organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′-Di­chloro-1,1′-[(propane-1,3-diyldi­­oxy)bis­­(nitrilo­methyl­­idyne)]di­benzene

aSchool of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China
*Correspondence e-mail: dongwk@mail.lzjtu.cn

(Received 22 June 2008; accepted 13 July 2008; online 19 July 2008)

The title compound, C17H16Cl2N2O2, assumes a V-shape configuration with a dihedral angle between the two halves of the mol­ecule of 79.60 (4)°. The asymmetric unit comprises one half-mol­ecule with a crystallographic twofold rotation axis passing through the central C atom. There are weak inter­molecular ππ stacking inter­actions between neighbouring benzene rings with inter­molecular plane-to-plane distances of 3.277 (6) and 3.465 (5) Å along the a and c axes, respectively. In the crystal structure, weak inter­molecular C—H⋯O bonds link each mol­ecule to four others to form an infinite three-dimensional network.

Related literature

For related literature, see: Campbell et al. (2001[Campbell, E. J., Zhou, H. & Nguyen, S. T. (2001). Org. Lett. 3, 2391-2393.]); Dong et al. (2006[Dong, W. K., Feng, J. H. & Yang, X. Q. (2006). Z. Kristallogr. New Cryst. Struct. 221, 447-448.]); Dong, Ding et al. (2008[Dong, W.-K., Ding, Y.-J., Luo, Y.-L., Lv, Z.-W. & Wang, L. (2008). Acta Cryst. E64, o1324.]); Dong, He et al. (2008[Dong, W.-K., He, X.-N., Zhong, J.-K., Chen, X. & Yu, T.-Z. (2008). Acta Cryst. E64, o1098.]); Duan et al. (2007[Duan, J.-G., Dong, C.-M., Shi, J.-Y., Wu, L. & Dong, W.-K. (2007). Acta Cryst. E63, o2704-o2705.]); Mohand et al. (1995[Mohand, S. A., Levina, A. & Muzart, J. (1995). J. Chem. Res. (S), 25, 2051-2058.]); Morris et al. (2001[Morris, G. A., Zhou, H., Stern, C. L. & Nguyen, S. T. (2001). Inorg. Chem. 40, 3222-3227.]); Shi et al. (2007[Shi, J., Dong, W., Zhang, Y. & Gao, S. (2007). Acta Cryst. E63, o4080.]).

[Scheme 1]

Experimental

Crystal data
  • C17H16Cl2N2O2

  • Mr = 351.22

  • Orthorhombic, P 21 21 2

  • a = 6.5218 (7) Å

  • b = 28.586 (3) Å

  • c = 4.5120 (6) Å

  • V = 841.17 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 298 (2) K

  • 0.45 × 0.18 × 0.15 mm

Data collection
  • Siemens SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.842, Tmax = 0.943

  • 3761 measured reflections

  • 1495 independent reflections

  • 1111 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.086

  • S = 1.04

  • 1495 reflections

  • 105 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.17 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 565 Friedel pairs

  • Flack parameter: −0.02 (11)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O1i 0.93 2.55 3.479 (3) 173
Symmetry code: (i) x+1, y, z-1.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Particular attention has been paid to the synthesis and study of Schiff base compounds. This is due to a variety of reasons, not the least of which is their wide application in the fields of biochemistry, synthesis and catalysis (Mohand et al., 1995; Campbell et al., 2001), e. g., they can easily form stable complexes with transition metal ions (Morris et al., 2001). Although a great number of Schiff base compounds and their complexes have been studied crystallographically, there are only a very limited number of reports about Schiff base bisoxime compounds (Dong, Ding et al., 2008; Shi et al., 2007). Here we report the synthesis and crystal structure of (I) which is a bisoixime type compound.

The molecule (Fig. 1) assumes a V shape with a dihedral angle of 79.60 (4) ° between the two halves of the molecule . There is 1/2 molecule per asymmetric unit with a crystallographic twofold rotation axis passing through the central carbon (symmetry code: -x, -y, z) of the C1—C2—C1' unit. This structure is similar to that observed in our previously reported salen-type bisoxime compounds (Duan et al., 2007, Dong, He et al.2008). There are weak intermolecular π-π stacking interactions between neighbouring benzene rings with intermolecular plane-to-plane distances of 3.277 (6) and 3.465 (5) Å along the a and c axes, respectively (Fig. 2). In the crystal structure, weak intermolecular C—H···O hydrogen bonds (Table 1) link each molecule to 4 others to form an infinite three-dimensional network, which is different from the crystal structure of 3,3'-dibromo-1,1'-[propane-1,3-diyldioxybis(nitrilomethylidyne)]dibenzene, in which the molecules exhibit a zigzag chain array along the a axis formed by weak intermolecular C—H···C hydrogen bonds (Dong, Ding et al., 2008).

Related literature top

For related literature, see: Campbell et al. (2001); Dong et al. (2006); Dong, Ding et al. (2008); Dong, He et al. (2008); Duan et al. (2007); Mohand et al. (1995); Morris et al. (2001); Shi et al. (2007).

Experimental top

The title compound was synthesized according to an analogous method reported earlier (Shi et al., 2007; Dong et al., 2006; Dong, Ding et al., 2008). To an ethanol solution (4 ml) of 2-chlorobenzaldehyde (421.2 mg, 3.00 mmol) was added an ethanol solution (4 ml) of 1,3-bis(aminooxy)propane (155.8 mg, 1.49 mmol). The reaction mixture was stirred at 328 K for 4 h after which the resulting precipitate was separated by filtration, and washed successively with ethanol and ethanol-hexane (1:4). The product was dried under vacuum to yield 284.7 mg of the title compound. Yield, 55.0%. mp. 361–362 K. Anal. Calc. for C17H16Cl2N2O2: C, 58.13; H, 4.59; N, 7.98. Found: C, 58.19; H, 4.67; N, 7.82.

Colorless needle-like single crystals suitable for X-ray diffraction were obtained after several weeks by slow evaporation from a ethanol-chloroform solution.

Refinement top

Non-H atoms were refined anisotropically. H atoms were treated as riding atoms with distances C—H = 0.97 (CH2), 0.93 Å (CH), and Uiso(H) = 1.2 Ueq(C) and 1.5 Ueq(O).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom numbering scheme [Symmetry codes: -x + 1, -y, z]. Displacement ellipsoids for non-hydrogen atoms are drawn at the 30% probability level.
[Figure 2] Fig. 2. The V shape configuration of the title compound.
2,2'-Dichloro-1,1'-[(propane-1,3-diyldioxy)bis(nitrilomethylidyne)]dibenzene top
Crystal data top
C17H16Cl2N2O2F(000) = 364
Mr = 351.22Dx = 1.387 Mg m3
Orthorhombic, P21212Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2 2abCell parameters from 1292 reflections
a = 6.5218 (7) Åθ = 2.9–22.2°
b = 28.586 (3) ŵ = 0.40 mm1
c = 4.5120 (6) ÅT = 298 K
V = 841.17 (17) Å3Needle-like, colorless
Z = 20.45 × 0.18 × 0.15 mm
Data collection top
Siemens SMART 1000 CCD area-detector
diffractometer
1495 independent reflections
Radiation source: fine-focus sealed tube1111 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ϕ and ω scansθmax = 25.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 77
Tmin = 0.842, Tmax = 0.943k = 1734
3761 measured reflectionsl = 55
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.0338P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
1495 reflectionsΔρmax = 0.17 e Å3
105 parametersΔρmin = 0.17 e Å3
0 restraintsAbsolute structure: Flack (1983), 565 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (11)
Crystal data top
C17H16Cl2N2O2V = 841.17 (17) Å3
Mr = 351.22Z = 2
Orthorhombic, P21212Mo Kα radiation
a = 6.5218 (7) ŵ = 0.40 mm1
b = 28.586 (3) ÅT = 298 K
c = 4.5120 (6) Å0.45 × 0.18 × 0.15 mm
Data collection top
Siemens SMART 1000 CCD area-detector
diffractometer
1495 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1111 reflections with I > 2σ(I)
Tmin = 0.842, Tmax = 0.943Rint = 0.047
3761 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.086Δρmax = 0.17 e Å3
S = 1.05Δρmin = 0.17 e Å3
1495 reflectionsAbsolute structure: Flack (1983), 565 Friedel pairs
105 parametersAbsolute structure parameter: 0.02 (11)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.68069 (12)0.20827 (3)0.4175 (2)0.0826 (3)
N10.8042 (3)0.06911 (7)0.7415 (5)0.0441 (5)
O10.6419 (2)0.05622 (5)0.9278 (5)0.0502 (5)
C10.6858 (3)0.01262 (8)1.0698 (6)0.0454 (6)
H1A0.80460.01571.19760.054*
H1B0.71370.01140.92320.054*
C20.50000.00001.2484 (8)0.0435 (10)
H2A0.53420.02621.37540.052*0.50
H2B0.46580.02621.37540.052*0.50
C30.7749 (4)0.10932 (8)0.6332 (6)0.0489 (8)
H30.65730.12580.68500.059*
C40.9206 (3)0.13043 (8)0.4297 (7)0.0414 (6)
C50.8922 (4)0.17493 (9)0.3130 (7)0.0467 (8)
C61.0293 (5)0.19465 (9)0.1179 (7)0.0583 (8)
H61.00590.22450.04270.070*
C71.2002 (5)0.17021 (10)0.0352 (8)0.0674 (9)
H71.29330.18320.09750.081*
C81.2334 (4)0.12619 (10)0.1497 (7)0.0650 (9)
H81.35000.10960.09500.078*
C91.0964 (4)0.10670 (9)0.3433 (7)0.0542 (8)
H91.12160.07700.41850.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0880 (6)0.0630 (5)0.0967 (7)0.0250 (4)0.0168 (6)0.0231 (5)
N10.0454 (12)0.0429 (12)0.0439 (13)0.0079 (11)0.0078 (13)0.0029 (12)
O10.0508 (10)0.0440 (9)0.0559 (12)0.0012 (8)0.0120 (11)0.0089 (10)
C10.0526 (14)0.0393 (13)0.0443 (16)0.0049 (13)0.0008 (17)0.0024 (14)
C20.053 (2)0.039 (2)0.038 (2)0.0065 (17)0.0000.000
C30.0517 (15)0.0422 (14)0.053 (2)0.0016 (12)0.0094 (16)0.0028 (15)
C40.0450 (13)0.0407 (13)0.0384 (16)0.0069 (11)0.0002 (14)0.0028 (14)
C50.0566 (16)0.0401 (13)0.043 (2)0.0058 (13)0.0002 (14)0.0009 (14)
C60.079 (2)0.0477 (16)0.048 (2)0.0134 (16)0.0004 (18)0.0070 (17)
C70.0670 (19)0.073 (2)0.063 (2)0.0248 (17)0.019 (2)0.0038 (19)
C80.0588 (18)0.0610 (17)0.075 (3)0.0040 (15)0.0171 (18)0.0052 (19)
C90.0550 (15)0.0454 (14)0.062 (2)0.0001 (13)0.0108 (16)0.0042 (16)
Geometric parameters (Å, º) top
Cl1—C51.742 (3)C3—H30.9300
N1—C31.264 (3)C4—C91.388 (3)
N1—O11.401 (2)C4—C51.389 (3)
O1—C11.430 (3)C5—C61.376 (4)
C1—C21.499 (3)C6—C71.367 (4)
C1—H1A0.9700C6—H60.9300
C1—H1B0.9700C7—C81.377 (4)
C2—C1i1.499 (3)C7—H70.9300
C2—H2A0.9700C8—C91.368 (4)
C2—H2B0.9700C8—H80.9300
C3—C41.453 (3)C9—H90.9300
C3—N1—O1110.9 (2)C9—C4—C3121.0 (2)
N1—O1—C1110.30 (16)C5—C4—C3122.2 (2)
O1—C1—C2106.78 (17)C6—C5—C4122.1 (3)
O1—C1—H1A110.4C6—C5—Cl1117.6 (2)
C2—C1—H1A110.4C4—C5—Cl1120.3 (2)
O1—C1—H1B110.4C7—C6—C5119.7 (3)
C2—C1—H1B110.4C7—C6—H6120.2
H1A—C1—H1B108.6C5—C6—H6120.2
C1i—C2—C1115.0 (3)C6—C7—C8119.5 (3)
C1i—C2—H2A108.5C6—C7—H7120.3
C1—C2—H2A108.5C8—C7—H7120.3
C1i—C2—H2B108.5C9—C8—C7120.6 (3)
C1—C2—H2B108.5C9—C8—H8119.7
H2A—C2—H2B107.5C7—C8—H8119.7
N1—C3—C4121.6 (2)C8—C9—C4121.3 (3)
N1—C3—H3119.2C8—C9—H9119.3
C4—C3—H3119.2C4—C9—H9119.3
C9—C4—C5116.8 (3)
C3—N1—O1—C1174.7 (2)C3—C4—C5—Cl12.0 (4)
N1—O1—C1—C2176.4 (2)C4—C5—C6—C70.3 (4)
O1—C1—C2—C1i68.74 (16)Cl1—C5—C6—C7178.4 (2)
O1—N1—C3—C4179.3 (2)C5—C6—C7—C80.4 (5)
N1—C3—C4—C91.0 (4)C6—C7—C8—C90.5 (5)
N1—C3—C4—C5178.8 (3)C7—C8—C9—C40.1 (4)
C9—C4—C5—C60.8 (4)C5—C4—C9—C80.7 (4)
C3—C4—C5—C6179.3 (2)C3—C4—C9—C8179.4 (2)
C9—C4—C5—Cl1177.9 (2)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O1ii0.932.553.479 (3)173
Symmetry code: (ii) x+1, y, z1.

Experimental details

Crystal data
Chemical formulaC17H16Cl2N2O2
Mr351.22
Crystal system, space groupOrthorhombic, P21212
Temperature (K)298
a, b, c (Å)6.5218 (7), 28.586 (3), 4.5120 (6)
V3)841.17 (17)
Z2
Radiation typeMo Kα
µ (mm1)0.40
Crystal size (mm)0.45 × 0.18 × 0.15
Data collection
DiffractometerSiemens SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.842, 0.943
No. of measured, independent and
observed [I > 2σ(I)] reflections
3761, 1495, 1111
Rint0.047
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.086, 1.05
No. of reflections1495
No. of parameters105
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.17
Absolute structureFlack (1983), 565 Friedel pairs
Absolute structure parameter0.02 (11)

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O1i0.932.553.479 (3)173.3
Symmetry code: (i) x+1, y, z1.
 

Acknowledgements

This work was supported by the Foundation of the Education Department of Gansu Province (No. 0604-01) and the `Qing Lan' Talent Engineering Funds of Lanzhou Jiaotong University (No. QL-03-01 A), which are gratefully acknowledged.

References

First citationCampbell, E. J., Zhou, H. & Nguyen, S. T. (2001). Org. Lett. 3, 2391–2393.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDong, W.-K., Ding, Y.-J., Luo, Y.-L., Lv, Z.-W. & Wang, L. (2008). Acta Cryst. E64, o1324.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDong, W. K., Feng, J. H. & Yang, X. Q. (2006). Z. Kristallogr. New Cryst. Struct. 221, 447–448.  CAS Google Scholar
First citationDong, W.-K., He, X.-N., Zhong, J.-K., Chen, X. & Yu, T.-Z. (2008). Acta Cryst. E64, o1098.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDuan, J.-G., Dong, C.-M., Shi, J.-Y., Wu, L. & Dong, W.-K. (2007). Acta Cryst. E63, o2704–o2705.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMohand, S. A., Levina, A. & Muzart, J. (1995). J. Chem. Res. (S), 25, 2051–2058.  CAS Google Scholar
First citationMorris, G. A., Zhou, H., Stern, C. L. & Nguyen, S. T. (2001). Inorg. Chem. 40, 3222–3227.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, J., Dong, W., Zhang, Y. & Gao, S. (2007). Acta Cryst. E63, o4080.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds