Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The solid-state structure of the title compound, C30H29O5P, has been determined at 100 K. The generalized puckering coordinates, Q2 (0.587), φ2 (286.82°) and θ2 (178.9°), confirm that the cyclo­hexane ring is in the chair conformation 2C5. The phosphine ligand is equatorial to the ring, with the P atom in a slightly distorted tetrahedral configuration.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680202370X/fl6013sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680202370X/fl6013Isup2.hkl
Contains datablock I

CCDC reference: 204678

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.010 Å
  • R factor = 0.069
  • wR factor = 0.165
  • Data-to-parameter ratio = 9.4

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
THETM_01 Alert C The value of sine(theta_max)/wavelength is less than 0.590 Calculated sin(theta_max)/wavelength = 0.5833 General Notes
REFLT_03 From the CIF: _diffrn_reflns_theta_max 24.49 From the CIF: _reflns_number_total 3050 Count of symmetry unique reflns 2284 Completeness (_total/calc) 133.54% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 766 Fraction of Friedel pairs measured 0.335 Are heavy atom types Z>Si present yes WARNING: Large fraction of Friedel related reflns may be needed to determine absolute structure
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

Over the last few decades, P—C bond forming reactions have received considerable attention since the resulting compounds have applications in organic and medicinal chemistry (Jung & McClure, 1991; Mori et al., 1995; Errington et al., 1997). Much of the recent work is complementary to the existing Arbusov and Pudovick processes (Bhattacharya & Thyagarajan, 1981, Pudovik & Konovalova, 1979), however, a limitation of all of this chemistry is the fact that triarylphosphites are generally unreactive. For example, it is well known that trialkylphosphites such as P(OEt)3 are converted into γ-keto phosphonates upon treatment with Michael acceptors, while analogous reactions employing triarylphosphites are rare (Harvey, 1996). In order to probe this reaction further, we have studied the reaction of cyclohexenenone with triphenylphosphite.

Heating a solution of cyclohexenone in phenol with triphenylphosphite afforded a dark solid. Distillation (0.05 mm H g) of this residue followed by purification (column chromatography) afforded a colorless solid. Instead of generating the addition product, the title compound, (I), was isolated. While a number of complexes containing this gem-aryloxide group have been reported, few contain a cyclohexane ring (Peters et al., 1998; Gawronski et al., 1989; Harada et al., 1994, 1997).

This work presents a noteworthy side reaction available to triarylphosphites, although the precise mechanism is not clear,

The central six-membered ring in (I) is in the chair conformation. Four ring C atoms C1, C3, C4, and C6 are coplanar within 0.01 Å, while C2 is situated 0.69 (1) Å above and C5 − 0.68 (1) Å below the plane. The C2 and C5 dihedral flap angles are 51.8 (4) and 51.2 (4)° relative to the four-carbon plane, respectively. This yields an almost undistorted 2C5 conformation for the central six-membered ring, which is reaffirmed by the generalized puckering coordinates q2 [0.0115 (7)], ϕ2 [−75 (34)°] and θ2 [178.9 (7)°] (Nardelli, 1995; Giacovazzo et al., 1998).

A Cambridge Structural Database (Allen, 2002) search returned three relevant molecules with the phosphine–cyclohexane skeleton and similar substitution pattern to that of (I). These molecules, 1-hydroxycyclohexanephosphonic acid, (II) (Ohms et al., 1996), 8-cyclohexyl-16H-dinaphto[2,1 − d:1',2'-g][1,3,2]dioxaphosphocine-8-oxide, (III) (Naidu et al. 1992), and (-)-diethyl3-hydroxy-3-(2-trityl-1,2,4-triazol-3-yl)cyclohexylphosphonate, (IV) (Mori et al., 1995), contain equatorial phosphine ligands and low-energy chair conformation cyclohexane rings.

The phosphine ligand is bound to atom C1, the only chiral C atom in the molecule. The absolute configuration about the chiral atom could not be unequivocally established. Bond distances for the phosphine ligand are listed below and are in good agreement with the corresponding averages of (II)–(IV) given in brackets: 1.467 (5) Å for PO1 [average 1.47 (2) Å], 1.595 (4) Å for P—O [average 1.58 (3) Å], and 1.797 (6) Å for P—C1 [average 1.80 (2)]. The P atom is in a slightly distorted tetrahedral configuration with the angles about it ranging between 101.0 (2)–116.0 (2)°.

Experimental top

Phenol (50.0 ml, dried) was heated to 323 K in a clean dry flask under nitrogen. While stirring, triphenylphosphite (8.7 mmol; Aldrich) and cyclohexenone (10.3 mmol; Aldrich) were added and the temperature was increased to 373 K for 36 h. The product was distilled under vacuum (0.05 mm H g) and purified by column chromatography (silica gel; hexane/EtOAc 7:3). After collecting fractions, the product crystallized from the solution. The crystals were collected on a filterm washed with hexanes and dried (0.020 g).

Computing details top

Data collection: SMART (Bruker, 2000-2001); cell refinement: SAINT (Bruker, 2000-2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2000-2001); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). The displacement ellipsoids are shown at the 50% probability level.
(3, 3-dephenoxy-cyclohexyl)-phosphonic acid diphenyl ester top
Crystal data top
C30H29O5PF(000) = 528
Mr = 500.50Dx = 1.337 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 13.612 (3) ÅCell parameters from 528 reflections
b = 5.8536 (11) Åθ = 2.4–24.5°
c = 16.900 (3) ŵ = 0.15 mm1
β = 112.63 (1)°T = 100 K
V = 1242.9 (4) Å3Needle, colorless
Z = 20.52 × 0.12 × 0.10 mm
Data collection top
Bruker CCD-1000 area-detector
diffractometer
3050 independent reflections
Radiation source: fine-focus sealed tube2482 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
ϕ and ω scansθmax = 24.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2000-2001)
h = 1515
Tmin = 0.926, Tmax = 0.985k = 66
5397 measured reflectionsl = 1918
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.165H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0897P)2 + 0.2739P]
where P = (Fo2 + 2Fc2)/3
3050 reflections(Δ/σ)max < 0.001
325 parametersΔρmax = 0.48 e Å3
1 restraintΔρmin = 0.32 e Å3
Crystal data top
C30H29O5PV = 1242.9 (4) Å3
Mr = 500.50Z = 2
Monoclinic, P21Mo Kα radiation
a = 13.612 (3) ŵ = 0.15 mm1
b = 5.8536 (11) ÅT = 100 K
c = 16.900 (3) Å0.52 × 0.12 × 0.10 mm
β = 112.63 (1)°
Data collection top
Bruker CCD-1000 area-detector
diffractometer
3050 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000-2001)
2482 reflections with I > 2σ(I)
Tmin = 0.926, Tmax = 0.985Rint = 0.064
5397 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0691 restraint
wR(F2) = 0.165H-atom parameters constrained
S = 1.02Δρmax = 0.48 e Å3
3050 reflectionsΔρmin = 0.32 e Å3
325 parameters
Special details top

Experimental. SADABS V.2.03, Bruker-AXS, 2001.

1H NMR (300 mHz, CDCl3, 25 °C): δ 7.2 − 6.7 (m, 1H, Ar—H), 2.81 (m, 1H, –CH2–), 2.50–2.23 (m, 2H, –CH2–), 2.17(m, 1H, –CH2–), 1.85 (m, 1H, CHP(O)), 1.17 (m, 1H, –CH2–), 1.57 (m, 2H, –CH2–). 31P{1H} NMR (121 mHz, CDCl3, 25 °C): δ 24.9 p.p.m..

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P0.49776 (11)0.6966 (3)0.30138 (10)0.0190 (4)
O10.5337 (3)0.8969 (7)0.3574 (3)0.0243 (11)
O20.5894 (3)0.5132 (7)0.3122 (2)0.0206 (10)
O30.4551 (3)0.7453 (7)0.2012 (3)0.0230 (11)
O40.2211 (3)0.0327 (7)0.2045 (2)0.0211 (10)
O50.1743 (3)0.3938 (7)0.2442 (2)0.0201 (10)
C10.3893 (5)0.5426 (12)0.3121 (4)0.0200 (14)
H10.32950.65290.30170.024*
C20.3471 (4)0.3453 (11)0.2472 (4)0.0177 (15)
H2A0.32210.40610.18810.021*
H2B0.40500.23470.25480.021*
C30.2567 (4)0.2273 (11)0.2612 (4)0.0188 (15)
C40.2910 (5)0.1352 (10)0.3510 (4)0.0187 (15)
H4A0.34790.02020.36100.022*
H4B0.23000.05910.35810.022*
C50.3322 (4)0.3280 (12)0.4166 (4)0.0226 (15)
H5A0.27370.43690.40950.027*
H5B0.35660.26380.47520.027*
C60.4232 (5)0.4523 (11)0.4052 (4)0.0226 (16)
H6A0.48440.34730.41830.027*
H6B0.44590.58200.44580.027*
C70.6882 (4)0.5091 (11)0.3821 (4)0.0170 (14)
C80.7552 (4)0.6977 (13)0.3980 (4)0.0233 (15)
H80.73530.83020.36300.028*
C90.8519 (5)0.6849 (13)0.4671 (4)0.0265 (16)
H90.89880.81220.48070.032*
C100.8809 (5)0.4908 (14)0.5162 (4)0.0292 (17)
H100.94790.48410.56300.035*
C110.8135 (5)0.3065 (12)0.4979 (4)0.0269 (16)
H110.83410.17220.53190.032*
C120.7161 (5)0.3150 (11)0.4307 (4)0.0222 (15)
H120.66900.18820.41820.027*
C130.5246 (4)0.7947 (11)0.1603 (4)0.0203 (16)
C140.5382 (5)0.6380 (12)0.1049 (4)0.0306 (18)
H140.50070.49710.09530.037*
C150.6044 (5)0.6816 (13)0.0637 (4)0.0316 (17)
H150.61200.57230.02490.038*
C160.6603 (5)0.8827 (13)0.0779 (4)0.0328 (18)
H160.70820.91140.05040.039*
C170.6460 (5)1.0447 (13)0.1331 (4)0.0302 (17)
H170.68291.18610.14160.036*
C180.5791 (4)1.0024 (12)0.1754 (4)0.0221 (15)
H180.57041.11160.21380.026*
C190.1878 (4)0.0602 (12)0.1171 (4)0.0192 (15)
C200.1299 (5)0.2436 (12)0.0703 (4)0.0294 (17)
H200.11400.36910.09900.035*
C210.0952 (5)0.2441 (12)0.0184 (4)0.0281 (17)
H210.05670.37140.05030.034*
C220.1166 (5)0.0605 (13)0.0606 (4)0.0304 (17)
H220.09190.05940.12140.036*
C230.1734 (5)0.1185 (13)0.0140 (4)0.0322 (17)
H230.18900.24390.04290.039*
C240.2085 (5)0.1224 (13)0.0736 (4)0.0286 (17)
H240.24730.25060.10460.034*
C250.0850 (4)0.3503 (11)0.2601 (3)0.0179 (15)
C260.0252 (5)0.1469 (10)0.2362 (4)0.0206 (15)
H260.04840.02460.21070.025*
C270.0682 (5)0.1291 (12)0.2507 (4)0.0280 (17)
H270.10980.00600.23400.034*
C280.1019 (5)0.3054 (13)0.2891 (4)0.0337 (18)
H280.16530.29110.29950.040*
C290.0421 (5)0.5000 (14)0.3115 (4)0.0330 (18)
H290.06440.62090.33830.040*
C300.0491 (5)0.5248 (13)0.2964 (4)0.0275 (16)
H300.08800.66380.31100.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P0.0229 (8)0.0140 (10)0.0159 (9)0.0017 (8)0.0028 (6)0.0001 (8)
O10.033 (2)0.014 (3)0.019 (2)0.005 (2)0.0027 (19)0.008 (2)
O20.023 (2)0.016 (3)0.015 (2)0.0009 (19)0.0014 (18)0.002 (2)
O30.019 (2)0.023 (3)0.023 (2)0.0047 (19)0.0037 (18)0.004 (2)
O40.035 (2)0.009 (2)0.012 (2)0.004 (2)0.0010 (18)0.002 (2)
O50.023 (2)0.015 (2)0.016 (2)0.0036 (19)0.0007 (18)0.004 (2)
C10.025 (3)0.014 (4)0.014 (3)0.000 (3)0.000 (3)0.002 (3)
C20.023 (3)0.016 (4)0.008 (3)0.007 (3)0.000 (2)0.001 (3)
C30.026 (3)0.012 (4)0.016 (3)0.001 (3)0.004 (3)0.002 (3)
C40.024 (3)0.010 (4)0.024 (4)0.005 (3)0.010 (3)0.000 (3)
C50.029 (3)0.027 (4)0.013 (3)0.000 (3)0.010 (3)0.007 (3)
C60.030 (4)0.017 (4)0.012 (3)0.000 (3)0.002 (3)0.000 (3)
C70.014 (3)0.015 (4)0.018 (3)0.002 (3)0.002 (3)0.001 (3)
C80.023 (3)0.019 (4)0.024 (3)0.002 (3)0.006 (3)0.003 (4)
C90.029 (3)0.025 (4)0.021 (4)0.005 (4)0.006 (3)0.008 (4)
C100.017 (3)0.040 (5)0.024 (4)0.005 (3)0.001 (3)0.003 (4)
C110.035 (4)0.021 (4)0.019 (3)0.012 (3)0.004 (3)0.005 (3)
C120.035 (4)0.014 (4)0.015 (3)0.001 (3)0.008 (3)0.001 (3)
C130.018 (3)0.013 (4)0.019 (4)0.001 (3)0.006 (3)0.005 (3)
C140.040 (4)0.027 (5)0.016 (4)0.005 (3)0.001 (3)0.001 (3)
C150.046 (4)0.022 (4)0.025 (4)0.006 (4)0.013 (3)0.005 (4)
C160.035 (4)0.031 (5)0.030 (4)0.001 (4)0.009 (3)0.009 (4)
C170.029 (4)0.021 (4)0.032 (4)0.002 (3)0.002 (3)0.013 (4)
C180.022 (3)0.020 (4)0.016 (3)0.005 (3)0.001 (3)0.001 (3)
C190.021 (3)0.018 (4)0.016 (3)0.003 (3)0.004 (3)0.003 (3)
C200.039 (4)0.020 (4)0.024 (4)0.005 (3)0.007 (3)0.003 (4)
C210.035 (4)0.022 (4)0.022 (4)0.004 (3)0.004 (3)0.002 (4)
C220.035 (4)0.041 (5)0.013 (3)0.012 (4)0.006 (3)0.007 (4)
C230.037 (4)0.029 (5)0.026 (4)0.003 (4)0.007 (3)0.011 (4)
C240.026 (4)0.029 (4)0.028 (4)0.002 (3)0.006 (3)0.006 (4)
C250.022 (3)0.022 (4)0.008 (3)0.011 (3)0.005 (3)0.000 (3)
C260.035 (4)0.005 (4)0.017 (3)0.002 (3)0.004 (3)0.002 (3)
C270.027 (4)0.026 (4)0.026 (4)0.006 (3)0.004 (3)0.003 (3)
C280.030 (4)0.044 (5)0.026 (4)0.008 (4)0.008 (3)0.006 (4)
C290.040 (4)0.031 (5)0.021 (4)0.006 (4)0.005 (3)0.007 (4)
C300.028 (4)0.033 (4)0.018 (4)0.005 (3)0.004 (3)0.003 (4)
Geometric parameters (Å, º) top
P—O11.468 (4)C12—H120.9500
P—O31.589 (4)C13—C141.372 (9)
P—O21.602 (4)C13—C181.396 (9)
P—C11.798 (6)C14—C151.359 (9)
O2—C71.408 (6)C14—H140.9500
O3—C131.401 (7)C15—C161.371 (10)
O4—C191.378 (7)C15—H150.9500
O4—C31.447 (7)C16—C171.395 (10)
O5—C251.366 (7)C16—H160.9500
O5—C31.429 (7)C17—C181.379 (9)
C1—C21.543 (9)C17—H170.9500
C1—C61.552 (8)C18—H180.9500
C1—H11.0000C19—C241.387 (9)
C2—C31.507 (8)C19—C201.385 (9)
C2—H2A0.9900C20—C211.388 (9)
C2—H2B0.9900C20—H200.9500
C3—C41.506 (8)C21—C221.381 (10)
C4—C51.529 (9)C21—H210.9500
C4—H4A0.9900C22—C231.359 (10)
C4—H4B0.9900C22—H220.9500
C5—C61.511 (8)C23—C241.370 (9)
C5—H5A0.9900C23—H230.9500
C5—H5B0.9900C24—H240.9500
C6—H6A0.9900C25—C301.374 (9)
C6—H6B0.9900C25—C261.411 (9)
C7—C121.367 (9)C26—C271.388 (9)
C7—C81.391 (9)C26—H260.9500
C8—C91.385 (8)C27—C281.387 (9)
C8—H80.9500C27—H270.9500
C9—C101.372 (10)C28—C291.366 (10)
C9—H90.9500C28—H280.9500
C10—C111.373 (10)C29—C301.369 (9)
C10—H100.9500C29—H290.9500
C11—C121.375 (8)C30—H300.9500
C11—H110.9500
O1—P—O3116.0 (2)C10—C11—H11119.8
O1—P—O2114.2 (2)C12—C11—H11119.8
O3—P—O2101.0 (2)C7—C12—C11118.9 (6)
O1—P—C1114.7 (3)C7—C12—H12120.5
O3—P—C1102.7 (2)C11—C12—H12120.5
O2—P—C1106.6 (3)C14—C13—C18120.3 (6)
C7—O2—P123.9 (4)C14—C13—O3119.5 (5)
C13—O3—P121.6 (3)C18—C13—O3120.2 (6)
C19—O4—C3120.4 (5)C15—C14—C13120.9 (6)
C25—O5—C3121.5 (5)C15—C14—H14119.5
C2—C1—C6110.5 (5)C13—C14—H14119.5
C2—C1—P113.5 (4)C14—C15—C16120.3 (7)
C6—C1—P109.7 (4)C14—C15—H15119.9
C2—C1—H1107.6C16—C15—H15119.9
C6—C1—H1107.6C15—C16—C17119.3 (6)
P—C1—H1107.6C15—C16—H16120.3
C3—C2—C1109.6 (5)C17—C16—H16120.3
C3—C2—H2A109.8C18—C17—C16120.9 (7)
C1—C2—H2A109.8C18—C17—H17119.5
C3—C2—H2B109.8C16—C17—H17119.5
C1—C2—H2B109.8C17—C18—C13118.2 (6)
H2A—C2—H2B108.2C17—C18—H18120.9
O5—C3—O4111.5 (4)C13—C18—H18120.9
O5—C3—C4111.2 (5)O4—C19—C24115.3 (6)
O4—C3—C4106.3 (5)O4—C19—C20125.6 (6)
O5—C3—C2106.3 (5)C24—C19—C20118.8 (6)
O4—C3—C2110.1 (5)C19—C20—C21120.0 (6)
C4—C3—C2111.5 (5)C19—C20—H20120.0
C3—C4—C5110.6 (5)C21—C20—H20120.0
C3—C4—H4A109.5C22—C21—C20120.3 (6)
C5—C4—H4A109.5C22—C21—H21119.9
C3—C4—H4B109.5C20—C21—H21119.9
C5—C4—H4B109.5C23—C22—C21119.1 (6)
H4A—C4—H4B108.1C23—C22—H22120.4
C6—C5—C4110.6 (5)C21—C22—H22120.4
C6—C5—H5A109.5C22—C23—C24121.5 (7)
C4—C5—H5A109.5C22—C23—H23119.2
C6—C5—H5B109.5C24—C23—H23119.2
C4—C5—H5B109.5C23—C24—C19120.1 (7)
H5A—C5—H5B108.1C23—C24—H24119.9
C5—C6—C1110.8 (5)C19—C24—H24119.9
C5—C6—H6A109.5O5—C25—C30116.4 (6)
C1—C6—H6A109.5O5—C25—C26124.1 (5)
C5—C6—H6B109.5C30—C25—C26119.4 (5)
C1—C6—H6B109.5C27—C26—C25118.7 (6)
H6A—C6—H6B108.1C27—C26—H26120.7
C12—C7—C8122.2 (5)C25—C26—H26120.7
C12—C7—O2118.3 (5)C26—C27—C28121.1 (6)
C8—C7—O2119.5 (5)C26—C27—H27119.5
C9—C8—C7117.4 (6)C28—C27—H27119.5
C9—C8—H8121.3C29—C28—C27118.8 (6)
C7—C8—H8121.3C29—C28—H28120.6
C10—C9—C8120.9 (7)C27—C28—H28120.6
C10—C9—H9119.5C28—C29—C30121.5 (7)
C8—C9—H9119.5C28—C29—H29119.2
C11—C10—C9120.2 (6)C30—C29—H29119.2
C11—C10—H10119.9C29—C30—C25120.5 (7)
C9—C10—H10119.9C29—C30—H30119.7
C10—C11—C12120.4 (6)C25—C30—H30119.7
O1—P—O2—C715.4 (5)C8—C9—C10—C110.7 (9)
O3—P—O2—C7140.6 (4)C9—C10—C11—C120.4 (10)
C1—P—O2—C7112.4 (5)C8—C7—C12—C110.3 (9)
O1—P—O3—C1375.2 (5)O2—C7—C12—C11178.5 (5)
O2—P—O3—C1348.9 (5)C10—C11—C12—C70.6 (9)
C1—P—O3—C13159.0 (5)P—O3—C13—C14110.4 (5)
O1—P—C1—C2175.2 (4)P—O3—C13—C1870.0 (7)
O3—P—C1—C248.4 (5)C18—C13—C14—C150.2 (9)
O2—P—C1—C257.3 (5)O3—C13—C14—C15179.5 (6)
O1—P—C1—C660.7 (5)C13—C14—C15—C161.0 (10)
O3—P—C1—C6172.6 (4)C14—C15—C16—C171.9 (10)
O2—P—C1—C666.8 (5)C15—C16—C17—C182.0 (10)
C6—C1—C2—C356.3 (6)C16—C17—C18—C131.2 (9)
P—C1—C2—C3179.9 (4)C14—C13—C18—C170.2 (8)
C25—O5—C3—O467.4 (6)O3—C13—C18—C17179.4 (5)
C25—O5—C3—C451.1 (7)C3—O4—C19—C24147.4 (5)
C25—O5—C3—C2172.6 (5)C3—O4—C19—C2037.6 (8)
C19—O4—C3—O560.9 (6)O4—C19—C20—C21175.8 (5)
C19—O4—C3—C4177.7 (4)C24—C19—C20—C211.0 (9)
C19—O4—C3—C256.8 (6)C19—C20—C21—C221.1 (9)
C1—C2—C3—O562.8 (5)C20—C21—C22—C231.1 (9)
C1—C2—C3—O4176.3 (4)C21—C22—C23—C240.9 (10)
C1—C2—C3—C458.5 (7)C22—C23—C24—C190.9 (10)
O5—C3—C4—C559.4 (6)O4—C19—C24—C23176.2 (6)
O4—C3—C4—C5179.1 (4)C20—C19—C24—C230.9 (9)
C2—C3—C4—C559.1 (7)C3—O5—C25—C30138.4 (5)
C3—C4—C5—C657.3 (6)C3—O5—C25—C2646.2 (7)
C4—C5—C6—C155.8 (7)O5—C25—C26—C27175.6 (5)
C2—C1—C6—C555.8 (7)C30—C25—C26—C270.3 (8)
P—C1—C6—C5178.3 (5)C25—C26—C27—C281.0 (9)
P—O2—C7—C12121.8 (5)C26—C27—C28—C290.9 (10)
P—O2—C7—C860.0 (7)C27—C28—C29—C300.5 (10)
C12—C7—C8—C91.4 (9)C28—C29—C30—C251.9 (10)
O2—C7—C8—C9179.5 (5)O5—C25—C30—C29177.5 (5)
C7—C8—C9—C101.5 (9)C26—C25—C30—C291.8 (9)

Experimental details

Crystal data
Chemical formulaC30H29O5P
Mr500.50
Crystal system, space groupMonoclinic, P21
Temperature (K)100
a, b, c (Å)13.612 (3), 5.8536 (11), 16.900 (3)
β (°) 112.63 (1)
V3)1242.9 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.15
Crystal size (mm)0.52 × 0.12 × 0.10
Data collection
DiffractometerBruker CCD-1000 area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000-2001)
Tmin, Tmax0.926, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
5397, 3050, 2482
Rint0.064
(sin θ/λ)max1)0.583
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.165, 1.02
No. of reflections3050
No. of parameters325
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.32

Computer programs: SMART (Bruker, 2000-2001), SAINT (Bruker, 2000-2001), SAINT, SHELXTL (Bruker, 2000-2001), SHELXTL.

 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds