organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Di­methyl­phosphor­yl)methanaminium chloride

aInstitut für Anorganische Chemie und Strukturchemie, Lehrstuhl II: Material- und Strukturforschung, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
*Correspondence e-mail: reissg@hhu.de

(Received 24 August 2012; accepted 3 September 2012; online 8 September 2012)

The crystal structure of the title salt, C3H11NOP+·Cl, is primarily built from centrosymmetric dimers of two cations, connected head-to-tail by two charge-supported strong N—H⋯O hydrogen bonds, with a graph-set descriptor R22(10). The chloride counter-anions connect these dimeric cationic units into chains along the a-axis direction.

Related literature

For related compounds, see: Varbanov et al. (1987[Varbanov, S., Agopian, G. & Borisov, G. (1987). Eur. Polym. J. 23, 639-642.]); Borisov et al. (1994[Borisov, G., Varbanov, S. G., Venanzi, L. M., Albinati, A. & Demartin, F. (1994). Inorg. Chem. 33, 5430-5437.]); Kaukorat et al. (1997[Kaukorat, T., Neda, I., Jones, P. G. & Schmutzler, R. (1997). Phosphorus Sulfur Silicon Relat. Elem. 112, 33-47.]); Zagraniarsky et al. (2008[Zagraniarsky, Y., Ivanova, B., Nikolov, K., Varbanov, S. & Cholakova, T. (2008). Z. Naturforsch. Teil B, 63, 1192-1198.]); Kochel (2009[Kochel, A. (2009). Inorg. Chim. Acta, 362, 1379-1382.]). For a definition of the term tecton, see: Brunet et al. (1997[Brunet, P., Simard, M. & Wuest, J. D. (1997). J. Am. Chem. Soc. 119, 2737-2738.]); Resnati & Metrangolo (2007[Resnati, G. & Metrangolo, P. (2007). Encyclopedia of Supramolecular Chemistry, edited by J. L. Atwood, J. W. Steed & K. J. Wallace, pp. 1484-1492. Abingdon: Taylor & Francis.]). For the use of anionic phosphinic acid derivatives as supra­molecular tectons, see: Glidewell et al. (2000[Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. C56, 855-858.]); Chen et al. (2010[Chen, S.-P., Zhang, Y.-Q., Hu, L., He, H.-Z. & Yuan, L.-J. (2010). CrystEngComm, 12, 3327-3336.]). For graph-set theory and its applications, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. 34, 1555-1573.]); Grell et al. (2002[Grell, J., Bernstein, J. & Tinhofer, G. (2002). Crystallogr. Rev. 8, 1-56.]). For hydrogen-bonded phosphinic acid derivatives, see: Reiss & Engel (2008[Reiss, G. J. & Engel, J. S. (2008). Acta Cryst. E64, o400.]); Meyer et al. (2010[Meyer, M. K., Graf, J. & Reiss, G. J. (2010). Z. Naturforsch. Teil B, 65, 1462-1466.]). For typical NH+⋯Cl hydrogen-bond parameters, see: Farrugia et al. (2001[Farrugia, L. J., Cross, R. J. & Barley, H. R. L. (2001). Acta Cryst. E57, o992-o993.]); Reiss & Bajorat (2008[Reiss, G. J. & Bajorat, S. (2008). Acta Cryst. E64, o223.]); Kovács & Varga (2006[Kovács, A. & Varga, Z. (2006). Coord. Chem. Rev. 250, 710-727.]). For the DDM program used to obtain a profile fit of the powder diffraction data of a bulk sample of the title compound, see: Solovyov (2004[Solovyov, L. A. (2004). J. Appl. Cryst. 37, 743-749.]).

[Scheme 1]

Experimental

Crystal data
  • C3H11NOP+·Cl

  • Mr = 143.55

  • Triclinic, [P \overline 1]

  • a = 5.2965 (2) Å

  • b = 7.7030 (4) Å

  • c = 8.8035 (3) Å

  • α = 84.057 (4)°

  • β = 87.691 (3)°

  • γ = 89.016 (4)°

  • V = 356.93 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.66 mm−1

  • T = 106 K

  • 0.92 × 0.78 × 0.05 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer, EOS detector

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.613, Tmax = 1.000

  • 3785 measured reflections

  • 2076 independent reflections

  • 1968 reflections with I > 2σ(I)

  • Rint = 0.012

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.049

  • S = 1.08

  • 2076 reflections

  • 93 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl1 0.921 (16) 2.245 (16) 3.1367 (9) 162.8 (13)
N1—H2⋯Cl1i 0.872 (16) 2.262 (16) 3.1134 (9) 165.3 (14)
N1—H3⋯O1ii 0.905 (16) 1.791 (16) 2.6900 (12) 172.4 (15)
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y, -z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2011[Brandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

(Dimethylphosphinyl)methanamine (dpma) can easily be obtained by a two-step synthesis (Varbanov et al., 1987). To date only a limited number of structurally characterized dpma containing compounds are reported. On the one hand the structures of some transition metal complexes have been reported: Zn, Ni and Pd, (Borisov et al., 1994); Cu, (Kochel, 2009). On the other hand the solid state structure of the dpma molecule itself has been determined (Kochel, 2009). A recent search in the Cambridge Crystallographic Data Base showed, that there is no structural report on the N-protonated (dimethylphosphoryl)methanaminium (dpmaH) so far, whereas the salt of the N-methylated derivative (Kaukorat et al., 1997) and also more sophisticated substituated compounds are known (Zagraniarsky et al., 2008). Alkyldiphosphinates have been used as tectons (for the term tecton, see: Brunet et al., 1997; Resnati & Metrangolo, 2007) to construct hydrogen bonded frameworks (Glidewell et al., 2000) and also amino phosphinic anions are known to construct hydrogen bonded one-dimensional, two-dimensional and three-dimensional supramolecular architectures (Chen et al., 2010). The structure determination on the title compound is part of our continuing interest on the hydrogen bonding of methylphosphinic acids and its derivatives (Reiss & Engel, 2008) and its capability as tectons for the crystal engineering of new structural motifs and yet unknown species (Meyer et al., 2010).

The synthesis of the title compound dpmaHCl succeeded by the reaction of dpma with concentrated hydrochloric acid. Hence, the cationic dpmaH features the hydrogen bond donor group NH3+ at the one end and the hydrogen bond accepting group –P=O at the other end, this tecton should be able to form a variety of connections among themselves and to various counter anions. In the title structure two dpmaH cations are connected by strong –NH+···O=P– hydrogen bonds (Tab. 1) head to tail to form cyclic dimers (Fig. 1; first level graph-set descriptor: R22(10); Etter et al., 1990; Bernstein et al., 1995; Grell et al., 2002). These dimers are located on centres of inversion in the triclinic space group P1. All bond lengths and angles in the dpmaH cation are in the typical range. Each dicationic cyclic dimer forms hydrogen bonds to four neighbouring chloride anions. These chloride anions form hydrogen bonds to the next dimeric unit giving an one-dimensional chain structure along [100]. The second level graph-set descriptor of this backbone-connection is C12(4) (Fig. 2). Two dpmaH cations of neighbouring dimers and the two chloride anions located between them form a complex hydrogen bonded eighteen-membered ring motif (third level graph-set descriptor: R46(18); Fig. 2) around a center of inversion (Fig. 2 & 3). The bond lengths of the two crystallographic independent, charge supported NH+···Cl- hydrogen bonds are nearly identical and in the typical range for the combination of aminium groups connected to chloride anions (Farrugia et al., 2001; Kovács & Varga, 2006; Reiss & Bajorat, 2008). A constructor-graph (Grell et al., 2002) of exactly that part of the title structure shown in Fig. 2 is shown in Fig. 3. In this schematic diagram cations and anions are replaced by dots. Each hydrogen bond is represented by an arrow from the donor to the acceptor.

Related literature top

For related compounds, see: Varbanov et al. (1987); Borisov et al. (1994); Kaukorat et al. (1997); Zagraniarsky et al. (2008); Kochel (2009). For a definition of the term tecton, see: Brunet et al. (1997); Resnati & Metrangolo (2007). For the use of anionic phosphinic acid derivatives as supramolecular tectons, see: Glidewell et al. (2000); Chen et al. (2010). For graph-set theory and its applications, see: Etter et al. (1990); Bernstein et al. (1995); Grell et al. (2002). For hydrogen-bonded phosphinic acid derivatives, see: Reiss & Engel (2008); Meyer et al. (2010). For typical NH+···Cl- hydrogen-bond parameters, see: Farrugia et al. (2001); Reiss & Bajorat (2008); Kovács & Varga (2006). For the DDM program used to obtain a profile fit of the powder diffraction data of a bulk sample of the title compound, see: Solovyov (2004).

Experimental top

In a typical reaction 0.5 g (4.67 mmol) dpma was dissolved in 3 ml of concentrated hydrochloric acid (30–32%). The mixture was heated for a few minutes to give a clear, colourless solution. On slow cooling to room temperature colourless platelets grow from the mother liquor. The title compound is hygroscopic and storage at ambient conditions liquefies the crystalline material within a few minutes.

To check the purity of the synthesized material, powder diffraction data of a representative part of the bulk phase were collected at ambient temperature on a Stoe Stadi P diffractometer equipped with a PositionSensitiveDetector (flat sample, transmission, Cu Kα1). A profile fit (Solovyov, 2004) on the powder diffraction data based on the structure model obtained from the single-crystal experiment proved the identity of the title structure with the bulk sample (Fig. 4). Only a small amount of a crystalline, unidentified impurity is present in the diffraction pattern. (T = 290 K, a = 5.3216 (3) Å, b = 7.8073 (6) Å, c = 8.8594 (5) Å, α = 84.591 (3) °, β = 87.536 (2) °, γ = 88.909 (3) °, R-DDM = 12.22; R-DDMexp = 3.13; S = 3.90). – The Raman spectrum was measured using a Bruker MULTIRAM spectrometer (Nd:YAG-Laser at 1064 nm; RT-InGaAs-detector); 4000–70 cm-1: 2979(s), 2907 (s), 2844(w), 2631(vw), 2585(vw), 1610(vw), 1528(vw), 1449(vw), 1432(m), 1405(w), 1345(vw), 1310(vw, br), 1156(w), 1137(vw), 1091(vw), 1026(w), 946(vw), 920(vw), 895(vw), 859(vw), 786(vw), 725(m), 665(s), 452(w), 370(w), 321(vw), 285(w), 245(m), 137(w), 84(m). – IR spectroscopic data were collected on a Digilab FT3400 spectrometer using a MIRacle ATR unit (Pike Technologies); 4000–560 cm-1: 3372(m, br), 2970(s), 2892(s), 2840(s), 2697(m), 2627(m, sh), 2597(s), 2260(vw), 2075(w), 1621(m), 1607(m), 1523(m), 1445(vw), 1422(m), 1407(w, sh), 1349(vw), 1299(m), 1150(m), 1124(m), 1087(m, sh), 1026(w), 942(m), 918(m), 889(s), 856(m), 783(w), 755(w), 723(w), 662(vw).

Refinement top

Methyl H-atoms were identified in difference syntheses, idealized and refined using rigid groups allowed to rotate about the P—C bond (AFIX 137 option of the SHELXL97 program). The coordinates of all other H-atoms were refined freely with individual UIsovalues.

Structure description top

(Dimethylphosphinyl)methanamine (dpma) can easily be obtained by a two-step synthesis (Varbanov et al., 1987). To date only a limited number of structurally characterized dpma containing compounds are reported. On the one hand the structures of some transition metal complexes have been reported: Zn, Ni and Pd, (Borisov et al., 1994); Cu, (Kochel, 2009). On the other hand the solid state structure of the dpma molecule itself has been determined (Kochel, 2009). A recent search in the Cambridge Crystallographic Data Base showed, that there is no structural report on the N-protonated (dimethylphosphoryl)methanaminium (dpmaH) so far, whereas the salt of the N-methylated derivative (Kaukorat et al., 1997) and also more sophisticated substituated compounds are known (Zagraniarsky et al., 2008). Alkyldiphosphinates have been used as tectons (for the term tecton, see: Brunet et al., 1997; Resnati & Metrangolo, 2007) to construct hydrogen bonded frameworks (Glidewell et al., 2000) and also amino phosphinic anions are known to construct hydrogen bonded one-dimensional, two-dimensional and three-dimensional supramolecular architectures (Chen et al., 2010). The structure determination on the title compound is part of our continuing interest on the hydrogen bonding of methylphosphinic acids and its derivatives (Reiss & Engel, 2008) and its capability as tectons for the crystal engineering of new structural motifs and yet unknown species (Meyer et al., 2010).

The synthesis of the title compound dpmaHCl succeeded by the reaction of dpma with concentrated hydrochloric acid. Hence, the cationic dpmaH features the hydrogen bond donor group NH3+ at the one end and the hydrogen bond accepting group –P=O at the other end, this tecton should be able to form a variety of connections among themselves and to various counter anions. In the title structure two dpmaH cations are connected by strong –NH+···O=P– hydrogen bonds (Tab. 1) head to tail to form cyclic dimers (Fig. 1; first level graph-set descriptor: R22(10); Etter et al., 1990; Bernstein et al., 1995; Grell et al., 2002). These dimers are located on centres of inversion in the triclinic space group P1. All bond lengths and angles in the dpmaH cation are in the typical range. Each dicationic cyclic dimer forms hydrogen bonds to four neighbouring chloride anions. These chloride anions form hydrogen bonds to the next dimeric unit giving an one-dimensional chain structure along [100]. The second level graph-set descriptor of this backbone-connection is C12(4) (Fig. 2). Two dpmaH cations of neighbouring dimers and the two chloride anions located between them form a complex hydrogen bonded eighteen-membered ring motif (third level graph-set descriptor: R46(18); Fig. 2) around a center of inversion (Fig. 2 & 3). The bond lengths of the two crystallographic independent, charge supported NH+···Cl- hydrogen bonds are nearly identical and in the typical range for the combination of aminium groups connected to chloride anions (Farrugia et al., 2001; Kovács & Varga, 2006; Reiss & Bajorat, 2008). A constructor-graph (Grell et al., 2002) of exactly that part of the title structure shown in Fig. 2 is shown in Fig. 3. In this schematic diagram cations and anions are replaced by dots. Each hydrogen bond is represented by an arrow from the donor to the acceptor.

For related compounds, see: Varbanov et al. (1987); Borisov et al. (1994); Kaukorat et al. (1997); Zagraniarsky et al. (2008); Kochel (2009). For a definition of the term tecton, see: Brunet et al. (1997); Resnati & Metrangolo (2007). For the use of anionic phosphinic acid derivatives as supramolecular tectons, see: Glidewell et al. (2000); Chen et al. (2010). For graph-set theory and its applications, see: Etter et al. (1990); Bernstein et al. (1995); Grell et al. (2002). For hydrogen-bonded phosphinic acid derivatives, see: Reiss & Engel (2008); Meyer et al. (2010). For typical NH+···Cl- hydrogen-bond parameters, see: Farrugia et al. (2001); Reiss & Bajorat (2008); Kovács & Varga (2006). For the DDM program used to obtain a profile fit of the powder diffraction data of a bulk sample of the title compound, see: Solovyov (2004).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2011); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. : Hydrogen-bonded dimers of the dpmaH cations connected to neighbouring chloride anions (blue numbers indicate the first-level graph-set descriptor R22(10) of the hydrogen bonded dimer; ' = 1 - x, -y, 1 - z).
[Figure 2] Fig. 2. : One-dimensional chain structure of the title compound with view along [001]. Red numbers indicate the second-level graph-set C12(4) defining the connection along the backbone of the chain. Black numbers indicate the complex third-level graph-set R46(18) characterizing the ring motifs between the primary, dimeric building units.
[Figure 3] Fig. 3. : Constructor-graph (Grell et al., 2002) of that part of the title structure shown in Fig 2. (large black dots: dpmaH cations; large open circles: chloride anions; coloured arrows a, b and c: The three crystallographically independent hydrogen bonds; small open circles: centers of inversion).
[Figure 4] Fig. 4. : Profile Fit (DDM programme; Solovyov, 2004) of the powder diffraction data of a bulk sample of the title compound (green line: calculated; red line: measured).
(Dimethylphosphoryl)methanaminium chloride top
Crystal data top
C3H11NOP+·ClZ = 2
Mr = 143.55F(000) = 152
Triclinic, P1Dx = 1.336 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.2965 (2) ÅCell parameters from 3569 reflections
b = 7.7030 (4) Åθ = 3.3–32.6°
c = 8.8035 (3) ŵ = 0.66 mm1
α = 84.057 (4)°T = 106 K
β = 87.691 (3)°Plate, colourless
γ = 89.016 (4)°0.92 × 0.78 × 0.05 mm
V = 356.93 (3) Å3
Data collection top
Oxford Diffraction Xcalibur
diffractometer, Eos
2076 independent reflections
Radiation source: fine-focus sealed tube1968 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.012
Detector resolution: 16.2711 pixels mm-1θmax = 30.0°, θmin = 3.4°
ω scansh = 47
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1010
Tmin = 0.613, Tmax = 1.000l = 1212
3785 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.049 w = 1/[σ2(Fo2) + (0.012P)2 + 0.2P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
2076 reflectionsΔρmax = 0.48 e Å3
93 parametersΔρmin = 0.34 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.012 (2)
Crystal data top
C3H11NOP+·Clγ = 89.016 (4)°
Mr = 143.55V = 356.93 (3) Å3
Triclinic, P1Z = 2
a = 5.2965 (2) ÅMo Kα radiation
b = 7.7030 (4) ŵ = 0.66 mm1
c = 8.8035 (3) ÅT = 106 K
α = 84.057 (4)°0.92 × 0.78 × 0.05 mm
β = 87.691 (3)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer, Eos
2076 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
1968 reflections with I > 2σ(I)
Tmin = 0.613, Tmax = 1.000Rint = 0.012
3785 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0210 restraints
wR(F2) = 0.049H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.48 e Å3
2076 reflectionsΔρmin = 0.34 e Å3
93 parameters
Special details top

Experimental. Absorption correction: CrysAlisPro, Agilent Technologies, Version 1.171.35.21 Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.83052 (4)0.22956 (3)0.16135 (3)0.01445 (7)
P10.48926 (5)0.25417 (3)0.28914 (3)0.00963 (7)
O10.65884 (14)0.18353 (10)0.41347 (8)0.01364 (15)
N10.31590 (16)0.08170 (11)0.28582 (10)0.01068 (16)
H10.465 (3)0.105 (2)0.2342 (17)0.024 (4)*
H20.192 (3)0.142 (2)0.2566 (18)0.023 (4)*
H30.338 (3)0.112 (2)0.3865 (19)0.025 (4)*
C10.23746 (18)0.10462 (13)0.26016 (12)0.01177 (18)
H1A0.099 (3)0.1224 (18)0.3275 (16)0.017 (3)*
H1B0.185 (3)0.128 (2)0.1563 (18)0.022 (4)*
C20.3235 (2)0.45000 (15)0.32696 (15)0.0207 (2)
H2A0.44250.54160.33220.036 (5)*
H2B0.22930.43060.42250.031 (4)*
H2C0.20980.48300.24650.029 (4)*
C30.6544 (2)0.29523 (15)0.10879 (12)0.0159 (2)
H3A0.74230.19100.08450.028 (4)*
H3B0.77370.38680.11350.030 (4)*
H3C0.53610.33000.03120.020 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.00962 (11)0.01729 (12)0.01731 (13)0.00050 (8)0.00147 (8)0.00548 (9)
P10.00893 (12)0.00947 (12)0.01030 (12)0.00069 (8)0.00136 (8)0.00023 (8)
O10.0127 (3)0.0166 (4)0.0112 (3)0.0006 (3)0.0029 (3)0.0011 (3)
N10.0099 (4)0.0110 (4)0.0113 (4)0.0007 (3)0.0019 (3)0.0013 (3)
C10.0085 (4)0.0118 (4)0.0146 (5)0.0006 (3)0.0016 (3)0.0008 (3)
C20.0192 (5)0.0141 (5)0.0296 (6)0.0047 (4)0.0037 (4)0.0056 (4)
C30.0131 (5)0.0222 (5)0.0117 (5)0.0035 (4)0.0010 (4)0.0025 (4)
Geometric parameters (Å, º) top
P1—O11.4966 (7)C1—H1A0.941 (15)
P1—C31.7832 (11)C1—H1B0.965 (15)
P1—C21.7866 (11)C2—H2A0.9600
P1—C11.8199 (10)C2—H2B0.9600
N1—C11.4844 (13)C2—H2C0.9600
N1—H10.921 (16)C3—H3A0.9600
N1—H20.872 (16)C3—H3B0.9600
N1—H30.905 (16)C3—H3C0.9600
O1—P1—C3112.50 (5)N1—C1—H1B108.5 (9)
O1—P1—C2114.00 (5)P1—C1—H1B108.3 (9)
C3—P1—C2107.74 (6)H1A—C1—H1B109.1 (13)
O1—P1—C1112.45 (4)P1—C2—H2A109.5
C3—P1—C1105.97 (5)P1—C2—H2B109.5
C2—P1—C1103.48 (5)H2A—C2—H2B109.5
C1—N1—H1112.4 (9)P1—C2—H2C109.5
C1—N1—H2106.4 (10)H2A—C2—H2C109.5
H1—N1—H2111.5 (14)H2B—C2—H2C109.5
C1—N1—H3109.8 (10)P1—C3—H3A109.5
H1—N1—H3107.6 (13)P1—C3—H3B109.5
H2—N1—H3109.1 (14)H3A—C3—H3B109.5
N1—C1—P1113.12 (7)P1—C3—H3C109.5
N1—C1—H1A107.9 (9)H3A—C3—H3C109.5
P1—C1—H1A109.8 (9)H3B—C3—H3C109.5
O1—P1—C1—N134.32 (9)C2—P1—C1—N1157.80 (8)
C3—P1—C1—N188.97 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl10.921 (16)2.245 (16)3.1367 (9)162.8 (13)
N1—H2···Cl1i0.872 (16)2.262 (16)3.1134 (9)165.3 (14)
N1—H3···O1ii0.905 (16)1.791 (16)2.6900 (12)172.4 (15)
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC3H11NOP+·Cl
Mr143.55
Crystal system, space groupTriclinic, P1
Temperature (K)106
a, b, c (Å)5.2965 (2), 7.7030 (4), 8.8035 (3)
α, β, γ (°)84.057 (4), 87.691 (3), 89.016 (4)
V3)356.93 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.66
Crystal size (mm)0.92 × 0.78 × 0.05
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer, Eos
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.613, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
3785, 2076, 1968
Rint0.012
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.049, 1.08
No. of reflections2076
No. of parameters93
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.48, 0.34

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2011), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl10.921 (16)2.245 (16)3.1367 (9)162.8 (13)
N1—H2···Cl1i0.872 (16)2.262 (16)3.1134 (9)165.3 (14)
N1—H3···O1ii0.905 (16)1.791 (16)2.6900 (12)172.4 (15)
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z+1.
 

Acknowledgements

We thank E. Hammes and P. Roloff for technical support. We acknowledge the support for the publication fee by the Deutsche Forschungsgemeinschaft (DFG) and the open access publication fund of the Heinrich-Heine-Universität Düsseldorf.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBorisov, G., Varbanov, S. G., Venanzi, L. M., Albinati, A. & Demartin, F. (1994). Inorg. Chem. 33, 5430–5437.  CSD CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrunet, P., Simard, M. & Wuest, J. D. (1997). J. Am. Chem. Soc. 119, 2737–2738.  CSD CrossRef CAS Web of Science Google Scholar
First citationChen, S.-P., Zhang, Y.-Q., Hu, L., He, H.-Z. & Yuan, L.-J. (2010). CrystEngComm, 12, 3327–3336.  Web of Science CSD CrossRef CAS Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J., Cross, R. J. & Barley, H. R. L. (2001). Acta Cryst. E57, o992–o993.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGlidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. C56, 855–858.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGrell, J., Bernstein, J. & Tinhofer, G. (2002). Crystallogr. Rev. 8, 1–56.  CrossRef CAS Google Scholar
First citationKaukorat, T., Neda, I., Jones, P. G. & Schmutzler, R. (1997). Phosphorus Sulfur Silicon Relat. Elem. 112, 33–47.  Web of Science CrossRef Google Scholar
First citationKochel, A. (2009). Inorg. Chim. Acta, 362, 1379–1382.  Web of Science CSD CrossRef CAS Google Scholar
First citationKovács, A. & Varga, Z. (2006). Coord. Chem. Rev. 250, 710–727.  Google Scholar
First citationMeyer, M. K., Graf, J. & Reiss, G. J. (2010). Z. Naturforsch. Teil B, 65, 1462–1466.  CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationReiss, G. J. & Bajorat, S. (2008). Acta Cryst. E64, o223.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationReiss, G. J. & Engel, J. S. (2008). Acta Cryst. E64, o400.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationResnati, G. & Metrangolo, P. (2007). Encyclopedia of Supramolecular Chemistry, edited by J. L. Atwood, J. W. Steed & K. J. Wallace, pp. 1484–1492. Abingdon: Taylor & Francis.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSolovyov, L. A. (2004). J. Appl. Cryst. 37, 743–749.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVarbanov, S., Agopian, G. & Borisov, G. (1987). Eur. Polym. J. 23, 639–642.  CrossRef Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZagraniarsky, Y., Ivanova, B., Nikolov, K., Varbanov, S. & Cholakova, T. (2008). Z. Naturforsch. Teil B, 63, 1192–1198.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds