organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Isonicotinamide–2-naphthoic acid (1/1)

aMolecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, PO Wits 2050, South Africa
*Correspondence e-mail: andreas.lemmerer@wits.ac.za

(Received 4 October 2011; accepted 22 November 2011; online 25 November 2011)

In the title 1:1 adduct, C6H6N2O·C11H8O2, the amide group is slightly twisted out of the plane of the aromatic ring, with a C—C—C—N torsion angle of 25.11 (19)°, whereas the carb­oxy­lic acid group is approximately coplanar with the bicylic ring system, with a C—C—C—O torsion angle of 10.9 (2)°. The amide groups from two isonicotinamide mol­ecules form a dimer via N—H⋯O hydrogen bonds. In addition, the 2-naphthanoic acid mol­ecule is hydrogen bonded to the pyridine unit of an isonicotinamide mol­ecule via an O—H⋯N hydrogen bond. This gives rise to a centrosymmetric four-mol­ecule chain, which is cross-linked by further N—H⋯O hydrogen bonds from the amide group.

Related literature

For related compounds, see: Lemmerer et al. (2008[Lemmerer, A., Báthori, N. B. & Bourne, S. A. (2008). Acta Cryst. B64, 780-790.]); Aakeröy et al. (2002[Aakeröy, C. B., Beatty, A. M. & Helfrich, B. A. (2002). J. Am. Chem. Soc. 124, 14425-14432.]); Báthori et al. (2010[Báthori, N. B., Lemmerer, A., Venter, G. A., Bourne, S. A. & Caira, M. R. (2010). Cryst. Growth Des. 11, 75-87.]). The carb­oxy­lic acid–pyridine hydrogen bond is an often used supra­molecular synthon, see: Aakeröy & Beatty (2001[Aakeröy, C. B. & Beatty, A. M. (2001). Aust. J. Chem. 54, 409-421.]).

[Scheme 1]

Experimental

Crystal data
  • C6H6N2O·C11H8O2

  • Mr = 294.3

  • Monoclinic, P 21 /c

  • a = 8.6665 (17) Å

  • b = 23.752 (5) Å

  • c = 7.3793 (15) Å

  • β = 110.33 (3)°

  • V = 1424.4 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 173 K

  • 0.48 × 0.45 × 0.08 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: integration (XPREP; Bruker, 2007[Bruker (2007). APEX2, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.956, Tmax = 0.993

  • 7507 measured reflections

  • 2605 independent reflections

  • 2130 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.119

  • S = 1.01

  • 2605 reflections

  • 211 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1S⋯O1i 0.904 (19) 2.012 (19) 2.914 (2) 176 (2)
N1—H1A⋯O3ii 0.862 (18) 2.123 (18) 2.9755 (17) 170 (2)
O2—H2⋯N2 1.05 (3) 1.56 (3) 2.5999 (18) 170 (2)
Symmetry codes: (i) -x+3, -y+1, -z+2; (ii) x+1, y, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). APEX2, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2007[Bruker (2007). APEX2, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

This co-crystal is part of a larger crystal engineering project involving carboxylic acids and the anti-tuberculosis agent isoniazid. In this project, the pyridine N atom of either nicotinamide, isonicotinamide or isoniazid acts as a hydrogen bond acceptor for carboxylic acid group protons. The carboxylic acid-pyridine hydrogen bond is an often used supramolecular synthon (Aakeröy et al., 2001; Aakeröy et al., 2002; Lemmerer et al., 2008). The co-crystal former ability of isonicotinamide and nicotinamide was investigated by performing density functional theory calculations in a related study (Báthori et al., 2010).

The asymmetric unit of (I) consists of one molecule of isonicotinamide and one molecule of 2-naphthanoic acid, sitting on general positions (Fig. 1). The asymmetric unit is connected by a O—H···N hydrogen bond. The combination of O—H···N and N—H···O hydrogen bonds gives rise to centrosymmetric 4-molecule chains, which are cross-linked by the N—H···O hydrogen bonds (Fig. 2).

Related literature top

For related compounds, see: Lemmerer et al. (2008); Aakeröy et al. (2002); Báthori et al. (2010). The carboxylic acid–pyridine hydrogen bond is an often used supramolecular synthon, see: Aakeröy & Beatty (2001).

Experimental top

The compound was prepared by dissolving equimolar amounts of isonicotinamide (0.218 g) and 2-naphthanoic acid (0.308 g) in distilled methanol (15 ml). The mixture was stirred at room temperature under a standard atmosphere for 24 h. Colourless crystals were grown by slow evaporation at ambient conditions from the methanol solvent over a few days.

Refinement top

The C-bound H atoms were geometrically placed (aromatic C—H bond lengths of 0.95 Å), and refined as riding with Uiso(H) = 1.2Ueq(C). The N-bound and O-bound H atoms were located in the difference Fourier map and coordinates refined freely as well as their isotropic displacement parameters.

Structure description top

This co-crystal is part of a larger crystal engineering project involving carboxylic acids and the anti-tuberculosis agent isoniazid. In this project, the pyridine N atom of either nicotinamide, isonicotinamide or isoniazid acts as a hydrogen bond acceptor for carboxylic acid group protons. The carboxylic acid-pyridine hydrogen bond is an often used supramolecular synthon (Aakeröy et al., 2001; Aakeröy et al., 2002; Lemmerer et al., 2008). The co-crystal former ability of isonicotinamide and nicotinamide was investigated by performing density functional theory calculations in a related study (Báthori et al., 2010).

The asymmetric unit of (I) consists of one molecule of isonicotinamide and one molecule of 2-naphthanoic acid, sitting on general positions (Fig. 1). The asymmetric unit is connected by a O—H···N hydrogen bond. The combination of O—H···N and N—H···O hydrogen bonds gives rise to centrosymmetric 4-molecule chains, which are cross-linked by the N—H···O hydrogen bonds (Fig. 2).

For related compounds, see: Lemmerer et al. (2008); Aakeröy et al. (2002); Báthori et al. (2010). The carboxylic acid–pyridine hydrogen bond is an often used supramolecular synthon, see: Aakeröy & Beatty (2001).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus and XPREP (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the co-crystal showing the atomic numbering scheme. Displacement ellipsoids are shown at the 50% probability level.
[Figure 2] Fig. 2. Hydrogen bonding diagram of the co-crystal. Intermolecular N—H···O and O—H···O hydrogen bonds are shown as dashed red lines forming centrosymmetric 4-molecule chains.
Isonicotinamide–2-naphthoic acid (1/1) top
Crystal data top
C6H6N2O·C11H8O2F(000) = 616
Mr = 294.3Dx = 1.372 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5555 reflections
a = 8.6665 (17) Åθ = 1–27.5°
b = 23.752 (5) ŵ = 0.10 mm1
c = 7.3793 (15) ÅT = 173 K
β = 110.33 (3)°Block, colourless
V = 1424.4 (5) Å30.48 × 0.45 × 0.08 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2130 reflections with I > 2σ(I)
ω scansRint = 0.055
Absorption correction: integration
(XPREP; Bruker, 2007)
θmax = 25.5°, θmin = 3.0°
Tmin = 0.956, Tmax = 0.993h = 1010
7507 measured reflectionsk = 2827
2605 independent reflectionsl = 87
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.041 w = 1/[σ2(Fo2) + (0.0731P)2 + 0.1531P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.119(Δ/σ)max < 0.001
S = 1.01Δρmax = 0.21 e Å3
2605 reflectionsΔρmin = 0.20 e Å3
211 parameters
Crystal data top
C6H6N2O·C11H8O2V = 1424.4 (5) Å3
Mr = 294.3Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.6665 (17) ŵ = 0.10 mm1
b = 23.752 (5) ÅT = 173 K
c = 7.3793 (15) Å0.48 × 0.45 × 0.08 mm
β = 110.33 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2605 independent reflections
Absorption correction: integration
(XPREP; Bruker, 2007)
2130 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 0.993Rint = 0.055
7507 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.21 e Å3
2605 reflectionsΔρmin = 0.20 e Å3
211 parameters
Special details top

Experimental. Numerical integration absorption corrections based on indexed crystal faces were applied using the XPREP routine (Bruker, 2004)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.10423 (17)0.44738 (6)0.71685 (18)0.0248 (3)
C21.08405 (18)0.40155 (6)0.59333 (19)0.0281 (3)
H2A1.17690.38290.58090.034*
C30.92709 (18)0.38371 (7)0.48958 (19)0.0325 (4)
H30.91430.35180.40790.039*
C40.81087 (18)0.45238 (7)0.6185 (2)0.0329 (4)
H40.71570.47030.6270.039*
C50.96357 (17)0.47215 (6)0.7311 (2)0.0292 (3)
H50.97270.50250.81790.035*
C61.26979 (17)0.47009 (6)0.83740 (19)0.0271 (3)
N11.39399 (17)0.46082 (6)0.77495 (19)0.0324 (3)
H1S1.496 (2)0.4727 (7)0.846 (2)0.036 (4)*
H1A1.375 (2)0.4460 (8)0.663 (3)0.042 (5)*
N20.79178 (15)0.40878 (6)0.49762 (16)0.0335 (3)
O11.28451 (13)0.49617 (5)0.98726 (14)0.0371 (3)
C70.23811 (17)0.35294 (6)0.12753 (18)0.0257 (3)
C80.25613 (18)0.30807 (6)0.00900 (19)0.0301 (3)
H80.3630.29620.01720.036*
C90.12123 (18)0.28196 (6)0.11624 (19)0.0313 (4)
H90.13540.25170.19310.038*
C100.03974 (17)0.29913 (6)0.13394 (19)0.0267 (3)
C110.18280 (19)0.27324 (7)0.2630 (2)0.0350 (4)
H110.17220.24260.34070.042*
C120.33562 (19)0.29162 (7)0.2774 (2)0.0382 (4)
H120.43010.27370.36520.046*
C130.35493 (19)0.33669 (7)0.1639 (2)0.0355 (4)
H130.46210.34890.17450.043*
C140.21997 (17)0.36309 (6)0.0382 (2)0.0289 (3)
H140.23410.39380.03710.035*
C150.05903 (16)0.34512 (6)0.01926 (18)0.0243 (3)
C160.08343 (17)0.37060 (6)0.11132 (18)0.0246 (3)
H160.07170.40080.190.03*
C170.38436 (18)0.38080 (6)0.2707 (2)0.0302 (3)
O20.52342 (13)0.36681 (6)0.25195 (16)0.0444 (3)
H20.624 (3)0.3858 (10)0.359 (3)0.085 (7)*
O30.37325 (13)0.41309 (5)0.39438 (14)0.0404 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0286 (8)0.0233 (7)0.0214 (6)0.0021 (6)0.0072 (6)0.0041 (5)
C20.0270 (8)0.0301 (8)0.0269 (7)0.0037 (6)0.0091 (6)0.0028 (6)
C30.0341 (9)0.0365 (9)0.0271 (7)0.0082 (7)0.0109 (6)0.0049 (6)
C40.0282 (8)0.0393 (9)0.0319 (8)0.0055 (7)0.0112 (6)0.0092 (7)
C50.0339 (8)0.0251 (8)0.0288 (7)0.0010 (6)0.0112 (6)0.0022 (6)
C60.0298 (8)0.0236 (8)0.0252 (7)0.0030 (6)0.0061 (6)0.0005 (6)
N10.0279 (7)0.0398 (8)0.0278 (6)0.0076 (6)0.0076 (5)0.0106 (6)
N20.0276 (7)0.0444 (9)0.0267 (6)0.0059 (6)0.0069 (5)0.0025 (6)
O10.0361 (6)0.0413 (7)0.0340 (6)0.0097 (5)0.0121 (5)0.0167 (5)
C70.0271 (8)0.0270 (8)0.0230 (6)0.0014 (6)0.0087 (6)0.0021 (6)
C80.0286 (8)0.0304 (8)0.0317 (7)0.0044 (6)0.0112 (6)0.0011 (6)
C90.0379 (9)0.0264 (8)0.0305 (7)0.0026 (6)0.0130 (7)0.0056 (6)
C100.0327 (8)0.0213 (7)0.0258 (7)0.0020 (6)0.0098 (6)0.0008 (6)
C110.0413 (9)0.0280 (8)0.0334 (8)0.0074 (7)0.0099 (7)0.0056 (6)
C120.0316 (9)0.0385 (10)0.0381 (8)0.0129 (7)0.0038 (7)0.0021 (7)
C130.0259 (8)0.0379 (9)0.0411 (8)0.0003 (7)0.0098 (6)0.0079 (7)
C140.0301 (8)0.0261 (8)0.0312 (7)0.0021 (6)0.0115 (6)0.0036 (6)
C150.0281 (8)0.0207 (7)0.0244 (6)0.0009 (6)0.0095 (6)0.0034 (5)
C160.0300 (8)0.0206 (7)0.0233 (7)0.0008 (6)0.0093 (6)0.0006 (5)
C170.0295 (8)0.0356 (9)0.0249 (7)0.0026 (7)0.0088 (6)0.0009 (6)
O20.0242 (6)0.0654 (9)0.0411 (6)0.0041 (5)0.0081 (5)0.0160 (6)
O30.0369 (7)0.0517 (8)0.0316 (6)0.0080 (5)0.0107 (5)0.0149 (5)
Geometric parameters (Å, º) top
C1—C51.390 (2)C8—H80.95
C1—C21.3912 (19)C9—C101.415 (2)
C1—C61.501 (2)C9—H90.95
C2—C31.376 (2)C10—C111.415 (2)
C2—H2A0.95C10—C151.4269 (19)
C3—N21.335 (2)C11—C121.363 (2)
C3—H30.95C11—H110.95
C4—N21.339 (2)C12—C131.405 (2)
C4—C51.378 (2)C12—H120.95
C4—H40.95C13—C141.366 (2)
C5—H50.95C13—H130.95
C6—O11.2349 (16)C14—C151.4182 (19)
C6—N11.3282 (19)C14—H140.95
N1—H1S0.904 (19)C15—C161.412 (2)
N1—H1A0.862 (18)C16—H160.95
C7—C161.370 (2)C17—O31.2215 (17)
C7—C81.421 (2)C17—O21.3029 (18)
C7—C171.493 (2)O2—H21.05 (3)
C8—C91.362 (2)
C5—C1—C2117.82 (13)C8—C9—C10121.18 (13)
C5—C1—C6119.06 (13)C8—C9—H9119.4
C2—C1—C6123.10 (13)C10—C9—H9119.4
C3—C2—C1118.72 (14)C11—C10—C9122.83 (14)
C3—C2—H2A120.6C11—C10—C15118.43 (13)
C1—C2—H2A120.6C9—C10—C15118.73 (13)
N2—C3—C2123.51 (14)C12—C11—C10120.93 (14)
N2—C3—H3118.2C12—C11—H11119.5
C2—C3—H3118.2C10—C11—H11119.5
N2—C4—C5122.39 (14)C11—C12—C13120.75 (14)
N2—C4—H4118.8C11—C12—H12119.6
C5—C4—H4118.8C13—C12—H12119.6
C4—C5—C1119.62 (14)C14—C13—C12120.20 (14)
C4—C5—H5120.2C14—C13—H13119.9
C1—C5—H5120.2C12—C13—H13119.9
O1—C6—N1123.36 (14)C13—C14—C15120.63 (14)
O1—C6—C1119.40 (13)C13—C14—H14119.7
N1—C6—C1117.24 (12)C15—C14—H14119.7
C6—N1—H1S119.8 (10)C16—C15—C14122.37 (13)
C6—N1—H1A119.9 (12)C16—C15—C10118.57 (12)
H1S—N1—H1A120.1 (15)C14—C15—C10119.06 (13)
C3—N2—C4117.87 (13)C7—C16—C15121.72 (13)
C16—C7—C8119.30 (13)C7—C16—H16119.1
C16—C7—C17119.37 (13)C15—C16—H16119.1
C8—C7—C17121.32 (13)O3—C17—O2123.73 (14)
C9—C8—C7120.47 (13)O3—C17—C7122.62 (13)
C9—C8—H8119.8O2—C17—C7113.65 (13)
C7—C8—H8119.8C17—O2—H2111.5 (13)
C5—C1—C2—C31.1 (2)C15—C10—C11—C120.2 (2)
C6—C1—C2—C3179.67 (12)C10—C11—C12—C130.2 (2)
C1—C2—C3—N21.5 (2)C11—C12—C13—C140.6 (2)
N2—C4—C5—C11.7 (2)C12—C13—C14—C150.6 (2)
C2—C1—C5—C42.6 (2)C13—C14—C15—C16178.83 (12)
C6—C1—C5—C4178.77 (12)C13—C14—C15—C100.2 (2)
C5—C1—C6—O123.6 (2)C11—C10—C15—C16179.24 (12)
C2—C1—C6—O1155.01 (14)C9—C10—C15—C161.78 (19)
C5—C1—C6—N1156.32 (13)C11—C10—C15—C140.13 (19)
C2—C1—C6—N125.11 (19)C9—C10—C15—C14179.11 (12)
C2—C3—N2—C42.4 (2)C8—C7—C16—C150.5 (2)
C5—C4—N2—C30.8 (2)C17—C7—C16—C15178.93 (11)
C16—C7—C8—C91.5 (2)C14—C15—C16—C7179.74 (12)
C17—C7—C8—C9177.85 (13)C10—C15—C16—C71.2 (2)
C7—C8—C9—C100.9 (2)C16—C7—C17—O311.1 (2)
C8—C9—C10—C11179.69 (13)C8—C7—C17—O3168.30 (14)
C8—C9—C10—C150.8 (2)C16—C7—C17—O2169.70 (13)
C9—C10—C11—C12179.09 (14)C8—C7—C17—O210.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1S···O1i0.904 (19)2.012 (19)2.914 (2)176 (2)
N1—H1A···O3ii0.862 (18)2.123 (18)2.9755 (17)170 (2)
O2—H2···N21.05 (3)1.56 (3)2.5999 (18)170 (2)
Symmetry codes: (i) x+3, y+1, z+2; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC6H6N2O·C11H8O2
Mr294.3
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)8.6665 (17), 23.752 (5), 7.3793 (15)
β (°) 110.33 (3)
V3)1424.4 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.48 × 0.45 × 0.08
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionIntegration
(XPREP; Bruker, 2007)
Tmin, Tmax0.956, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
7507, 2605, 2130
Rint0.055
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.119, 1.01
No. of reflections2605
No. of parameters211
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.20

Computer programs: APEX2 (Bruker, 2007), SAINT-Plus (Bruker, 2007), SAINT-Plus and XPREP (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1999), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1S···O1i0.904 (19)2.012 (19)2.914 (2)176 (2)
N1—H1A···O3ii0.862 (18)2.123 (18)2.9755 (17)170 (2)
O2—H2···N21.05 (3)1.56 (3)2.5999 (18)170 (2)
Symmetry codes: (i) x+3, y+1, z+2; (ii) x+1, y, z.
 

Acknowledgements

This work was supported by the University of the Witwaters­rand, which is thanked for providing the infrastructure required to do this work.

References

First citationAakeröy, C. B. & Beatty, A. M. (2001). Aust. J. Chem. 54, 409–421.  Web of Science CrossRef CAS Google Scholar
First citationAakeröy, C. B., Beatty, A. M. & Helfrich, B. A. (2002). J. Am. Chem. Soc. 124, 14425–14432.  Web of Science PubMed Google Scholar
First citationBáthori, N. B., Lemmerer, A., Venter, G. A., Bourne, S. A. & Caira, M. R. (2010). Cryst. Growth Des. 11, 75–87.  Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLemmerer, A., Báthori, N. B. & Bourne, S. A. (2008). Acta Cryst. B64, 780–790.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds