Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The crystal structure of the title compound, [VO(C5H9O3)2(C5H8N2)], has been obtained from single-crystal X-ray diffraction data measured at 150 K. The title compound provides a potential synthon for complexes that model V-containing haloperoxidases. The complex is pseudo-octa­hedral and the metal-oxo bond length is 1.595 (2) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802020937/fl6006sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802020937/fl6006Isup2.hkl
Contains datablock I

CCDC reference: 202293

Key indicators

  • Single-crystal X-ray study
  • T = 150 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.054
  • wR factor = 0.144
  • Data-to-parameter ratio = 18.7

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
PLAT_735 Alert C D-H Calc 0.87(4), Rep 0.872(19) .... 2.11 su-Ratio O2 -H2O 1.555 1.555
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

In support of our ongoing research program into the bioinorganic chemistry of vanadium, the crystal structure of the title compound, (I) (Fig. 1), has been determined to characterize this potential synthon for complexes that model the active site of V-containing haloperoxidases. The heteroleptic oxovanadium(IV) VO2+ complex (I) (µeff = 1.67 BM) is coordinated by two 2-hydroxy-2-methylbutanoate ligands and a 3,5-dimethylpyrazole ligand. The complex has pseudo-octahedral coordination geometry, with the axial oxo group trans to the hydroxy donor atom of one of the hydroxy acid chelates [O1—V1—O2 = 172.12°]. The V atom lies 0.338 (1) Å above the plane defined by atoms O3, O5, O6 and N1 toward the oxo group.

Protonation of the hydroxy groups is indicated by a close contact distance of 2.522 (3) Å between O5 and O4 on a nearby complex at (1/2 − x, 1/2 − y, −z) and a distance of 2.611 (3) Å between O2 and O7 on another complex at (1 − x, y, 1/2 − z). A further hydrogen-bond interaction occurs between N2 and O6 on a neighbouring complex at (1 − x, y, 1/2 − z), with the donor–acceptor distance being 2.902 (3) Å. The V1—O2 bond length is 2.209 (2) Å and is significantly longer than the V1—O5 metal-to-hydroxy donor distance of 2.023 (2) Å for the second 2-hydroxy-2-methylbutanoate ligand located exclusively in the equatorial plane. The difference in bond lengths presumably reflects the trans influence of the axial oxo group. Similar bond-length differences trans and equatorial to a vanadium oxo group are found for similar complexes reported in the literature. A VO3+ complex described by Mondal et al. (1998) has an oxo–metal to trans hydroxy donor atom distance of 2.314 Å. In a square-pyramidal VO2+ complex related to (I), there is an equatorial hydroxy donor-to-metal distance of 1.987 (2) Å (Barr-David et al., 1992).

The axial tert-α hydroxy acid is enantiomerically disordered with populations for the two isomers refined and then fixed at 0.75 (R isomer in the asymmetric unit) and 0.25 (S isomer in the asymmetric unit). The ethyl residue of the predominant enantiomer is further disordered over two orientations, with site occupancies of 0.55 and 0.2. The hydroxy acid ligand located exclusively in the equatorial plane has an S configuration at C6 in the asymmetric unit.

The V1—N1 bond length [2.112 (2) Å] in (I) is very close to the V—Nε (H486) bond length (2.11 Å) found in the crystal structure of the V-haloperoxidase obtained from Ascophyllum nodosum (Weyand et al., 1999). The VO2+ motif of (I), together with the oxygen-rich coordination sphere and the single VN(pyrazole) bond, may be a suitable precursor for model complexes of the active site of V-haloperoxidases.

Experimental top

Crystals were isolated from a dichloromethane solution (1.5 ml) containing one equivalent of [hydrotris(3,5-dimethylpyrazolyl)borato](pentane-2,4-dionato)oxovanadium(IV) (Beddoes et al., 1990) and six equivalents of 2-hydroxy-2-methylbutanoic acid. After 30 min, the colour of the solution changed from blue to grey to yellow–brown. The solution was left standing in air for four weeks to afford dark-blue crystals of (I) suitable for crystal structure analysis.

Refinement top

Crystal decay was assessed with a recollection of the first 199 reflections at the end of the experiment. The data reduction included the application of Lorentz and polarization corrections. One of the two hydroxycarboxylate ligands is enantiomerically disordered, with the ligand sites being a mixture of both enantiomers having populations refined and then fixed at 0.75 and 0.25. The ethyl residue of one of the enantiomers is further disordered over two sites with occupancies of 0.55 and 0.2. The structure solution in non-centrosymmetric space group Cc has two complex molecules in the asymmetric unit, one of which has ligands that are the same enantiomer, whereas in the second complex, the ligands are racemic. Significant residual peaks between 1 and 1.84 in vicinity of the ethyl and methyl residues in the Cc solution could not be rationally modelled as disorder. Additionally, the Flack parameter (Flack, 1983; Bernardinelli & Flack, 1985; Flack & Bernardinelli, 1999, 2000) refines to 0.48 (4) for the Cc model, Consequently, the disordered centrosymmetic solution was selected as providing the best model for the structure.

In general, the non-H-atom sites were modelled with anisotropic displacement parameters, and a riding model was used for the H atoms. The disordered non-H-atom sites were modelled with isotropic displacement parameters. The hydroxy atoms H2O and H5O, and the pyrazole atom H2N were located and modelled with isotropic displacement parameters. Weak distance restraints were required for the hydroxy H-atom sites. Distance restraints were applied to the disordered residues, and the displacement parameters for atoms C4A and C4C were constrained to be the same, as they were those of C3A and C3B.

Computing details top

Data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT and XPREP (Siemens, 1995); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: TEXSAN for Windows (Molecular Structure Corporation, 1997), Xtal3.6 (Hall et al., 1999), ORTEPII (Johnson, 1976) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. ORTEPII (Johnson, 1976; Hall et al., 1999) projection of (I), with displacement ellipsoids shown at the 20% probability level.
(I) top
Crystal data top
[VO(C5H9O3)2(C5H8N2)]F(000) = 1672
Mr = 397.32Dx = 1.343 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 20.99 (1) ÅCell parameters from 1023 reflections
b = 10.140 (5) Åθ = 2.9–27.7°
c = 20.24 (1) ŵ = 0.54 mm1
β = 114.215 (7)°T = 150 K
V = 3929 (3) Å3Prismatic, blue
Z = 80.46 × 0.28 × 0.19 mm
Data collection top
Siemens SMART 1000 CCD
diffractometer
4642 independent reflections
Radiation source: sealed tube3825 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω scansθmax = 28.3°, θmin = 2.2°
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
h = 2725
Tmin = 0.817, Tmax = 0.904k = 1313
18722 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H atoms treated by a mixture of independent and constrained refinement
S = 1.49 w = 1/[σ2(Fo2) + (0.05P)2 + 5P]
where P = (Fo2 + 2Fc2)/3
4641 reflections(Δ/σ)max = 0.001
248 parametersΔρmax = 1.43 e Å3
10 restraintsΔρmin = 0.75 e Å3
Crystal data top
[VO(C5H9O3)2(C5H8N2)]V = 3929 (3) Å3
Mr = 397.32Z = 8
Monoclinic, C2/cMo Kα radiation
a = 20.99 (1) ŵ = 0.54 mm1
b = 10.140 (5) ÅT = 150 K
c = 20.24 (1) Å0.46 × 0.28 × 0.19 mm
β = 114.215 (7)°
Data collection top
Siemens SMART 1000 CCD
diffractometer
4642 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
3825 reflections with I > 2σ(I)
Tmin = 0.817, Tmax = 0.904Rint = 0.023
18722 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05410 restraints
wR(F2) = 0.144H atoms treated by a mixture of independent and constrained refinement
S = 1.49Δρmax = 1.43 e Å3
4641 reflectionsΔρmin = 0.75 e Å3
248 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
V10.353447 (19)0.63503 (4)0.13653 (2)0.02355 (14)
O10.29873 (9)0.5430 (2)0.15073 (10)0.0338 (4)
O20.42568 (9)0.7467 (2)0.10306 (9)0.0284 (4)
H2O0.4657 (14)0.782 (4)0.1309 (18)0.058 (11)*
O30.30985 (9)0.63833 (18)0.02819 (9)0.0268 (4)
O40.31533 (9)0.6762 (2)0.07779 (10)0.0362 (5)
O50.31578 (9)0.8150 (2)0.14480 (10)0.0306 (4)
H5O0.2694 (11)0.825 (5)0.124 (2)0.072 (13)*
O60.42098 (8)0.68980 (19)0.23586 (9)0.0269 (4)
O70.45414 (12)0.8532 (3)0.31638 (13)0.0605 (8)
N10.41967 (10)0.4779 (2)0.13702 (11)0.0248 (4)
N20.49072 (10)0.4852 (2)0.17117 (11)0.0237 (4)
H2N0.5094 (17)0.552 (3)0.1942 (18)0.032 (8)*
C10.41223 (14)0.7466 (3)0.02750 (14)0.0422 (7)
C20.33993 (12)0.6829 (3)0.01067 (14)0.0281 (5)
C3A0.4654 (2)0.6492 (4)0.0166 (2)0.0385 (8)*0.75
H3A10.51320.68110.04400.058*0.75
H3A20.45590.64450.03490.058*0.75
H3A30.46040.56130.03400.058*0.75
C4A0.4199 (4)0.8715 (5)0.0069 (4)0.0432 (15)*0.55
H4A10.46780.90670.01840.052*0.55
H4A20.41060.85630.05830.052*0.55
C5A0.3685 (4)0.9652 (8)0.0012 (4)0.0607 (18)*0.55
H5A10.32110.93490.03160.091*0.55
H5A20.37601.05260.01740.091*0.55
H5A30.37430.97040.04930.091*0.55
C3B0.3958 (8)0.8940 (6)0.0143 (8)0.0385 (8)*0.25
H3B10.35720.91680.02760.058*0.25
H3B20.38240.91400.03710.058*0.25
H3B30.43720.94550.04380.058*0.25
C4B0.4703 (4)0.7170 (15)0.0073 (6)0.042 (3)*0.25
H4B10.46970.78950.02570.050*0.25
H4B20.45520.63720.02330.050*0.25
C5B0.5460 (5)0.6947 (15)0.0541 (7)0.052 (3)*0.25
H5B10.55200.67690.10390.078*0.25
H5B20.57270.77350.05330.078*0.25
H5B30.56280.61910.03570.078*0.25
C4C0.4109 (12)0.8890 (9)0.0052 (13)0.0432 (15)*0.20
H4C10.39110.93560.03550.052*0.20
H4C20.46090.91380.02550.052*0.20
C5C0.3824 (10)0.9582 (19)0.0613 (10)0.051 (4)*0.20
H5C10.41890.97370.07870.076*0.20
H5C20.36371.04300.05410.076*0.20
H5C30.34470.90600.09710.076*0.20
C60.34779 (16)0.8847 (4)0.21220 (17)0.0506 (9)
C70.41299 (14)0.8046 (3)0.25925 (15)0.0383 (7)
C80.3737 (3)1.0243 (4)0.1949 (3)0.0800 (15)
H8A0.40311.00990.16840.120*
H8B0.40071.07050.24040.120*
H8C0.33311.07780.16530.120*
C90.3014 (2)0.9029 (5)0.2500 (2)0.0685 (13)
H9A0.32570.95740.29380.082*
H9B0.25900.95120.21790.082*
C100.28087 (19)0.7781 (5)0.2711 (2)0.0689 (12)
H10A0.25790.72280.22810.103*
H10B0.24850.79480.29380.103*
H10C0.32240.73260.30560.103*
C110.40598 (13)0.3559 (3)0.10894 (15)0.0300 (6)
C120.46825 (14)0.2870 (3)0.12626 (15)0.0323 (6)
H120.47310.19860.11330.039*
C130.52163 (13)0.3725 (3)0.16594 (13)0.0261 (5)
C140.33226 (15)0.3121 (3)0.06475 (19)0.0440 (7)
H14A0.30620.31100.09530.066*
H14B0.33260.22330.04580.066*
H14C0.30990.37340.02430.066*
C150.59932 (14)0.3585 (3)0.19824 (16)0.0342 (6)
H15A0.62040.43920.18960.051*
H15B0.61240.28350.17580.051*
H15C0.61620.34340.25050.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V10.0145 (2)0.0307 (2)0.0211 (2)0.00167 (15)0.00283 (15)0.00032 (16)
O10.0212 (8)0.0443 (11)0.0342 (10)0.0012 (8)0.0097 (8)0.0007 (9)
O20.0180 (8)0.0381 (10)0.0219 (8)0.0034 (7)0.0009 (7)0.0007 (7)
O30.0166 (8)0.0345 (10)0.0231 (8)0.0000 (7)0.0017 (7)0.0014 (7)
O40.0201 (8)0.0601 (13)0.0221 (9)0.0052 (8)0.0021 (7)0.0015 (9)
O50.0177 (8)0.0389 (10)0.0248 (9)0.0079 (7)0.0018 (7)0.0039 (8)
O60.0174 (8)0.0355 (10)0.0221 (8)0.0053 (7)0.0023 (6)0.0003 (7)
O70.0371 (12)0.0727 (17)0.0410 (13)0.0260 (12)0.0152 (10)0.0262 (12)
N10.0162 (9)0.0301 (11)0.0229 (10)0.0012 (8)0.0029 (8)0.0007 (8)
N20.0170 (9)0.0293 (11)0.0205 (10)0.0004 (8)0.0035 (8)0.0014 (8)
C10.0274 (13)0.067 (2)0.0224 (13)0.0141 (14)0.0006 (10)0.0075 (13)
C20.0173 (10)0.0369 (14)0.0236 (12)0.0049 (10)0.0018 (9)0.0002 (10)
C60.0329 (15)0.057 (2)0.0360 (16)0.0229 (14)0.0120 (12)0.0193 (14)
C70.0234 (12)0.0509 (18)0.0281 (13)0.0130 (12)0.0023 (10)0.0093 (12)
C80.086 (3)0.040 (2)0.068 (3)0.017 (2)0.014 (2)0.0039 (19)
C90.0445 (19)0.098 (3)0.046 (2)0.032 (2)0.0013 (16)0.016 (2)
C100.0344 (17)0.095 (3)0.072 (3)0.016 (2)0.0159 (18)0.007 (2)
C110.0237 (12)0.0302 (13)0.0311 (13)0.0034 (10)0.0063 (10)0.0018 (10)
C120.0306 (13)0.0289 (13)0.0357 (14)0.0015 (10)0.0120 (11)0.0044 (11)
C130.0235 (11)0.0322 (13)0.0220 (11)0.0033 (10)0.0088 (9)0.0022 (10)
C140.0265 (14)0.0402 (16)0.0531 (19)0.0075 (12)0.0040 (13)0.0092 (14)
C150.0225 (12)0.0420 (16)0.0351 (14)0.0071 (11)0.0088 (11)0.0004 (12)
Geometric parameters (Å, º) top
V1—O11.595 (2)C4B—C5B1.496 (4)
V1—O32.000 (2)C4B—H4B10.9900
V1—O62.0054 (19)C4B—H4B20.9900
V1—O52.023 (2)C5B—H5B10.9800
V1—N12.112 (2)C5B—H5B20.9800
V1—O22.209 (2)C5B—H5B30.9800
O2—C11.437 (3)C4C—C5C1.41 (3)
O2—H2O0.872 (19)C4C—H4C10.9900
O3—C21.276 (3)C4C—H4C20.9900
O4—C21.241 (3)C5C—H5C10.9800
O5—C61.435 (3)C5C—H5C20.9800
O5—H5O0.89 (2)C5C—H5C30.9800
O6—C71.293 (4)C6—C91.476 (6)
O7—C71.228 (3)C6—C71.540 (4)
N1—C111.343 (3)C6—C81.606 (6)
N1—N21.364 (3)C8—H8A0.9800
N2—C131.339 (3)C8—H8B0.9800
N2—H2N0.82 (4)C8—H8C0.9800
C1—C4B1.465 (5)C9—C101.457 (5)
C1—C4A1.485 (4)C9—H9A0.9900
C1—C4C1.510 (5)C9—H9B0.9900
C1—C3B1.533 (5)C10—H10A0.9800
C1—C21.535 (4)C10—H10B0.9800
C1—C3A1.572 (4)C10—H10C0.9800
C3A—H3A10.9800C11—C121.394 (4)
C3A—H3A20.9800C11—C141.502 (4)
C3A—H3A30.9800C12—C131.384 (4)
C4A—C5A1.477 (10)C12—H120.9500
C4A—H4A10.9900C13—C151.494 (4)
C4A—H4A20.9900C14—H14A0.9800
C5A—H5A10.9800C14—H14B0.9800
C5A—H5A20.9800C14—H14C0.9800
C5A—H5A30.9800C15—H15A0.9800
C3B—H3B10.9800C15—H15B0.9800
C3B—H3B20.9800C15—H15C0.9800
C3B—H3B30.9800
O1—V1—O399.67 (9)C5B—C4B—H4B2104.8
O1—V1—O6104.27 (9)H4B1—C4B—H4B2105.8
O3—V1—O6155.76 (8)C4B—C5B—H5B1109.5
O1—V1—O5100.26 (10)C4B—C5B—H5B2109.5
O3—V1—O593.27 (7)H5B1—C5B—H5B2109.5
O6—V1—O578.86 (7)C4B—C5B—H5B3109.5
O1—V1—N194.54 (10)H5B1—C5B—H5B3109.5
O3—V1—N191.27 (8)H5B2—C5B—H5B3109.5
O6—V1—N190.63 (8)C5C—C4C—C1135.1 (19)
O5—V1—N1163.55 (8)C5C—C4C—H4C1103.4
O1—V1—O2172.12 (9)C1—C4C—H4C1103.4
O3—V1—O273.63 (7)C5C—C4C—H4C2103.4
O6—V1—O282.75 (8)C1—C4C—H4C2103.4
O5—V1—O284.48 (8)H4C1—C4C—H4C2105.2
N1—V1—O281.65 (8)O5—C6—C9113.8 (3)
C1—O2—V1117.78 (15)O5—C6—C7106.2 (2)
C1—O2—H2O114 (3)C9—C6—C7110.7 (3)
V1—O2—H2O128 (3)O5—C6—C8107.2 (3)
C2—O3—V1124.20 (15)C9—C6—C8110.9 (3)
C6—O5—V1118.46 (16)C7—C6—C8107.8 (3)
C6—O5—H5O113 (3)O7—C7—O6124.0 (3)
V1—O5—H5O117 (3)O7—C7—C6118.3 (3)
C7—O6—V1118.16 (16)O6—C7—C6117.7 (2)
C11—N1—N2105.3 (2)C6—C8—H8A109.5
C11—N1—V1131.84 (17)C6—C8—H8B109.5
N2—N1—V1122.85 (16)H8A—C8—H8B109.5
C13—N2—N1112.2 (2)C6—C8—H8C109.5
C13—N2—H2N128 (2)H8A—C8—H8C109.5
N1—N2—H2N120 (2)H8B—C8—H8C109.5
O2—C1—C4B118.3 (5)C10—C9—C6112.4 (4)
O2—C1—C4A119.1 (4)C10—C9—H9A109.1
O2—C1—C4C106.8 (9)C6—C9—H9A109.1
O2—C1—C3B96.7 (6)C10—C9—H9B109.1
O2—C1—C2104.9 (2)C6—C9—H9B109.1
C4B—C1—C2122.5 (5)H9A—C9—H9B107.9
C4A—C1—C2113.4 (4)C9—C10—H10A109.5
C4C—C1—C2111.0 (10)C9—C10—H10B109.5
C3B—C1—C2102.6 (6)H10A—C10—H10B109.5
O2—C1—C3A108.0 (2)C9—C10—H10C109.5
C2—C1—C3A106.1 (3)H10A—C10—H10C109.5
O4—C2—O3124.5 (2)H10B—C10—H10C109.5
O4—C2—C1117.1 (2)N1—C11—C12109.9 (2)
O3—C2—C1118.4 (2)N1—C11—C14120.9 (2)
C1—C3A—H3A1109.5C12—C11—C14129.2 (3)
C1—C3A—H3A2109.5C13—C12—C11106.5 (2)
C1—C3A—H3A3109.5C13—C12—H12126.7
C5A—C4A—C1106.9 (5)C11—C12—H12126.7
C5A—C4A—H4A1110.3N2—C13—C12106.1 (2)
C1—C4A—H4A1110.3N2—C13—C15121.6 (2)
C5A—C4A—H4A2110.3C12—C13—C15132.3 (3)
C1—C4A—H4A2110.3C11—C14—H14A109.5
H4A1—C4A—H4A2108.6C11—C14—H14B109.5
C1—C3B—H3B1109.5H14A—C14—H14B109.5
C1—C3B—H3B2109.5C11—C14—H14C109.5
H3B1—C3B—H3B2109.5H14A—C14—H14C109.5
C1—C3B—H3B3109.5H14B—C14—H14C109.5
H3B1—C3B—H3B3109.5C13—C15—H15A109.5
H3B2—C3B—H3B3109.5C13—C15—H15B109.5
C1—C4B—C5B130.1 (10)H15A—C15—H15B109.5
C1—C4B—H4B1104.8C13—C15—H15C109.5
C5B—C4B—H4B1104.8H15A—C15—H15C109.5
C1—C4B—H4B2104.8H15B—C15—H15C109.5
O3—V1—O2—C19.46 (18)C4C—C1—C2—O462.3 (10)
O6—V1—O2—C1176.05 (19)C3B—C1—C2—O476.7 (6)
O5—V1—O2—C1104.51 (18)C3A—C1—C2—O468.5 (3)
N1—V1—O2—C184.35 (19)O2—C1—C2—O34.0 (3)
O1—V1—O3—C2168.4 (2)C4B—C1—C2—O3134.7 (7)
O6—V1—O3—C220.8 (3)C4A—C1—C2—O3135.6 (4)
O5—V1—O3—C290.6 (2)C4C—C1—C2—O3119.1 (10)
N1—V1—O3—C273.6 (2)C3B—C1—C2—O3104.6 (6)
O2—V1—O3—C27.34 (19)C3A—C1—C2—O3110.2 (3)
O1—V1—O5—C698.2 (2)O2—C1—C4A—C5A61.9 (6)
O3—V1—O5—C6161.4 (2)C2—C1—C4A—C5A62.3 (6)
O6—V1—O5—C64.5 (2)C3A—C1—C4A—C5A177.5 (5)
N1—V1—O5—C655.6 (4)O2—C1—C4B—C5B4.9 (18)
O2—V1—O5—C688.2 (2)C3B—C1—C4B—C5B103.3 (16)
O1—V1—O6—C799.0 (2)C2—C1—C4B—C5B138.5 (13)
O3—V1—O6—C771.7 (3)O2—C1—C4C—C5C159 (2)
O5—V1—O6—C71.1 (2)C2—C1—C4C—C5C45 (3)
N1—V1—O6—C7166.2 (2)V1—O5—C6—C9114.0 (3)
O2—V1—O6—C784.7 (2)V1—O5—C6—C78.0 (4)
O1—V1—N1—C1141.0 (2)V1—O5—C6—C8123.0 (3)
O3—V1—N1—C1158.8 (2)V1—O6—C7—O7173.8 (3)
O6—V1—N1—C11145.3 (2)V1—O6—C7—C66.1 (4)
O5—V1—N1—C11164.9 (3)O5—C6—C7—O7171.0 (3)
O2—V1—N1—C11132.1 (2)C9—C6—C7—O765.1 (5)
O1—V1—N1—N2137.31 (19)C8—C6—C7—O756.4 (4)
O3—V1—N1—N2122.89 (18)O5—C6—C7—O68.9 (4)
O6—V1—N1—N232.94 (18)C9—C6—C7—O6115.0 (3)
O5—V1—N1—N216.8 (4)C8—C6—C7—O6123.5 (3)
O2—V1—N1—N249.64 (18)O5—C6—C9—C1063.1 (4)
C11—N1—N2—C130.5 (3)C7—C6—C9—C1056.4 (4)
V1—N1—N2—C13178.21 (16)C8—C6—C9—C10176.0 (3)
V1—O2—C1—C4B131.2 (7)N2—N1—C11—C120.6 (3)
V1—O2—C1—C4A137.9 (4)V1—N1—C11—C12177.86 (19)
V1—O2—C1—C4C127.5 (9)N2—N1—C11—C14178.1 (3)
V1—O2—C1—C3B114.6 (6)V1—N1—C11—C143.4 (4)
V1—O2—C1—C29.6 (3)N1—C11—C12—C130.6 (3)
V1—O2—C1—C3A103.3 (2)C14—C11—C12—C13178.0 (3)
V1—O3—C2—O4174.3 (2)N1—N2—C13—C120.1 (3)
V1—O3—C2—C14.3 (3)N1—N2—C13—C15178.9 (2)
O2—C1—C2—O4177.3 (2)C11—C12—C13—N20.3 (3)
C4B—C1—C2—O444.0 (7)C11—C12—C13—C15178.4 (3)
C4A—C1—C2—O445.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5O···O4i0.89 (2)1.64 (2)2.522 (3)171 (5)
O2—H2O···O7ii0.87 (2)1.74 (2)2.611 (3)178 (4)
N2—H2N···O6ii0.82 (4)2.10 (4)2.902 (3)165 (3)
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formula[VO(C5H9O3)2(C5H8N2)]
Mr397.32
Crystal system, space groupMonoclinic, C2/c
Temperature (K)150
a, b, c (Å)20.99 (1), 10.140 (5), 20.24 (1)
β (°) 114.215 (7)
V3)3929 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.54
Crystal size (mm)0.46 × 0.28 × 0.19
Data collection
DiffractometerSiemens SMART 1000 CCD
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.817, 0.904
No. of measured, independent and
observed [I > 2σ(I)] reflections
18722, 4642, 3825
Rint0.023
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.144, 1.49
No. of reflections4641
No. of parameters248
No. of restraints10
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.43, 0.75

Computer programs: SMART (Siemens, 1995), SAINT (Siemens, 1995), SAINT and XPREP (Siemens, 1995), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), TEXSAN for Windows (Molecular Structure Corporation, 1997), Xtal3.6 (Hall et al., 1999), ORTEPII (Johnson, 1976) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5O···O4i0.89 (2)1.64 (2)2.522 (3)171 (5)
O2—H2O···O7ii0.872 (19)1.74 (2)2.611 (3)178 (4)
N2—H2N···O6ii0.82 (4)2.10 (4)2.902 (3)165 (3)
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x+1, y, z+1/2.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds