)0.0433 (14)0.0141 (11)0.0171 (11)0.0128 (11)
C10.0262 (11)0.0371 (13)0.0380 (13)0.0034 (11)0.0032 (10)0.0043 (11)
C20.0353 (14)0.0325 (13)0.0404 (14)0.0070 (11)0.0028 (12)0.0023 (11)
C30.058 (2)0.0408 (17)0.0410 (16)0.0094 (15)0.0034 (15)0.0088 (13)
C40.064 (2)0.054 (2)0.0414 (15)0.0158 (17)0.0099 (16)0.0020 (15)
C50.0406 (17)0.058 (2)0.0510 (19)0.0048 (16)0.0099 (15)0.0103 (16)
C60.0324 (14)0.0481 (17)0.0489 (17)0.0033 (12)0.0001 (12)0.0073 (14)
C70.0290 (12)0.0352 (13)0.0404 (14)0.0025 (10)0.0083 (11)0.0007 (11)
C80.0389 (14)0.0412 (15)0.0357 (14)0.0048 (12)0.0073 (11)0.0104 (12)
C810.0462 (17)0.066 (2)0.0387 (15)0.0062 (15)0.0159 (13)0.0098 (15)
C820.0431 (15)0.0517 (17)0.0353 (14)0.0121 (14)0.0134 (12)0.0013 (13)
C830.070 (2)0.060 (2)0.0381 (16)0.0173 (19)0.0047 (17)0.0010 (15)
C840.060 (2)0.075 (3)0.057 (2)0.009 (2)0.0023 (19)0.024 (2)
C850.074 (3)0.055 (2)0.073 (3)0.001 (2)0.028 (2)0.022 (2)
C860.074 (3)0.053 (2)0.062 (2)0.0191 (19)0.031 (2)0.0062 (17)
C870.0488 (18)0.061 (2)0.0443 (17)0.0162 (16)0.0104 (14)0.0085 (15)
C90.0436 (15)0.0311 (13)0.0332 (13)0.0022 (12)0.0010 (12)0.0021 (10)
C210.056 (2)0.071 (2)0.0428 (17)0.0259 (18)0.0151 (15)0.0067 (16)
C220.076 (3)0.0453 (19)0.069 (3)0.0050 (18)0.022 (2)0.0146 (17)
C230.075 (3)0.0408 (18)0.065 (2)0.0163 (17)0.029 (2)0.0098 (16)
C240.0449 (16)0.0517 (18)0.0418 (16)0.0076 (14)0.0064 (13)0.0078 (14)
C250.0294 (14)0.0455 (17)0.065 (2)0.0024 (13)0.0109 (14)0.0056 (15)
Geometric parameters (Å, º) top
Cu—O11.918 (2)C81—C821.506 (5)
Cu—N11.935 (2)C81—H81A0.9700
Cu—O21.964 (2)C81—H81B0.9700
Cu—N22.022 (3)C82—C831.385 (5)
Cu—O3A2.674 (2)C82—C871.398 (5)
O1—C21.310 (4)C83—C841.384 (6)
O2—C91.274 (4)C83—H83A0.9300
O3—C91.240 (3)C84—C851.366 (7)
N1—C71.292 (3)C84—H84A0.9300
N1—C81.464 (4)C85—C861.378 (6)
N2—C251.484 (4)C85—H85A0.9300
N2—C211.494 (5)C86—C871.383 (6)
N2—H2A0.9100C86—H86A0.9300
C1—C21.420 (4)C87—H87A0.9300
C1—C61.425 (4)C21—C221.497 (6)
C1—C71.443 (4)C21—H21A0.9700
C2—C31.420 (4)C21—H21B0.9700
C3—C41.378 (6)C22—C231.506 (6)
C3—H3A0.9300C22—H22A0.9700
C4—C51.391 (7)C22—H22B0.9700
C4—H4A0.9300C23—C241.511 (5)
C5—C61.376 (5)C23—H23A0.9700
C5—H5A0.9300C23—H23B0.9700
C6—H6A0.9300C24—C251.504 (5)
C7—H7A0.9300C24—H24A0.9700
C8—C91.526 (4)C24—H24C0.9700
C8—C811.545 (5)C25—H25C0.9700
C8—H8A0.9800C25—H25A0.9700
O1—Cu—N191.49 (10)H81A—C81—H81B107.6
O1—Cu—O2173.91 (10)C83—C82—C87117.2 (4)
N1—Cu—O282.65 (10)C83—C82—C81120.3 (3)
O1—Cu—N291.69 (11)C87—C82—C81122.5 (3)
N1—Cu—N2175.76 (11)C84—C83—C82121.2 (4)
O2—Cu—N294.24 (11)C84—C83—H83A119.4
O3A—Cu—O192.3 (1)C82—C83—H83A119.4
O3A—Cu—O288.1 (1)C85—C84—C83120.9 (4)
O3A—Cu—N1109.7 (1)C85—C84—H84A119.6
O3A—Cu—N273.0 (1)C83—C84—H84A119.6
C2—O1—Cu125.9 (2)C84—C85—C86119.3 (4)
C9—O2—Cu116.25 (19)C84—C85—H85A120.4
C7—N1—C8118.7 (2)C86—C85—H85A120.4
C7—N1—Cu125.9 (2)C85—C86—C87120.2 (4)
C8—N1—Cu114.27 (18)C85—C86—H86A119.9
C25—N2—C21109.4 (3)C87—C86—H86A119.9
C25—N2—Cu116.1 (2)C86—C87—C82121.3 (4)
C21—N2—Cu116.3 (2)C86—C87—H87A119.3
C25—N2—H2A104.5C82—C87—H87A119.3
C21—N2—H2A104.5O3—C9—O2124.9 (3)
Cu—N2—H2A104.5O3—C9—C8118.1 (3)
C2—C1—C6120.6 (3)O2—C9—C8117.0 (2)
C2—C1—C7122.7 (3)N2—C21—C22109.9 (3)
C6—C1—C7116.7 (3)N2—C21—H21A109.7
O1—C2—C1123.9 (3)C22—C21—H21A109.7
O1—C2—C3119.7 (3)N2—C21—H21B109.7
C1—C2—C3116.5 (3)C22—C21—H21B109.7
C4—C3—C2121.6 (4)H21A—C21—H21B108.2
C4—C3—H3A119.2C21—C22—C23111.9 (4)
C2—C3—H3A119.2C21—C22—H22A109.2
C3—C4—C5121.6 (3)C23—C22—H22A109.2
C3—C4—H4A119.2C21—C22—H22B109.2
C5—C4—H4A119.2C23—C22—H22B109.2
C6—C5—C4118.9 (3)H22A—C22—H22B107.9
C6—C5—H5A120.5C22—C23—C24111.0 (3)
C4—C5—H5A120.5C22—C23—H23A109.4
C5—C6—C1120.8 (3)C24—C23—H23A109.4
C5—C6—H6A119.6C22—C23—H23B109.4
C1—C6—H6A119.6C24—C23—H23B109.4
N1—C7—C1124.3 (3)H23A—C23—H23B108.0
N1—C7—H7A117.9C25—C24—C23111.6 (3)
C1—C7—H7A117.9C25—C24—H24A109.3
N1—C8—C9107.5 (2)C23—C24—H24A109.3
N1—C8—C81111.9 (3)C25—C24—H24C109.3
C9—C8—C81110.6 (3)C23—C24—H24C109.3
N1—C8—H8A109.0H24A—C24—H24C108.0
C9—C8—H8A109.0N2—C25—C24110.3 (3)
C81—C8—H8A109.0N2—C25—H25C109.6
C82—C81—C8114.7 (3)C24—C25—H25C109.6
C82—C81—H81A108.6N2—C25—H25A109.6
C8—C81—H81A108.6C24—C25—H25A109.6
C82—C81—H81B108.6H25C—C25—H25A108.1
C8—C81—H81B108.6
N1—Cu—O1—C225.7 (3)C2—C1—C7—N14.8 (5)
O2—Cu—O1—C29.8 (12)C6—C1—C7—N1174.4 (3)
N2—Cu—O1—C2157.1 (3)C7—N1—C8—C9151.7 (3)
O1—Cu—O2—C919.8 (12)Cu—N1—C8—C916.7 (3)
N1—Cu—O2—C93.8 (2)C7—N1—C8—C8186.7 (3)
N2—Cu—O2—C9173.3 (2)Cu—N1—C8—C81104.8 (3)
O1—Cu—N1—C722.9 (3)N1—C8—C81—C8270.9 (4)
O2—Cu—N1—C7155.4 (3)C9—C8—C81—C8248.8 (3)
N2—Cu—N1—C7161.5 (15)C8—C81—C82—C8395.4 (4)
O1—Cu—N1—C8169.6 (2)C8—C81—C82—C8782.5 (4)
O2—Cu—N1—C812.1 (2)C87—C82—C83—C841.0 (5)
N2—Cu—N1—C831.1 (18)C81—C82—C83—C84177.1 (4)
O1—Cu—N2—C25163.6 (2)C82—C83—C84—C850.1 (6)
N1—Cu—N2—C2525.0 (18)C83—C84—C85—C861.3 (6)
O2—Cu—N2—C2517.8 (2)C84—C85—C86—C871.3 (6)
O1—Cu—N2—C2132.8 (2)C85—C86—C87—C820.2 (6)
N1—Cu—N2—C21105.8 (16)C83—C82—C87—C860.9 (5)
O2—Cu—N2—C21148.6 (2)C81—C82—C87—C86177.0 (3)
Cu—O1—C2—C117.9 (4)Cu—O2—C9—O3175.8 (2)
Cu—O1—C2—C3161.0 (2)Cu—O2—C9—C85.2 (3)
C6—C1—C2—O1177.3 (3)N1—C8—C9—O3166.8 (3)
C7—C1—C2—O12.0 (5)C81—C8—C9—O370.9 (3)
C6—C1—C2—C31.6 (4)N1—C8—C9—O214.2 (4)
C7—C1—C2—C3179.1 (3)C81—C8—C9—O2108.2 (3)
O1—C2—C3—C4176.3 (3)C25—N2—C21—C2261.3 (4)
C1—C2—C3—C42.6 (5)Cu—N2—C21—C2272.6 (3)
C2—C3—C4—C51.5 (6)N2—C21—C22—C2357.2 (4)
C3—C4—C5—C60.8 (6)C21—C22—C23—C2452.2 (4)
C4—C5—C6—C11.7 (5)C22—C23—C24—C2551.6 (4)
C2—C1—C6—C50.5 (5)C21—N2—C25—C2461.1 (4)
C7—C1—C6—C5178.8 (3)Cu—N2—C25—C2472.9 (3)
C8—N1—C7—C1179.3 (3)C23—C24—C25—N256.6 (4)
Cu—N1—C7—C112.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O3i0.912.242.841 (4)123
Symmetry code: (i) x, y+2, z1/2.

Experimental details

Crystal data
Chemical formula[Cu(C17H14O3)(C4H10N2)]
Mr415.96
Crystal system, space groupMonoclinic, Cc
Temperature (K)293
a, b, c (Å)8.7002 (9), 22.6624 (15), 9.9711 (8)
β (°) 106.010 (7)
V3)1889.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.18
Crystal size (mm)0.58 × 0.28 × 0.20
Data collection
DiffractometerSiemens P4S
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(North et al., 1968)
Tmin, Tmax0.338, 0.475
No. of measured, independent and
observed [I > 2σ(I)] reflections
3692, 3609, 2912
Rint0.000
(sin θ/λ)max1)0.756
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.082, 1.02
No. of reflections3609
No. of parameters245
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.21
Absolute structureFlack (1983)
Absolute structure parameter0.001 (13)

Computer programs: XSCANS (Siemens, 1994), XSCANS, SHELXTL (Sheldrick, 1997), SHELXTL.

Selected geometric parameters (Å, º) top
Cu—O11.918 (2)Cu—N22.022 (3)
Cu—N11.935 (2)Cu—O3A2.674 (2)
Cu—O21.964 (2)
O1—Cu—N191.49 (10)O2—Cu—N294.24 (11)
O1—Cu—O2173.91 (10)O3A—Cu—O192.3 (1)
N1—Cu—O282.65 (10)O3A—Cu—O288.1 (1)
O1—Cu—N291.69 (11)O3A—Cu—N1109.7 (1)
N1—Cu—N2175.76 (11)O3A—Cu—N273.0 (1)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O3i0.912.242.841 (4)123
Symmetry code: (i) x, y+2, z1/2.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds