organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[(E)-(4-Fluoro­benzyl­­idene)amino]­benzoic acid

aFacultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, 66451 Nuevo León, Mexico, bDepartamento de Química, Centro de Investigación y de Estudios Avanzados, del Instituto Politécnico Nacional, Apartado Postal 14-740, 07000 México, DF, Mexico, and cDepartamento de Química Analítica Facultad de Medicina, Universidad Autónoma de Nuevo León, León PO Box 2316, 64841 Nuevo León, Mexico
*Correspondence e-mail: blanca.munozfl@uanl.edu.mx

(Received 16 November 2011; accepted 4 December 2011; online 21 December 2011)

In the title compound, C14H10FNO2, the benzene rings make a dihedral angle of 57.50 (13)°, and the molecule has an E configuration about the C=N bond. In the crystal, molecules are linked via pairs of O—H⋯O hydrogen bonds, forming inversion dimers.

Related literature

For the synthesis, properties and uses of 4-(benzyl­idene­amino)­benzoic acid, see: Borisova et al. (2007[Borisova, N. E., Reshetova, M. D. & Ustynyuk, Y. A. (2007). Chem. Rev. 107, 46-79.]); Schiff (1864[Schiff, H. (1864). Annalen, 131, 118-119.]); Innocenzi & Lebeau (2005[Innocenzi, P. & Lebeau, B. (2005). J. Mater. Chem. 15, 3821-3831.]); Muñoz-Flores et al. (2008[Muñoz-Flores, B. M., Santillan, R., Rodríguez, M., Méndez, J. M., Romero, M., Farfán, N., Lacroix, P. G., Nakatani, K., Ramos-Ortíz, G. & Maldonado, J. L. (2008). J. Organomet. Chem. 693, 1321-1334.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10FNO2

  • Mr = 243.24

  • Monoclinic, P 21 /n

  • a = 12.2787 (5) Å

  • b = 5.6264 (2) Å

  • c = 17.2874 (8) Å

  • β = 105.833 (2)°

  • V = 1148.99 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.23 × 0.2 × 0.15 mm

Data collection
  • Nonius KappaCCD diffractometer

  • 9975 measured reflections

  • 2002 independent reflections

  • 1226 reflections with I > 2σ(I)

  • Rint = 0.186

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.191

  • S = 1.04

  • 2002 reflections

  • 166 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H⋯O1i 0.85 (1) 1.79 (2) 2.601 (3) 159 (4)
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: XSCANS (Bruker, 2000[Bruker (2000). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Hugo Josef Schiff discovered the condensation a primary amine and a carbonyl compounds (Schiff 1864) afford the corresponding azomethine group. This organic compounds show an important synthetic advantages such as: high yields, simple synthetic route, short-time reactions, and easy isolation. Schiff base compounds have been of great importance in coordination chemistry (Borisova et al. 2007) due to the lone pair of electrons in an sp2 hybridized orbital of nitrogen atom of the azomethine group. On the other hand, it has been reported that organic compounds containing donor and acceptor groups linked through to pi-system delocalized exhibit promising nonlinear optical properties (Innocenzi & Lebeau 2005). We have been focused our attention on synthesis of push-pull organic molecules with no linear optical potential properties (Muñoz-Flores et al. 2008). In continuous with our research, we synthesized the title compound (E)-4-(4-fluorobenzylideneamino)benzoic acid by condensation of 4-fluorobenzaldehyde and 4-aminobenzoic acid. In the present article, the crystal structure of (I) is being reported as shown in Fig 1. The compound, (E)-4-(4-fluorbenzylideneamino)benzoic acid (C14H10N2O2F), displays C1 symmetry. The aromatic rings are not in the same plane, with a dihedral angle of 15.59° between mean planes. The carboxylic group represents a delocalized system with C(14)—O(1) and C(14)—O(2) bond lengths are 1.275 (4) and 1.293 (4) Å, respectively. The azomethine group are in the same plane as the monofluorated ring, probably because the short contact between the C(5)—H(5)···N(1) 2.633 (4) Å, [ C—H···N: 96.8°]. The intermolecular O(2)—H(2)···O(1) [2.621 (5)Å (angleO-H···O: 156.30°], hydrogen bond form a dimer with a inversion center as shown in Fig 2.

Related literature top

For the synthesis, properties and uses of 4-(benzylideneamino)benzoic acid, see: Borisova et al. (2007); Schiff (1864); Innocenzi & Lebeau (2005); Muñoz-Flores et al. (2008).

Experimental top

A solution of 4-fluorobenzaldehyde (0.5 g, 4 mmol) and 4-aminobenzoic acid (0.55 g, 4 mmol) in benzene (50 ml) was heated under reflux for 6 h, with a Dean-Stark apparatus used for the azeotropic removal of water and allowed to cool to room temperature. Removal of solvent yielded a pale yellow solid, which was recrystallized from hot benzene (10 ml). Yield: 0.74 g 76%. M. p. 191 °C. 1H NMR (400.13 MHz, MeOD): δ = 4.9 (bs, 1H, OH), 6.62 (d, 3J = 8.4 Hz, 2H, H-11/H-12), 6.80 (d, 3J = 8.4 Hz, 2H, H-9/H-13), 7.10 (t, 3J = 8.4 Hz, 2H, H-2/H-4), 8.05 (d, 3J = 78.4 Hz, 2H, H-1/H-5), 8.53 (s, 1H, H-7). MS (DIP 20 eV) for C14H10N2O2F (f. w: 243.24 g/mol) m/z (%): 243 (100) [M+], 226 (3) [M+—H2O], 198 (3) [M+—CO2], 137 (4) [M+—FC6H8], 121 [M+—C7H6O2].

Refinement top

All C-bonded H atoms were placed in calculated positions and refined as riding to their carrier atoms, with bond lengths fixed to 0.93 (aromatic CH). Isotropic displacement parameters for H atoms were calculated as Uiso(H) = 1.5Ueq(carrier atom.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: XSCANS (Bruker, 2000); data reduction: XSCANS (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. Intermolecular interaction via hydrogen bonds.
4-[(E)-(4-Fluorobenzylidene)amino]benzoic acid top
Crystal data top
C14H10FNO2F(000) = 504
Mr = 243.24Dx = 1.406 Mg m3
Monoclinic, P21/nMelting point: 464 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 12.2787 (5) ÅCell parameters from 4962 reflections
b = 5.6264 (2) Åθ = 2.9–27.5°
c = 17.2874 (8) ŵ = 0.11 mm1
β = 105.833 (2)°T = 293 K
V = 1148.99 (8) Å3Prism, yellow
Z = 40.23 × 0.2 × 0.15 mm
Data collection top
Nonius KappaCCD
diffractometer
1226 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.186
Graphite monochromatorθmax = 25.0°, θmin = 3.7°
CCD rotation images, thick slices scansh = 1414
9975 measured reflectionsk = 66
2002 independent reflectionsl = 1720
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.191H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0979P)2 + 0.0699P]
where P = (Fo2 + 2Fc2)/3
2002 reflections(Δ/σ)max < 0.001
166 parametersΔρmax = 0.18 e Å3
1 restraintΔρmin = 0.21 e Å3
Crystal data top
C14H10FNO2V = 1148.99 (8) Å3
Mr = 243.24Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.2787 (5) ŵ = 0.11 mm1
b = 5.6264 (2) ÅT = 293 K
c = 17.2874 (8) Å0.23 × 0.2 × 0.15 mm
β = 105.833 (2)°
Data collection top
Nonius KappaCCD
diffractometer
1226 reflections with I > 2σ(I)
9975 measured reflectionsRint = 0.186
2002 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0621 restraint
wR(F2) = 0.191H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.18 e Å3
2002 reflectionsΔρmin = 0.21 e Å3
166 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7423 (2)0.3339 (5)0.03261 (18)0.0515 (8)
H10.76230.46960.00120.062*
C20.7740 (2)0.3115 (5)0.10261 (19)0.0565 (8)
H20.81690.42840.11850.068*
C30.7407 (3)0.1119 (5)0.14822 (19)0.0557 (8)
C40.6800 (2)0.0683 (5)0.12777 (19)0.0567 (8)
H40.65880.20050.16070.068*
C50.6511 (2)0.0474 (5)0.05617 (18)0.0528 (7)
H50.61160.16980.03970.063*
C60.6803 (2)0.1547 (4)0.00823 (17)0.0479 (7)
C70.6428 (2)0.1789 (5)0.06460 (17)0.0506 (7)
H70.61860.04370.08610.061*
C80.6104 (2)0.3845 (4)0.17270 (17)0.0452 (7)
C90.5490 (2)0.5794 (4)0.1872 (2)0.0563 (8)
H90.52470.69390.14740.068*
C100.5237 (2)0.6054 (5)0.25934 (19)0.0534 (8)
H100.48240.73670.26770.064*
C110.5597 (2)0.4361 (4)0.32045 (17)0.0482 (7)
C120.6204 (2)0.2400 (5)0.30522 (19)0.0554 (8)
H120.64460.12510.34490.066*
C130.6449 (2)0.2136 (5)0.23337 (18)0.0546 (8)
H130.68490.08080.22460.065*
C140.5353 (2)0.4651 (5)0.39801 (18)0.0523 (8)
F10.77081 (18)0.0920 (3)0.21809 (12)0.0827 (7)
N10.64180 (18)0.3768 (4)0.10000 (15)0.0530 (7)
O10.56240 (18)0.3041 (4)0.45179 (13)0.0679 (7)
O20.48502 (19)0.6570 (4)0.41100 (13)0.0675 (7)
H0.487 (3)0.678 (7)0.4597 (9)0.101*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0568 (16)0.0450 (14)0.0523 (19)0.0016 (12)0.0142 (13)0.0017 (12)
C20.0623 (17)0.0512 (15)0.061 (2)0.0016 (13)0.0245 (15)0.0098 (14)
C30.0649 (18)0.0582 (17)0.0471 (19)0.0168 (14)0.0206 (14)0.0037 (14)
C40.0639 (17)0.0483 (15)0.058 (2)0.0042 (13)0.0177 (15)0.0075 (14)
C50.0526 (15)0.0457 (14)0.062 (2)0.0007 (12)0.0191 (13)0.0006 (14)
C60.0455 (14)0.0456 (14)0.0520 (19)0.0034 (11)0.0122 (13)0.0026 (12)
C70.0508 (15)0.0520 (15)0.0516 (18)0.0003 (12)0.0185 (13)0.0061 (13)
C80.0433 (14)0.0493 (15)0.0436 (17)0.0052 (11)0.0131 (12)0.0007 (12)
C90.0569 (16)0.0434 (14)0.066 (2)0.0042 (12)0.0116 (14)0.0095 (13)
C100.0558 (16)0.0470 (14)0.058 (2)0.0056 (12)0.0165 (14)0.0001 (13)
C110.0478 (14)0.0478 (14)0.0477 (18)0.0006 (11)0.0106 (12)0.0016 (13)
C120.0628 (17)0.0532 (16)0.0474 (18)0.0097 (13)0.0106 (14)0.0066 (13)
C130.0551 (16)0.0503 (15)0.056 (2)0.0109 (12)0.0112 (14)0.0044 (13)
C140.0467 (14)0.0511 (15)0.056 (2)0.0011 (13)0.0085 (12)0.0023 (14)
F10.1162 (16)0.0737 (12)0.0682 (14)0.0116 (11)0.0420 (12)0.0015 (10)
N10.0532 (14)0.0494 (13)0.0564 (16)0.0016 (10)0.0150 (11)0.0027 (11)
O10.0832 (15)0.0652 (13)0.0558 (15)0.0141 (11)0.0198 (11)0.0101 (10)
O20.0804 (15)0.0660 (13)0.0549 (15)0.0158 (10)0.0165 (12)0.0040 (11)
Geometric parameters (Å, º) top
C1—C21.375 (4)C8—C131.400 (4)
C1—C61.396 (4)C8—N11.413 (4)
C1—H10.9300C9—C101.372 (4)
C2—C31.369 (4)C9—H90.9300
C2—H20.9300C10—C111.402 (4)
C3—C41.360 (4)C10—H100.9300
C3—F11.361 (4)C11—C121.396 (4)
C4—C51.383 (4)C11—C141.460 (4)
C4—H40.9300C12—C131.363 (4)
C5—C61.395 (4)C12—H120.9300
C5—H50.9300C13—H130.9300
C6—C71.460 (4)C14—O11.275 (4)
C7—N11.272 (3)C14—O21.294 (3)
C7—H70.9300O2—H0.845 (10)
C8—C91.392 (4)
C2—C1—C6120.6 (3)C9—C8—N1118.5 (2)
C2—C1—H1119.7C13—C8—N1123.0 (2)
C6—C1—H1119.7C10—C9—C8121.0 (3)
C3—C2—C1118.0 (3)C10—C9—H9119.5
C3—C2—H2121.0C8—C9—H9119.5
C1—C2—H2121.0C9—C10—C11120.7 (3)
C4—C3—F1118.0 (3)C9—C10—H10119.7
C4—C3—C2124.1 (3)C11—C10—H10119.7
F1—C3—C2117.9 (3)C12—C11—C10118.0 (3)
C3—C4—C5117.5 (3)C12—C11—C14121.0 (2)
C3—C4—H4121.2C10—C11—C14121.0 (2)
C5—C4—H4121.2C13—C12—C11121.3 (3)
C4—C5—C6120.9 (3)C13—C12—H12119.4
C4—C5—H5119.5C11—C12—H12119.4
C6—C5—H5119.5C12—C13—C8120.7 (3)
C5—C6—C1118.8 (3)C12—C13—H13119.6
C5—C6—C7119.9 (2)C8—C13—H13119.6
C1—C6—C7121.3 (2)O1—C14—O2120.6 (3)
N1—C7—C6122.9 (2)O1—C14—C11120.8 (2)
N1—C7—H7118.5O2—C14—C11118.7 (3)
C6—C7—H7118.5C7—N1—C8119.7 (2)
C9—C8—C13118.3 (3)C14—O2—H114 (3)
C6—C1—C2—C31.6 (4)C9—C10—C11—C120.8 (4)
C1—C2—C3—C41.4 (4)C9—C10—C11—C14178.6 (2)
C1—C2—C3—F1179.0 (2)C10—C11—C12—C130.4 (4)
F1—C3—C4—C5179.2 (2)C14—C11—C12—C13179.0 (3)
C2—C3—C4—C50.3 (4)C11—C12—C13—C80.5 (4)
C3—C4—C5—C61.9 (4)C9—C8—C13—C121.0 (4)
C4—C5—C6—C11.8 (4)N1—C8—C13—C12174.3 (2)
C4—C5—C6—C7176.2 (2)C12—C11—C14—O14.7 (4)
C2—C1—C6—C50.0 (4)C10—C11—C14—O1175.9 (2)
C2—C1—C6—C7178.0 (2)C12—C11—C14—O2175.7 (2)
C5—C6—C7—N1162.4 (3)C10—C11—C14—O23.7 (4)
C1—C6—C7—N115.6 (4)C6—C7—N1—C8176.5 (2)
C13—C8—C9—C100.6 (4)C9—C8—N1—C7143.9 (3)
N1—C8—C9—C10174.9 (2)C13—C8—N1—C740.8 (4)
C8—C9—C10—C110.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H···O1i0.85 (1)1.79 (2)2.601 (3)159 (4)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC14H10FNO2
Mr243.24
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)12.2787 (5), 5.6264 (2), 17.2874 (8)
β (°) 105.833 (2)
V3)1148.99 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.23 × 0.2 × 0.15
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9975, 2002, 1226
Rint0.186
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.191, 1.04
No. of reflections2002
No. of parameters166
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.21

Computer programs: COLLECT (Nonius, 1998), XSCANS (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H···O1i0.845 (10)1.793 (18)2.601 (3)159 (4)
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

The authors thank the Programa de Mejoramiento del Profesorado (PROMEP; grant No. 103.5/11/4330) and the Consejo Nacional de Ciencia y Tecnología (CONACYT; grant No. 82605) for financial support.

References

First citationBorisova, N. E., Reshetova, M. D. & Ustynyuk, Y. A. (2007). Chem. Rev. 107, 46–79.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2000). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationInnocenzi, P. & Lebeau, B. (2005). J. Mater. Chem. 15, 3821–3831.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMuñoz-Flores, B. M., Santillan, R., Rodríguez, M., Méndez, J. M., Romero, M., Farfán, N., Lacroix, P. G., Nakatani, K., Ramos-Ortíz, G. & Maldonado, J. L. (2008). J. Organomet. Chem. 693, 1321–1334.  Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationSchiff, H. (1864). Annalen, 131, 118–119.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds