organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(S)-3-[(S,E)-4-(4-Chloro­phen­yl)-1-nitro­but-3-en-2-yl]thian-4-one

aState Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
*Correspondence e-mail: boyzb@163.com

(Received 14 October 2009; accepted 22 October 2009; online 28 October 2009)

The title compound, C15H16ClNO3S, was obtained by the organocatalytic asymmetric Michael addition of thian-4-one to 1-chloro-4-[(1E,3E)-4-nitro­buta-1,3-dien­yl]benzene. The double bond has an E configuration and the thian-4-one six-membered ring adopts a chair conformation. The crystal structure is stabilized by weak inter­molecular C—H⋯O hydrogen bonds.

Related literature

For asymmetric Michael addition employing chiral organo­catalysts, see: Belot et al. (2008[Belot, S., Massaro, A., Tenti, A., Mordini, A. & Alexakis, A. (2008). Org. Lett. 10, 4557-4560.]); Dalko & Moisan (2004[Dalko, P. I. & Moisan, L. (2004). Angew. Chem. Int. Ed. 43, 5138-5175.]); Xu et al. (2008[Xu, D., Yue, H., Luo, S., Xia, A., Zhang, S. & Xu, Z. (2008). Org. Biomol. Chem. 6, 2054-2057.]); Yu et al. (2009[Yu, Z., Liu, X., Zhou, L., Lin, L. & Feng, X. (2009). Angew. Chem. Int. Ed. 48, 5195-5198.]).

[Scheme 1]

Experimental

Crystal data
  • C15H16ClNO3S

  • Mr = 325.80

  • Orthorhombic, P 21 21 21

  • a = 5.5220 (2) Å

  • b = 8.3833 (3) Å

  • c = 34.7414 (12) Å

  • V = 1608.27 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.38 mm−1

  • T = 296 K

  • 0.34 × 0.28 × 0.19 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.865, Tmax = 0.932

  • 15960 measured reflections

  • 3666 independent reflections

  • 2918 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.090

  • S = 1.00

  • 3666 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.20 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1501 Friedel pairs

  • Flack parameter: 0.03 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7B⋯O2i 0.97 2.45 3.368 (4) 158
C2—H2B⋯O1i 0.97 2.58 3.484 (3) 156
Symmetry code: (i) x+1, y, z.

Data collection: PROCESS-AUTO (Rigaku, 2006[Rigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2007[Rigaku/MSC (2007). CrystalStructure. Rigaku/MSC, The Woodlaands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

As one of the most important chiral carbon-carbon bond-forming processes in modern organic chemistry, the field of asymmetric Michael addition employing chiral organocatalysts has gained more and more attention and become the focus of intense research efforts (Dalko & Moisan, 2004; Belot et al., 2008; Yu et al., 2009). Consequently, we have synthesized a series of Michael adducts by employing cyclo-ketones to nitrodienes in our laboratory. We report here the crystal structure and the absolute configuration of the title compound, (I). The six-membered ring of thian-4-one adopts a chair conformation. The C8C9 bond involves the E configuration with the C6—C8—C9—C10 torsion angle of 178.1 (17)°. The conformation of (I) is stabilized by weak intermolecular C7—H7B···O2 and C2—H2B···O1 interaction, Table 1, Fig 2.

Related literature top

For asymmetric Michael addition employing chiral organocatalysts, see: Belot et al. (2008); Dalko & Moisan (2004); Xu et al. (2008); Yu et al. (2009).

Experimental top

A 1,2-dichloroethane (0.5 ml) solution of thian-4-one (0.25 mmol) and 1-chloro-4-((1E,3E)-4-nitrobuta-1,3-dienyl)benzene (0.25 mmol) in the presence of (S)-1-methyl-2-(pyrrolidin-2-ylmethylthio)-1H-imidazole (0.025 mmol) as amine catalyst and (R)-2-(3-(3,5-bis(trifluoromethyl)phenyl)thioureido)-2-phenylacetic acid (0.025 mmol) as acid module at room tempreture was stirred vigorously (Xu et al., 2008). After completion of the reaction, the resulted reaction mixture was purified directly by silica gel column chromatography (eluent: petroleum ether-EtOAc). Single crystals were obtained by slow evaporation of an ethanol-EtOAc solution.

Refinement top

All carbon-bonded H atoms were placed in calculated positions with C—H = 0.93 Å (aromatic), C—H = 0.98 Å (sp2), C—H = 0.97 Å (sp3) and refined using a riding model, with Uiso(H)=1.2eq(C).

Structure description top

As one of the most important chiral carbon-carbon bond-forming processes in modern organic chemistry, the field of asymmetric Michael addition employing chiral organocatalysts has gained more and more attention and become the focus of intense research efforts (Dalko & Moisan, 2004; Belot et al., 2008; Yu et al., 2009). Consequently, we have synthesized a series of Michael adducts by employing cyclo-ketones to nitrodienes in our laboratory. We report here the crystal structure and the absolute configuration of the title compound, (I). The six-membered ring of thian-4-one adopts a chair conformation. The C8C9 bond involves the E configuration with the C6—C8—C9—C10 torsion angle of 178.1 (17)°. The conformation of (I) is stabilized by weak intermolecular C7—H7B···O2 and C2—H2B···O1 interaction, Table 1, Fig 2.

For asymmetric Michael addition employing chiral organocatalysts, see: Belot et al. (2008); Dalko & Moisan (2004); Xu et al. (2008); Yu et al. (2009).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 2006); cell refinement: PROCESS-AUTO (Rigaku, 2006); data reduction: CrystalStructure (Rigaku/MSC, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with the atomic labeling scheme; displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The view of intermolecular interaction illustrated as dash lines.
(S)-3-[(S,E)-4-(4-Chlorophenyl)-1-nitrobut-3-en- 2-yl]thian-4-one top
Crystal data top
C15H16ClNO3SF(000) = 680
Mr = 325.80Dx = 1.346 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 12670 reflections
a = 5.5220 (2) Åθ = 3.0–27.5°
b = 8.3833 (3) ŵ = 0.38 mm1
c = 34.7414 (12) ÅT = 296 K
V = 1608.27 (10) Å3Block, colorless
Z = 40.34 × 0.28 × 0.19 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3666 independent reflections
Radiation source: rotating anode2918 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 10.00 pixels mm-1θmax = 27.5°, θmin = 3.0°
ω scansh = 76
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1010
Tmin = 0.865, Tmax = 0.932l = 4545
15960 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.047P)2 + 0.182P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.090(Δ/σ)max < 0.001
S = 1.00Δρmax = 0.16 e Å3
3666 reflectionsΔρmin = 0.20 e Å3
191 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0061 (13)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1501 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.03 (7)
Crystal data top
C15H16ClNO3SV = 1608.27 (10) Å3
Mr = 325.80Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.5220 (2) ŵ = 0.38 mm1
b = 8.3833 (3) ÅT = 296 K
c = 34.7414 (12) Å0.34 × 0.28 × 0.19 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3666 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2918 reflections with I > 2σ(I)
Tmin = 0.865, Tmax = 0.932Rint = 0.024
15960 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.090Δρmax = 0.16 e Å3
S = 1.00Δρmin = 0.20 e Å3
3666 reflectionsAbsolute structure: Flack (1983), 1501 Friedel pairs
191 parametersAbsolute structure parameter: 0.03 (7)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C130.1203 (6)0.9836 (3)0.01706 (6)0.0747 (7)
S10.55221 (10)0.17716 (7)0.117335 (15)0.06690 (17)
Cl10.1215 (2)1.11399 (9)0.022097 (18)0.1245 (4)
C60.0659 (3)0.5010 (2)0.16547 (4)0.0447 (4)
H60.08770.44290.16340.054*
O10.0671 (3)0.22754 (16)0.21132 (4)0.0613 (3)
C40.2745 (3)0.3803 (2)0.16338 (4)0.0444 (4)
H40.42640.43710.16840.053*
N10.1196 (3)0.7113 (2)0.20576 (4)0.0555 (4)
C50.2912 (4)0.3026 (2)0.12328 (5)0.0555 (4)
H5A0.29540.38590.10390.067*
H5B0.14660.23940.11890.067*
C80.0775 (3)0.6222 (2)0.13348 (5)0.0476 (4)
H80.21890.68160.13100.057*
C70.0736 (3)0.5865 (2)0.20462 (5)0.0496 (4)
H7A0.04810.51010.22520.059*
H7B0.23090.63560.20830.059*
C30.2507 (3)0.2460 (2)0.19269 (5)0.0492 (4)
C90.0980 (3)0.6500 (2)0.10879 (5)0.0522 (4)
H90.23570.58690.11130.063*
O30.0587 (3)0.84976 (18)0.20651 (5)0.0819 (5)
C20.4615 (4)0.1319 (3)0.19524 (6)0.0669 (5)
H2A0.43150.05500.21550.080*
H2B0.60730.19060.20170.080*
C150.0781 (4)0.8818 (2)0.07241 (5)0.0631 (5)
H150.20760.88470.08950.076*
O20.3289 (3)0.6674 (2)0.20483 (5)0.0838 (5)
C100.1020 (3)0.7694 (2)0.07758 (5)0.0519 (4)
C10.4989 (5)0.0446 (3)0.15734 (6)0.0757 (6)
H1A0.35680.01960.15190.091*
H1B0.63590.02700.15990.091*
C110.2923 (4)0.7687 (3)0.05161 (6)0.0691 (6)
H110.41690.69510.05470.083*
C120.3010 (5)0.8756 (3)0.02114 (6)0.0819 (7)
H120.42910.87320.00380.098*
C140.0704 (5)0.9901 (3)0.04238 (6)0.0745 (6)
H140.19201.06580.03940.089*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C130.122 (2)0.0560 (12)0.0463 (9)0.0278 (14)0.0102 (12)0.0075 (8)
S10.0674 (3)0.0707 (3)0.0626 (3)0.0147 (3)0.0095 (2)0.0069 (2)
Cl10.2253 (11)0.0834 (4)0.0646 (3)0.0384 (6)0.0194 (5)0.0284 (3)
C60.0489 (8)0.0463 (8)0.0387 (7)0.0005 (8)0.0019 (8)0.0031 (6)
O10.0645 (8)0.0616 (8)0.0578 (7)0.0018 (7)0.0091 (7)0.0157 (6)
C40.0466 (8)0.0457 (9)0.0410 (8)0.0008 (7)0.0026 (7)0.0035 (7)
N10.0581 (9)0.0606 (10)0.0478 (8)0.0061 (8)0.0027 (7)0.0059 (7)
C50.0667 (10)0.0568 (11)0.0428 (8)0.0090 (9)0.0022 (8)0.0012 (8)
C80.0539 (10)0.0429 (8)0.0460 (8)0.0007 (8)0.0025 (8)0.0031 (7)
C70.0516 (9)0.0514 (10)0.0457 (8)0.0085 (8)0.0046 (8)0.0011 (7)
C30.0569 (10)0.0486 (10)0.0420 (8)0.0003 (8)0.0041 (8)0.0029 (7)
C90.0555 (10)0.0536 (10)0.0475 (9)0.0008 (9)0.0003 (8)0.0036 (7)
O30.1031 (12)0.0509 (9)0.0918 (11)0.0066 (9)0.0103 (10)0.0046 (8)
C20.0719 (12)0.0675 (13)0.0615 (11)0.0137 (11)0.0082 (10)0.0124 (9)
C150.0780 (13)0.0597 (11)0.0516 (10)0.0048 (11)0.0136 (10)0.0107 (8)
O20.0491 (8)0.1071 (13)0.0954 (11)0.0053 (9)0.0029 (7)0.0237 (11)
C100.0614 (10)0.0519 (10)0.0423 (8)0.0094 (9)0.0049 (8)0.0009 (7)
C10.0906 (16)0.0619 (13)0.0746 (13)0.0252 (12)0.0040 (12)0.0032 (10)
C110.0678 (12)0.0778 (15)0.0618 (11)0.0038 (11)0.0150 (10)0.0045 (10)
C120.0969 (18)0.0897 (18)0.0590 (11)0.0216 (16)0.0267 (12)0.0023 (12)
C140.1063 (17)0.0566 (11)0.0606 (11)0.0037 (14)0.0062 (13)0.0150 (9)
Geometric parameters (Å, º) top
C13—C121.355 (4)C8—H80.9300
C13—C141.373 (4)C7—H7A0.9700
C13—Cl11.745 (2)C7—H7B0.9700
S1—C51.7959 (19)C3—C21.509 (3)
S1—C11.804 (2)C9—C101.476 (2)
C6—C81.507 (2)C9—H90.9300
C6—C41.534 (2)C2—C11.520 (3)
C6—C71.539 (2)C2—H2A0.9700
C6—H60.9800C2—H2B0.9700
O1—C31.213 (2)C15—C101.382 (3)
C4—C31.524 (2)C15—C141.383 (3)
C4—C51.541 (2)C15—H150.9300
C4—H40.9800C10—C111.385 (3)
N1—O31.209 (2)C1—H1A0.9700
N1—O21.213 (2)C1—H1B0.9700
N1—C71.494 (2)C11—C121.388 (3)
C5—H5A0.9700C11—H110.9300
C5—H5B0.9700C12—H120.9300
C8—C91.315 (3)C14—H140.9300
C12—C13—C14121.62 (19)O1—C3—C2122.19 (16)
C12—C13—Cl1119.81 (19)O1—C3—C4121.53 (16)
C14—C13—Cl1118.5 (2)C2—C3—C4116.17 (15)
C5—S1—C198.11 (10)C8—C9—C10127.61 (17)
C8—C6—C4112.19 (13)C8—C9—H9116.2
C8—C6—C7109.65 (14)C10—C9—H9116.2
C4—C6—C7109.17 (13)C3—C2—C1111.04 (16)
C8—C6—H6108.6C3—C2—H2A109.4
C4—C6—H6108.6C1—C2—H2A109.4
C7—C6—H6108.6C3—C2—H2B109.4
C3—C4—C6113.01 (13)C1—C2—H2B109.4
C3—C4—C5107.25 (14)H2A—C2—H2B108.0
C6—C4—C5111.50 (13)C10—C15—C14121.53 (19)
C3—C4—H4108.3C10—C15—H15119.2
C6—C4—H4108.3C14—C15—H15119.2
C5—C4—H4108.3C11—C10—C15117.69 (18)
O3—N1—O2123.82 (19)C11—C10—C9119.13 (18)
O3—N1—C7118.28 (17)C15—C10—C9123.17 (16)
O2—N1—C7117.86 (18)C2—C1—S1113.15 (17)
C4—C5—S1113.56 (12)C2—C1—H1A108.9
C4—C5—H5A108.9S1—C1—H1A108.9
S1—C5—H5A108.9C2—C1—H1B108.9
C4—C5—H5B108.9S1—C1—H1B108.9
S1—C5—H5B108.9H1A—C1—H1B107.8
H5A—C5—H5B107.7C10—C11—C12121.3 (2)
C9—C8—C6124.67 (17)C10—C11—H11119.3
C9—C8—H8117.7C12—C11—H11119.3
C6—C8—H8117.7C13—C12—C11119.1 (2)
N1—C7—C6109.27 (13)C13—C12—H12120.5
N1—C7—H7A109.8C11—C12—H12120.5
C6—C7—H7A109.8C13—C14—C15118.7 (2)
N1—C7—H7B109.8C13—C14—H14120.6
C6—C7—H7B109.8C15—C14—H14120.6
H7A—C7—H7B108.3
C8—C6—C4—C3173.58 (14)C6—C8—C9—C10178.10 (17)
C7—C6—C4—C364.67 (18)O1—C3—C2—C1114.2 (2)
C8—C6—C4—C552.68 (19)C4—C3—C2—C162.0 (2)
C7—C6—C4—C5174.43 (14)C14—C15—C10—C110.1 (3)
C3—C4—C5—S162.42 (17)C14—C15—C10—C9178.8 (2)
C6—C4—C5—S1173.37 (12)C8—C9—C10—C11172.61 (19)
C1—S1—C5—C456.38 (16)C8—C9—C10—C156.3 (3)
C4—C6—C8—C9123.85 (19)C3—C2—C1—S158.3 (2)
C7—C6—C8—C9114.67 (19)C5—S1—C1—C253.16 (18)
O3—N1—C7—C6112.49 (18)C15—C10—C11—C120.8 (3)
O2—N1—C7—C665.5 (2)C9—C10—C11—C12178.2 (2)
C8—C6—C7—N153.18 (19)C14—C13—C12—C110.2 (4)
C4—C6—C7—N1176.45 (14)Cl1—C13—C12—C11177.53 (19)
C6—C4—C3—O19.8 (2)C10—C11—C12—C130.6 (4)
C5—C4—C3—O1113.44 (18)C12—C13—C14—C150.9 (4)
C6—C4—C3—C2173.94 (15)Cl1—C13—C14—C15176.91 (18)
C5—C4—C3—C262.78 (19)C10—C15—C14—C130.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7B···O2i0.972.453.368 (4)158
C2—H2B···O1i0.972.583.484 (3)156
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC15H16ClNO3S
Mr325.80
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)5.5220 (2), 8.3833 (3), 34.7414 (12)
V3)1608.27 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.38
Crystal size (mm)0.34 × 0.28 × 0.19
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.865, 0.932
No. of measured, independent and
observed [I > 2σ(I)] reflections
15960, 3666, 2918
Rint0.024
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.090, 1.00
No. of reflections3666
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.20
Absolute structureFlack (1983), 1501 Friedel pairs
Absolute structure parameter0.03 (7)

Computer programs: PROCESS-AUTO (Rigaku, 2006), CrystalStructure (Rigaku/MSC, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7B···O2i0.972.4483.368 (4)158
C2—H2B···O1i0.972.5803.484 (3)156
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

We acknowledge the help of Professor Jianming Gu of Zhejiang University. We are also grateful for financial support from the Catalytic Hydrogenation Research Center of Zhejiang University of Technology.

References

First citationBelot, S., Massaro, A., Tenti, A., Mordini, A. & Alexakis, A. (2008). Org. Lett. 10, 4557–4560.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDalko, P. I. & Moisan, L. (2004). Angew. Chem. Int. Ed. 43, 5138–5175.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2007). CrystalStructure. Rigaku/MSC, The Woodlaands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, D., Yue, H., Luo, S., Xia, A., Zhang, S. & Xu, Z. (2008). Org. Biomol. Chem. 6, 2054–2057.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYu, Z., Liu, X., Zhou, L., Lin, L. & Feng, X. (2009). Angew. Chem. Int. Ed. 48, 5195–5198.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds