Download citation
Download citation
link to html
In the chloroform solvate of the dinuclear ruthenium complex [RuCl26-indane)]2, C18H20Cl4Ru2·2CHCl3, accessible from RuCl3·nH2O and bi­cyclo­[4.3.0]­nona-3,6(1)-diene, the indane ligands adopt an envelope conformation toward the ruthenium atoms. The dimeric chloro-bridged molecule has crystallographic inversion symmetry.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802018676/fl6003sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802018676/fl6003Isup2.hkl
Contains datablock I

CCDC reference: 200733

Key indicators

  • Single-crystal X-ray study
  • T = 153 K
  • Mean [sigma](C-C) = 0.006 Å
  • R factor = 0.032
  • wR factor = 0.089
  • Data-to-parameter ratio = 17.4

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Red Alert Alert Level A:
DIFF_020 Alert A _diffrn_standards_interval_count and _diffrn_standards_interval_time are missing. Number of measurements between standards or time (min) between standards.
Yellow Alert Alert Level C:
REFLT_03 From the CIF: _diffrn_reflns_theta_max 26.04 From the CIF: _reflns_number_total 2528 TEST2: Reflns within _diffrn_reflns_theta_max Count of symmetry unique reflns 2722 Completeness (_total/calc) 92.87% Alert C: < 95% complete General Notes
FORMU_01 There is a discrepancy between the atom counts in the _chemical_formula_sum and _chemical_formula_moiety. This is usually due to the moiety formula being in the wrong format. Atom count from _chemical_formula_sum: C10 H11 Cl5 Ru1 Atom count from _chemical_formula_moiety:C1 H1 Cl3 ABSTM_02 When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 0.949 Tmax scaled 0.537 Tmin scaled 0.356
1 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Computing details top

Data collection: EXPOSE (IPDS Software; Stoe, 2000); cell refinement: CELL (IPDS Software; Stoe, 2000); data reduction: INTEGRATE (IPDS Software; Stoe, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

[RuCl2(η6-indane)]2 dichloroform solvate top
Crystal data top
[Ru(C9H10)Cl2]·CHCl3F(000) = 800
Mr = 409.51Dx = 1.972 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.5187 (10) ÅCell parameters from 8000 reflections
b = 11.6680 (15) Åθ = 2.0–26.0°
c = 11.402 (1) ŵ = 2.08 mm1
β = 99.793 (11)°T = 153 K
V = 1379.0 (3) Å3Block, red
Z = 40.45 × 0.45 × 0.3 mm
Data collection top
STOE IPDS
diffractometer
2528 independent reflections
Radiation source: fine-focus sealed tube2190 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
Detector resolution: 0.81Å pixels mm-1θmax = 26.0°, θmin = 2.0°
ψ scanh = 1212
Absorption correction: multi-scan
(Blessing, 1995)
k = 1414
Tmin = 0.376, Tmax = 0.566l = 1213
9749 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0568P)2]
where P = (Fo2 + 2Fc2)/3
2528 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.87 e Å3
0 restraintsΔρmin = 1.00 e Å3
Special details top

Experimental. Crystals suitable for X-ray diffraction analysis were grown by slow evaporation of a chloroform/hexane solution.

A crystal was mounted at 153 K on a Stoe Image Plate Diffraction System (Stoe & Cie, 2000) using Mo Kα graphite monochromated radiation. Image plate distance 70 mm, φ oscillation scans 0 - 186°, step Δφ = 2.0°, 3 minutes per frame.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2237 (4)0.1208 (3)0.1044 (4)0.0185 (8)
C20.2498 (4)0.0025 (3)0.1308 (4)0.0238 (9)
H20.20260.05430.08550.029*
C30.3480 (4)0.0273 (3)0.2264 (4)0.0270 (9)
H30.36470.10400.24530.032*
C40.4213 (4)0.0599 (4)0.2939 (4)0.0239 (9)
H40.48600.03940.35650.029*
C50.3978 (4)0.1771 (3)0.2675 (4)0.0202 (8)
H50.44740.23360.31100.024*
C60.2959 (3)0.2070 (3)0.1725 (4)0.0175 (8)
C70.2580 (4)0.3230 (3)0.1221 (4)0.0257 (9)
H7A0.33340.36930.11680.031*
H7B0.20440.36290.17010.031*
C80.1823 (4)0.2956 (4)0.0019 (4)0.0302 (10)
H8A0.23820.30070.06120.036*
H8B0.11160.34920.02280.036*
C90.1307 (4)0.1730 (3)0.0041 (4)0.0253 (9)
H9A0.04360.17320.02150.030*
H9B0.13170.13230.06990.030*
C1S0.1601 (4)0.1636 (3)0.2394 (4)0.0218 (8)
H1S0.23210.14620.17530.026*
Cl10.61301 (8)0.03942 (7)0.10508 (8)0.0151 (2)
Cl20.56015 (8)0.24168 (7)0.05681 (8)0.0186 (2)
Cl30.04552 (10)0.05276 (8)0.24604 (11)0.0311 (3)
Cl40.22036 (12)0.17506 (9)0.37318 (11)0.0353 (3)
Cl50.08978 (10)0.29466 (8)0.20566 (10)0.0301 (3)
Ru10.42712 (3)0.08752 (2)0.10707 (3)0.01147 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0135 (17)0.0214 (17)0.022 (2)0.0013 (14)0.0081 (16)0.0030 (15)
C20.0203 (19)0.0203 (19)0.034 (3)0.0076 (15)0.0129 (18)0.0002 (16)
C30.028 (2)0.023 (2)0.034 (3)0.0027 (16)0.0168 (19)0.0125 (17)
C40.029 (2)0.034 (2)0.010 (2)0.0090 (17)0.0090 (17)0.0077 (16)
C50.0229 (19)0.026 (2)0.012 (2)0.0041 (15)0.0051 (16)0.0070 (15)
C60.0173 (18)0.0211 (18)0.015 (2)0.0070 (14)0.0068 (15)0.0032 (14)
C70.027 (2)0.0189 (19)0.032 (3)0.0078 (15)0.0078 (19)0.0039 (16)
C80.032 (2)0.035 (2)0.022 (3)0.0118 (18)0.0015 (19)0.0060 (18)
C90.0183 (19)0.032 (2)0.025 (3)0.0061 (16)0.0022 (17)0.0034 (17)
C1S0.0180 (19)0.0207 (18)0.027 (2)0.0026 (14)0.0042 (17)0.0049 (15)
Cl10.0169 (4)0.0159 (4)0.0114 (5)0.0034 (3)0.0009 (3)0.0023 (3)
Cl20.0205 (4)0.0166 (4)0.0178 (5)0.0042 (3)0.0012 (4)0.0022 (3)
Cl30.0255 (5)0.0206 (5)0.0466 (7)0.0051 (4)0.0047 (5)0.0031 (4)
Cl40.0418 (6)0.0371 (6)0.0309 (7)0.0040 (5)0.0173 (5)0.0040 (4)
Cl50.0350 (6)0.0193 (5)0.0386 (7)0.0052 (4)0.0137 (5)0.0033 (4)
Ru10.01350 (17)0.01084 (17)0.0100 (2)0.00032 (9)0.00188 (12)0.00083 (9)
Geometric parameters (Å, º) top
C1—C61.412 (5)C6—C71.497 (5)
C1—C21.430 (5)C6—Ru12.181 (3)
C1—C91.501 (6)C7—C81.533 (6)
C1—Ru12.170 (4)C8—C91.536 (6)
C2—C31.411 (6)C1S—Cl41.754 (4)
C2—Ru12.170 (4)C1S—Cl31.761 (4)
C3—C41.421 (6)C1S—Cl51.769 (4)
C3—Ru12.174 (4)Cl1—Ru1i2.4489 (9)
C4—C51.413 (5)Cl1—Ru12.4561 (8)
C4—Ru12.165 (4)Cl2—Ru12.4072 (9)
C5—C61.431 (6)Ru1—Cl1i2.4489 (9)
C5—Ru12.174 (4)
C6—C1—C2120.4 (4)C4—Ru1—C538.01 (14)
C6—C1—C9110.4 (3)C2—Ru1—C582.34 (15)
C2—C1—C9129.1 (4)C1—Ru1—C569.22 (15)
C6—C1—Ru171.5 (2)C4—Ru1—C338.23 (17)
C2—C1—Ru170.8 (2)C2—Ru1—C337.91 (16)
C9—C1—Ru1126.6 (3)C1—Ru1—C368.73 (15)
C3—C2—C1119.3 (4)C5—Ru1—C369.21 (16)
C3—C2—Ru171.2 (2)C4—Ru1—C668.48 (15)
C1—C2—Ru170.8 (2)C2—Ru1—C669.05 (14)
C2—C3—C4120.0 (4)C1—Ru1—C637.88 (14)
C2—C3—Ru170.9 (2)C5—Ru1—C638.37 (15)
C4—C3—Ru170.6 (2)C3—Ru1—C681.25 (15)
C5—C4—C3121.2 (4)C4—Ru1—Cl2117.41 (12)
C5—C4—Ru171.3 (2)C2—Ru1—Cl2156.67 (11)
C3—C4—Ru171.2 (2)C1—Ru1—Cl2118.35 (11)
C4—C5—C6118.6 (4)C5—Ru1—Cl290.72 (11)
C4—C5—Ru170.7 (2)C3—Ru1—Cl2155.45 (13)
C6—C5—Ru171.1 (2)C6—Ru1—Cl291.77 (10)
C1—C6—C5120.4 (3)C4—Ru1—Cl1i155.30 (12)
C1—C6—C7110.4 (4)C2—Ru1—Cl1i90.64 (12)
C5—C6—C7128.9 (4)C1—Ru1—Cl1i91.32 (11)
C1—C6—Ru170.7 (2)C5—Ru1—Cl1i156.36 (11)
C5—C6—Ru170.6 (2)C3—Ru1—Cl1i117.20 (13)
C7—C6—Ru1126.1 (3)C6—Ru1—Cl1i118.15 (11)
C6—C7—C8103.2 (3)Cl2—Ru1—Cl1i86.88 (3)
C7—C8—C9106.5 (3)C4—Ru1—Cl194.30 (11)
C1—C9—C8102.9 (3)C2—Ru1—Cl1115.33 (10)
Cl4—C1S—Cl3111.4 (2)C1—Ru1—Cl1153.18 (10)
Cl4—C1S—Cl5110.5 (2)C5—Ru1—Cl1121.66 (11)
Cl3—C1S—Cl5109.6 (2)C3—Ru1—Cl191.40 (11)
Ru1i—Cl1—Ru198.25 (3)C6—Ru1—Cl1160.02 (11)
C4—Ru1—C268.92 (17)Cl2—Ru1—Cl187.28 (3)
C4—Ru1—C181.25 (16)Cl1i—Ru1—Cl181.75 (3)
C2—Ru1—C138.47 (14)
C6—C1—C2—C30.5 (5)C2—C1—Ru1—C329.4 (3)
C9—C1—C2—C3176.0 (4)C9—C1—Ru1—C3154.3 (4)
Ru1—C1—C2—C354.0 (3)C2—C1—Ru1—C6133.0 (4)
C6—C1—C2—Ru153.5 (3)C9—C1—Ru1—C6102.1 (4)
C9—C1—C2—Ru1122.0 (4)C6—C1—Ru1—Cl250.5 (3)
C1—C2—C3—C41.2 (6)C2—C1—Ru1—Cl2176.5 (2)
Ru1—C2—C3—C452.6 (3)C9—C1—Ru1—Cl251.6 (4)
C1—C2—C3—Ru153.8 (3)C6—C1—Ru1—Cl1i137.6 (2)
C2—C3—C4—C50.2 (6)C2—C1—Ru1—Cl1i89.4 (2)
Ru1—C3—C4—C553.0 (3)C9—C1—Ru1—Cl1i35.5 (3)
C2—C3—C4—Ru152.8 (3)C6—C1—Ru1—Cl1148.2 (2)
C3—C4—C5—C61.4 (5)C2—C1—Ru1—Cl115.2 (4)
Ru1—C4—C5—C654.4 (3)C9—C1—Ru1—Cl1109.7 (3)
C3—C4—C5—Ru153.0 (3)C6—C5—Ru1—C4131.1 (3)
C2—C1—C6—C51.2 (5)C4—C5—Ru1—C265.3 (3)
C9—C1—C6—C5175.2 (3)C6—C5—Ru1—C265.7 (2)
Ru1—C1—C6—C552.0 (3)C4—C5—Ru1—C1102.8 (3)
C2—C1—C6—C7175.6 (3)C6—C5—Ru1—C128.3 (2)
C9—C1—C6—C70.7 (4)C4—C5—Ru1—C328.5 (2)
Ru1—C1—C6—C7122.4 (3)C6—C5—Ru1—C3102.5 (3)
C2—C1—C6—Ru153.2 (3)C4—C5—Ru1—C6131.1 (3)
C9—C1—C6—Ru1123.1 (3)C4—C5—Ru1—Cl2137.0 (2)
C4—C5—C6—C12.1 (5)C6—C5—Ru1—Cl291.9 (2)
Ru1—C5—C6—C152.1 (3)C4—C5—Ru1—Cl1i139.1 (3)
C4—C5—C6—C7175.3 (4)C6—C5—Ru1—Cl1i8.1 (4)
Ru1—C5—C6—C7121.2 (4)C4—C5—Ru1—Cl149.8 (3)
C4—C5—C6—Ru154.2 (3)C6—C5—Ru1—Cl1179.19 (18)
C1—C6—C7—C814.8 (4)C2—C3—Ru1—C4133.1 (3)
C5—C6—C7—C8159.0 (4)C4—C3—Ru1—C2133.1 (3)
Ru1—C6—C7—C865.7 (4)C2—C3—Ru1—C129.8 (2)
C6—C7—C8—C924.3 (4)C4—C3—Ru1—C1103.3 (3)
C6—C1—C9—C815.9 (4)C2—C3—Ru1—C5104.8 (3)
C2—C1—C9—C8160.0 (4)C4—C3—Ru1—C528.4 (2)
Ru1—C1—C9—C865.7 (4)C2—C3—Ru1—C667.0 (2)
C7—C8—C9—C124.6 (4)C4—C3—Ru1—C666.2 (2)
C5—C4—Ru1—C2105.1 (3)C2—C3—Ru1—Cl2141.8 (2)
C3—C4—Ru1—C228.7 (2)C4—C3—Ru1—Cl28.7 (4)
C5—C4—Ru1—C167.3 (2)C2—C3—Ru1—Cl1i50.3 (3)
C3—C4—Ru1—C166.6 (2)C4—C3—Ru1—Cl1i176.61 (19)
C3—C4—Ru1—C5133.9 (4)C2—C3—Ru1—Cl1131.7 (2)
C5—C4—Ru1—C3133.9 (4)C4—C3—Ru1—Cl195.2 (2)
C5—C4—Ru1—C630.2 (2)C1—C6—Ru1—C4103.9 (3)
C3—C4—Ru1—C6103.7 (3)C5—C6—Ru1—C429.9 (2)
C5—C4—Ru1—Cl250.2 (3)C7—C6—Ru1—C4154.4 (4)
C3—C4—Ru1—Cl2175.96 (19)C1—C6—Ru1—C229.2 (2)
C5—C4—Ru1—Cl1i141.1 (2)C5—C6—Ru1—C2104.7 (3)
C3—C4—Ru1—Cl1i7.2 (4)C7—C6—Ru1—C2130.8 (4)
C5—C4—Ru1—Cl1139.3 (2)C5—C6—Ru1—C1133.9 (3)
C3—C4—Ru1—Cl186.8 (2)C7—C6—Ru1—C1101.6 (4)
C3—C2—Ru1—C428.9 (2)C1—C6—Ru1—C5133.9 (3)
C1—C2—Ru1—C4102.9 (3)C7—C6—Ru1—C5124.5 (4)
C3—C2—Ru1—C1131.8 (4)C1—C6—Ru1—C366.4 (3)
C3—C2—Ru1—C565.8 (3)C5—C6—Ru1—C367.4 (2)
C1—C2—Ru1—C566.0 (2)C7—C6—Ru1—C3168.1 (4)
C1—C2—Ru1—C3131.8 (4)C1—C6—Ru1—Cl2137.2 (2)
C3—C2—Ru1—C6103.1 (3)C5—C6—Ru1—Cl288.9 (2)
C1—C2—Ru1—C628.8 (2)C7—C6—Ru1—Cl235.6 (3)
C3—C2—Ru1—Cl2139.5 (3)C1—C6—Ru1—Cl1i49.8 (3)
C1—C2—Ru1—Cl27.7 (5)C5—C6—Ru1—Cl1i176.34 (19)
C3—C2—Ru1—Cl1i136.9 (2)C7—C6—Ru1—Cl1i51.8 (4)
C1—C2—Ru1—Cl1i91.3 (2)C1—C6—Ru1—Cl1135.9 (3)
C3—C2—Ru1—Cl155.7 (3)C5—C6—Ru1—Cl12.0 (4)
C1—C2—Ru1—Cl1172.5 (2)C7—C6—Ru1—Cl1122.5 (3)
C6—C1—Ru1—C466.0 (2)Ru1i—Cl1—Ru1—C4155.47 (12)
C2—C1—Ru1—C467.0 (3)Ru1i—Cl1—Ru1—C286.78 (14)
C9—C1—Ru1—C4168.1 (4)Ru1i—Cl1—Ru1—C176.4 (2)
C6—C1—Ru1—C2133.0 (4)Ru1i—Cl1—Ru1—C5176.41 (12)
C9—C1—Ru1—C2124.9 (4)Ru1i—Cl1—Ru1—C3117.29 (13)
C6—C1—Ru1—C528.6 (2)Ru1i—Cl1—Ru1—C6174.9 (3)
C2—C1—Ru1—C5104.4 (3)Ru1i—Cl1—Ru1—Cl287.24 (3)
C9—C1—Ru1—C5130.7 (4)Ru1i—Cl1—Ru1—Cl1i0.0
C6—C1—Ru1—C3103.6 (3)
Symmetry code: (i) x+1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds