organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Amino-2,3,5-tri­methyl­pyridine monohydrate

aDepartment of Chemical Engineering, Zhejiang University, Hangzhou, People's Republic of China, and bCollege of Materials Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, People's Republic of China
*Correspondence e-mail: dailiyan@zju.edu.cn

(Received 30 March 2009; accepted 5 May 2009; online 20 May 2009)

In the title compound, C8H12N2·H2O, four substituted pyridine mol­ecules alternate with four water mol­ecules, forming a large ring via Owater—H⋯Npyridine and Namine—H⋯Owater hydrogen bonding. Adjacent rings are connected via Owater—H⋯Owater hydrogen-bonds, forming a three-dimensional network.

Related literature

For pyridine-amine derivatives, see: Smith et al. (2005[Smith, D. T., Shi, R. & Borgens, R. B. (2005). Eur. J. Med. Chem. 40, 908-917.]); Tsuzuki et al. (2005[Tsuzuki, S., Kawanishi, Y. & Abe, S. (2005). Biosens. Bioelectron. 20, 1452-1457.]). For their role as chemical inter­mediates in the formation of diverse mol­ecules possessing biological activity, see: Birault et al. (2005[Birault, V., Harris, C. J. & Harris, J. C. (2005). UK Patent GB2403721 A.]); Gordon et al. (1996[Gordon, W. R., Brian, D. P. & Andrew, M. T. (1996). J. Med. Chem. 39, 1823-1835.]); Player et al. (2007[Player, M. R., Lu, T., Hu, H. & Zhu, X. (2007). World Patent WO2007109459 A2.]). For related structures, see: Li et al. (2008[Li, Y., Li, P., Zhou, Q.-P., Zhang, G.-F. & Ng, S. W. (2008). Acta Cryst. E64, o1701.]); Lin et al. (2005[Lin, H., Feng, Y. L. & Gao, S. (2005). Chin. J. Struct. Chem. 24, 375-378.]); Xie et al. (2008[Xie, A.-L., Ding, T.-J. & Cao, X.-P. (2008). Acta Cryst. E64, o1746.]); Yu et al. (2005[Yu, Q., Zhu, L. G. & Bian, H. D. (2005). Chin. J. Struct. Chem. 24, 1271-1275.]); Zhou et al. (2005[Zhou, Y. Z., Li, J. F. & Tu, S. J. (2005). Chin. J. Struct. Chem. 24, 1193-1197.]). For the extinction correction, see: Larson (1970[Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291-294. Copenhagen: Munksgaard.]).

[Scheme 1]

Experimental

Crystal data
  • C8H12N2·H2O

  • Mr = 154.21

  • Tetragonal, [P \overline 42_1 c ]

  • a = 19.5710 (9) Å

  • c = 4.8819 (2) Å

  • V = 1869.89 (14) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 296 K

  • 0.33 × 0.27 × 0.22 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.967, Tmax = 0.984

  • 17243 measured reflections

  • 1250 independent reflections

  • 951 reflections with F2 > 2.0σ(F2)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.088

  • S = 1.00

  • 1250 reflections

  • 101 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H101⋯N1 0.86 1.91 2.771 (2) 178
O1—H102⋯O1i 0.85 1.93 2.778 (2) 173
N2—H202⋯O1ii 0.87 2.17 3.009 (2) 161
Symmetry codes: (i) [-y+{\script{1\over 2}}, -x+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) y, -x+1, -z+1.

Data collection: PROCESS-AUTO (Rigaku, 2007[Rigaku (2007). CrystalStructure and PROCESS-AUTO. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku, 2007[Rigaku (2007). CrystalStructure and PROCESS-AUTO. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

There is continuing interest in pyridin-amine derivatives due to their significant bioactivities (Smith et al., 2005; Tsuzuki et al., 2005) and their role as important chemical intermediates in the formation of diverse molecules possessing biological activities (Birault et al., 2005; Gordon et al., 1996; Player et al., 2007). In general, compounds with amino groups can be used to prepare Schiff base ligands, which have played an important role in the development of coordination chemistry as they can readily form stable complexes with most metal ions (Lin et al., 2005; Yu et al., 2005; Zhou et al., 2005). As part of our continuing investigation of such compounds, we report here the synthesis and crystal structure of a new pyridinamine derivative (Fig.1). Hydrogen-bonding interactions play an important role in the solid-state structure of this compound as they have in similar structures reported earlier (Li et al., 2008; Xie et al., 2008). As shown in Fig.2, four pyridine molecules and four water molecules are linked together alternatively to form a big ring via OwaterH···Npyridine and Namine—H···Owater hydrogen bonding (Table 1). Adjacent rings are connected to form a three-dimensional network via Owater—H···Owater hydrogen-bonding. Channel can be seen within stacks of the hydrogen bonded rings. The inner walls of the channels are occupied by the methyl groups and no solvent was found.

Related literature top

For pyridin-amine derivatives, see: Smith et al. (2005); Tsuzuki et al. (2005). For their role as chemical intermediates in the formation of diverse molecules possessing biological activity, see: Birault et al. (2005); Gordon et al. (1996); Player et al. (2007). For related structures, see: Li et al. (2008); Lin et al. (2005); Xie et al. (2008); Yu et al. (2005); Zhou et al. (2005).

For related literature, see: Larson (1970).

Experimental top

4-nitro-2,3,5-trimethylpyridine-N-oxide(18.2 g, 100 mmol), Raney nickel (25 g, 426 mmol) and 200 ml of ethanol were placed combined a three-necked flask. 80% Hydrazine hydrate(25 ml, 400 mmol) was added dropwise, maintaining the temperature under 35 degrees centigrade. The mixture was heated to reflux and 80% hydrazine hydrate was added dropwise continually. The catalyst was suction-filtered. Half of the ethanol was concentrated under vacuum. The residue was left at room temperature for 7 days giving some colorless needle shaped crystals suitable for data collection.

Refinement top

Friedel equivalents were merged. All H atoms were placed in calculated positions, with C—H = 0.93 or 0.96Å and N—H = 0.869 or 0.877 Å and included in the final cycles of refinement with a riding model, with Uiso(H) = 1.2Ueq(C,N,O).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 2007); cell refinement: PROCESS-AUTO (Rigaku, 2007); data reduction: CrystalStructure (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure showing 40% probability displacement ellipsoids.
[Figure 2] Fig. 2. Hydrogen-bonding interactions.
4-Amino-2,3,5-trimethylpyridine monohydrate top
Crystal data top
C8H12N2·H2ODx = 1.095 Mg m3
Mr = 154.21Mo Kα radiation, λ = 0.71075 Å
Tetragonal, P421cCell parameters from 10766 reflections
Hall symbol: P -4 2nθ = 3.3–27.4°
a = 19.5710 (9) ŵ = 0.07 mm1
c = 4.8819 (2) ÅT = 296 K
V = 1869.89 (14) Å3Chunk, colorless
Z = 80.33 × 0.27 × 0.22 mm
F(000) = 672.00
Data collection top
Rigaku R-AXIS RAPID
diffractometer
951 reflections with F2 > 2.0σ(F2)
Detector resolution: 10.00 pixels mm-1Rint = 0.045
ω scansθmax = 27.4°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 2525
Tmin = 0.967, Tmax = 0.984k = 2525
17243 measured reflectionsl = 65
1250 independent reflections
Refinement top
Refinement on F2 w = 1/[0.0001Fo2 + 1.1100σ(Fo2)]/(4Fo2)
R[F2 > 2σ(F2)] = 0.035(Δ/σ)max < 0.001
wR(F2) = 0.088Δρmax = 0.23 e Å3
S = 1.00Δρmin = 0.20 e Å3
1250 reflectionsExtinction correction: Larson (1970)
101 parametersExtinction coefficient: 460 (64)
H-atom parameters constrained
Crystal data top
C8H12N2·H2OZ = 8
Mr = 154.21Mo Kα radiation
Tetragonal, P421cµ = 0.07 mm1
a = 19.5710 (9) ÅT = 296 K
c = 4.8819 (2) Å0.33 × 0.27 × 0.22 mm
V = 1869.89 (14) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1250 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
951 reflections with F2 > 2.0σ(F2)
Tmin = 0.967, Tmax = 0.984Rint = 0.045
17243 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035101 parameters
wR(F2) = 0.088H-atom parameters constrained
S = 1.00Δρmax = 0.23 e Å3
1250 reflectionsΔρmin = 0.20 e Å3
Special details top

Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY

Refinement. Refinement using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.25888 (6)0.28901 (6)0.2514 (3)0.0571 (4)
N10.23938 (11)0.42486 (10)0.3906 (4)0.0581 (6)
N20.19626 (9)0.61921 (9)0.6961 (4)0.0534 (6)
C10.27642 (12)0.47949 (12)0.3109 (5)0.0528 (7)
C20.26474 (11)0.54519 (11)0.4090 (5)0.0472 (6)
C30.21206 (11)0.55487 (11)0.6011 (4)0.0427 (6)
C40.17323 (12)0.49824 (12)0.6859 (4)0.0465 (6)
C50.18992 (12)0.43602 (12)0.5762 (5)0.0556 (8)
C60.33136 (13)0.46412 (12)0.1049 (7)0.0756 (9)
C70.30672 (12)0.60551 (12)0.3136 (6)0.0690 (9)
C80.11654 (12)0.50507 (12)0.8924 (5)0.0603 (7)
H50.16490.39840.63500.067*
H610.37530.46740.19130.091*
H620.32510.41870.03450.091*
H630.32880.49640.04280.091*
H710.32900.59430.14420.083*
H720.27740.64420.28650.083*
H730.34050.61630.44950.083*
H810.13530.51841.06600.072*
H820.08470.53910.83150.072*
H830.09350.46200.91130.072*
H1010.25300.33170.29010.069*
H1020.24570.27710.09210.069*
H2010.17550.62290.84890.064*
H2020.22660.65110.67430.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0663 (10)0.0465 (9)0.0584 (10)0.0063 (8)0.0044 (9)0.0047 (9)
N10.0701 (14)0.0454 (11)0.0587 (14)0.0003 (10)0.0039 (14)0.0022 (11)
N20.0624 (13)0.0433 (11)0.0545 (12)0.0029 (9)0.0092 (11)0.0006 (10)
C10.0563 (16)0.0549 (16)0.0471 (14)0.0083 (12)0.0024 (13)0.0024 (13)
C20.0504 (14)0.0454 (14)0.0459 (13)0.0003 (11)0.0032 (14)0.0021 (13)
C30.0472 (13)0.0398 (12)0.0411 (12)0.0003 (10)0.0022 (12)0.0001 (12)
C40.0507 (14)0.0452 (13)0.0435 (12)0.0002 (12)0.0022 (12)0.0036 (13)
C50.0658 (17)0.0454 (15)0.0557 (15)0.0047 (12)0.0015 (15)0.0042 (14)
C60.086 (2)0.0690 (19)0.0717 (19)0.0162 (16)0.021 (2)0.0020 (18)
C70.0674 (17)0.0627 (17)0.077 (2)0.0054 (14)0.0164 (17)0.0013 (16)
C80.0640 (16)0.0609 (15)0.0562 (14)0.0072 (13)0.0067 (15)0.0060 (16)
Geometric parameters (Å, º) top
N1—C11.349 (3)N2—H2010.852
N1—C51.344 (3)N2—H2020.868
N2—C31.377 (2)C5—H50.930
C1—C21.391 (3)C6—H610.960
C1—C61.503 (3)C6—H620.960
C2—C31.407 (3)C6—H630.960
C2—C71.512 (3)C7—H710.960
C3—C41.406 (3)C7—H720.960
C4—C51.370 (3)C7—H730.960
C4—C81.505 (3)C8—H810.960
O1—H1010.864C8—H820.960
O1—H1020.852C8—H830.960
C1—N1—C5116.9 (2)C4—C5—H5117.3
N1—C1—C2123.0 (2)C1—C6—H61109.5
N1—C1—C6114.8 (2)C1—C6—H62109.5
C2—C1—C6122.2 (2)C1—C6—H63109.5
C1—C2—C3118.3 (2)H61—C6—H62109.5
C1—C2—C7121.8 (2)H61—C6—H63109.5
C3—C2—C7119.9 (2)H62—C6—H63109.5
N2—C3—C2120.82 (19)C2—C7—H71109.5
N2—C3—C4120.0 (2)C2—C7—H72109.5
C2—C3—C4119.1 (2)C2—C7—H73109.5
C3—C4—C5117.2 (2)H71—C7—H72109.5
C3—C4—C8121.7 (2)H71—C7—H73109.5
C5—C4—C8121.1 (2)H72—C7—H73109.5
N1—C5—C4125.4 (2)C4—C8—H81109.5
H101—O1—H102115.0C4—C8—H82109.5
C3—N2—H201118.6C4—C8—H83109.5
C3—N2—H202117.5H81—C8—H82109.5
H201—N2—H202111.9H81—C8—H83109.5
N1—C5—H5117.3H82—C8—H83109.5
C1—N1—C5—C41.5 (3)C7—C2—C3—N22.6 (3)
C5—N1—C1—C20.9 (3)C7—C2—C3—C4179.6 (2)
C5—N1—C1—C6179.6 (2)N2—C3—C4—C5177.6 (2)
N1—C1—C2—C30.3 (3)N2—C3—C4—C83.5 (3)
N1—C1—C2—C7179.4 (2)C2—C3—C4—C50.6 (3)
C6—C1—C2—C3179.8 (2)C2—C3—C4—C8179.5 (2)
C6—C1—C2—C70.1 (2)C3—C4—C5—N11.3 (3)
C1—C2—C3—N2177.1 (2)C8—C4—C5—N1179.8 (2)
C1—C2—C3—C40.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H101···N10.861.912.771 (2)178
O1—H102···O1i0.851.932.778 (2)173
N2—H202···O1ii0.872.173.009 (2)161
Symmetry codes: (i) y+1/2, x+1/2, z1/2; (ii) y, x+1, z+1.

Experimental details

Crystal data
Chemical formulaC8H12N2·H2O
Mr154.21
Crystal system, space groupTetragonal, P421c
Temperature (K)296
a, c (Å)19.5710 (9), 4.8819 (2)
V3)1869.89 (14)
Z8
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.33 × 0.27 × 0.22
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.967, 0.984
No. of measured, independent and
observed [F2 > 2.0σ(F2)] reflections
17243, 1250, 951
Rint0.045
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.088, 1.00
No. of reflections1250
No. of parameters101
No. of restraints?
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.20

Computer programs: PROCESS-AUTO (Rigaku, 2007), CrystalStructure (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H101···N10.8641.9072.771 (2)177.7
O1—H102···O1i0.8521.9302.778 (2)173.4
N2—H202···O1ii0.8682.1743.009 (2)161.1
Symmetry codes: (i) y+1/2, x+1/2, z1/2; (ii) y, x+1, z+1.
 

Acknowledgements

We express our gratitude to Zhejiang University and Hangzhou Normal University for financial Support.

References

First citationBirault, V., Harris, C. J. & Harris, J. C. (2005). UK Patent GB2403721 A.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGordon, W. R., Brian, D. P. & Andrew, M. T. (1996). J. Med. Chem. 39, 1823–1835.  PubMed Web of Science Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLarson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291–294. Copenhagen: Munksgaard.  Google Scholar
First citationLi, Y., Li, P., Zhou, Q.-P., Zhang, G.-F. & Ng, S. W. (2008). Acta Cryst. E64, o1701.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLin, H., Feng, Y. L. & Gao, S. (2005). Chin. J. Struct. Chem. 24, 375–378.  CAS Google Scholar
First citationPlayer, M. R., Lu, T., Hu, H. & Zhu, X. (2007). World Patent WO2007109459 A2.  Google Scholar
First citationRigaku (2007). CrystalStructure and PROCESS-AUTO. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, D. T., Shi, R. & Borgens, R. B. (2005). Eur. J. Med. Chem. 40, 908–917.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTsuzuki, S., Kawanishi, Y. & Abe, S. (2005). Biosens. Bioelectron. 20, 1452–1457.  Web of Science CrossRef PubMed CAS Google Scholar
First citationXie, A.-L., Ding, T.-J. & Cao, X.-P. (2008). Acta Cryst. E64, o1746.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYu, Q., Zhu, L. G. & Bian, H. D. (2005). Chin. J. Struct. Chem. 24, 1271–1275.  CAS Google Scholar
First citationZhou, Y. Z., Li, J. F. & Tu, S. J. (2005). Chin. J. Struct. Chem. 24, 1193–1197.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds