inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

KNb1.75V0.25PS10

aDivision of Energy Systems Research and Department of Chemistry, Ajou University, Suwon 443-749, Republic of Korea
*Correspondence e-mail: hsyun@ajou.ac.kr

(Received 26 January 2011; accepted 6 February 2011; online 12 February 2011)

The title compound, potassium diniobium vanadium phospho­rus deca­sulfide, KNb1.75V0.25PS10, was obtained by reaction of the elements with a eutectic mixture of KCl/LiCl. It is isostructural with the quaternary KNb2PS10, but the Nb sites are occupied by statistically disordered Nb (87.5%) and V (12.5%) atoms. The structure is composed of anionic 1[M2PS10] chains (M = Nb/V) separated from each other by K+ ions. The chain is composed of [MS8] distorted bicapped trigonal prisms and [PS4] tetra­hedra. There are no inter­chain bonding inter­actions. The crystal used for the X-ray analysis was a racemic twin.

Related literature

For related ternary compounds, see: Brec et al. (1983a[Brec, R., Grenouilleau, P., Evain, M. & Rouxel, J. (1983a). Rev. Chim. Mineral. 20, 295-304.],b[Brec, R., Ouvrard, G., Evain, M., Grenouilleau, P. & Rouxel, J. (1983b). J. Solid State Chem. 47, 174-184.]). For related quaternary compounds, see: Goh et al. (2002[Goh, E., Kim, S. & Jung, D. (2002). J. Solid State Chem. 168, 119-125.]); Do & Yun (1996[Do, J. & Yun, H. (1996). Inorg. Chem. 35, 3729-3730.]); Kim & Yun (2002[Kim, C.-K. & Yun, H.-S. (2002). Acta Cryst. C58, i53-i54.]); Kwak et al. (2007[Kwak, J., Kim, C., Yun, H. & Do, J. (2007). Bull. Kor. Chem. Soc. 28, 701-704.]); Bang et al. (2008[Bang, H., Kim, Y., Kim, S. & Kim, S. (2008). J. Solid State Chem. 181, 1978-1802.]); Do & Yun (2009[Do, J. & Yun, H. (2009). Acta Cryst. E65, i56-i57.]). For related penta­nary compounds, see: Kwak & Yun (2008[Kwak, J. & Yun, H. (2008). Bull. Kor. Chem. Soc. 29, 273-275.]); Dong et al. (2005a[Dong, Y., Kim, S., Yun, H. & Lim, H. (2005a). Bull. Kor. Chem. Soc. 26, 309-311.],b[Dong, Y., Kim, S. & Yun, H. (2005b). Acta Cryst. C61, i25-i26.]); Park & Yun (2010[Park, S. & Yun, H. (2010). Acta Cryst. E66, i51-i52.]). For typical Nb4+—Nb4+ bond lengths, see: Angenault et al. (2000[Angenault, J., Cieren, X. & Quarton, M. (2000). J. Solid State Chem. 153, 55-65.])

Experimental

Crystal data
  • KNb1.75V0.25PS10

  • Mr = 2264.39

  • Orthorhombic, P c a 21

  • a = 12.9696 (3) Å

  • b = 7.5229 (2) Å

  • c = 13.3248 (4) Å

  • V = 1300.09 (6) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 3.73 mm−1

  • T = 290 K

  • 0.36 × 0.06 × 0.06 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.649, Tmax = 1.000

  • 11855 measured reflections

  • 2970 independent reflections

  • 2859 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.019

  • wR(F2) = 0.042

  • S = 1.07

  • 2970 reflections

  • 130 parameters

  • 1 restraint

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.28 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1417 Friedel pairs

  • Flack parameter: 0.47 (4)

Data collection: RAPID-AUTO (Rigaku, 2006[Rigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: locally modified version of ORTEP (Johnson, 1965[Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: STRUCTURE TIDY (Gelato & Parthé, 1987[Gelato, L. M. & Parthé, E. (1987). J. Appl. Cryst. 20, 139-143.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Ternary group 5 metal thiophosphates have been reported to have mostly low-dimensional structures. Especially the Nb2PS10 phase has a two-dimensional layered structure (Brec et al., 1983a) and V2PS10 adopts a one-dimensional chain structure (Brec et al., 1983b). Due to empty spaces and the orbitals which can accommodate electrons, they have been of potential importance as cathode materials for secondary batteries and a number of quaternary alkali metal Nb thiophosphates, ANb2PS10 (A=monovalent metals) have been investigated. Among them are NaNb2PS10 (Goh et al., 2002), KNb2PS10 (Do & Yun, 1996), RbNb2PS10 (Kim & Yun, 2002), CsNb2PS10 (Kwak et al., 2007), TlNb2PS10 (Bang et al., 2008), Ag0.88Nb2PS10 (Do & Yun, 2009), K0.34Cu0.5Nb2PS10 (Kwak & Yun, 2008), K0.5Ag0.5Nb2PS10 (Dong et al., 2005a), Rb0.38Ag0.5Nb2PS10 (Dong et al., 2005b), and Cs0.5Ag0.5Nb2PS10 (Park & Yun, 2010). It is interesting that no V analogue of these phases has been discovered yet. As a result of efforts to find new phases in this family, we report the synthesis and characterization of a new mixed-metal quintenary thiophosphate, KNb2 - xVxPS10 (x=0.25).

The structure of KNb2 - xVxPS10 is isostructural with the quaternary KNb2PS10 and detailed description of the structure is given previously (Do & Yun, 1996). The title compound is made up of the bicapped trigonal biprismatic [M2S12] unit (M=Nb/V) and the tetrahedral [PS4] group. The M sites are occupied by the statistically disordered Nb(~87.5%) and V(~12.5%) atoms. The bicapped biprismatic [M2S12] units and its neighboring tetrahedral [PS4] groups are given in Figure 1. These [M2S12] units are linked together to form the one-dimensional chains by sharing the S22- prism edge. The one-dimensional chain composed of M, P, and S extends along [100] and can be described as 1[M2PS10-1].

The M atoms associate in pairs with M—M interactions alternating in the sequence of one short (2.8851 (3) Å) and one long (3.7590 (3) Å) distances. The short distance is typical of Nb4+—Nb4+ bonding interactions (Angenault et al., 2000). There are no interchain bonding interactions except the van der Waals forces and the K+ ions in this van der Waals gap stabilize the structure through the electrostatic interactions (Figure 2). Finally, the classical charge balance of this phase can be represented by [K+][M4+]2[PS43-][S22-]3 and this is consistent with the highly resistive and diamagnetic nature of the compound.

Related literature top

For related ternary compounds, see: Brec et al. (1983a,b). For related quaternary compounds, see: Goh et al. (2002); Do & Yun (1996); Kim & Yun (2002); Kwak et al. (2007); Bang et al. (2008); Do & Yun (2009). For related pentanary compounds, see: Kwak & Yun (2008); Dong et al. (2005a,b); Park & Yun (2010). For typical Nb4+—Nb4+ bond distances, see: Angenault et al. (2000)

Experimental top

The compound KNb2 - xVxPS10 was prepared by the reaction of the elemental Nb, V, P, and S with the use of the reactive alkali metal halides. A combination of the pure elements, Nb powder (CERAC 99.9%), V powder (CERAC 99.5%), P powder(CERAC99.95%), and S powder (Aldrich 99.999%) were mixed in a fused silica tube in a molar ratio of Nb: V: P: S = 1:1:1:5 with the eutectic mixture of KCl/LiCl. The mass ratio of the reactants and the halides flux was 2:1. The tube was evacuated to 0.133 Pa, sealed and heated gradually (50 K/h) to 650 K, where it was kept for 72 h. The tube was cooled to 423 K at 3 K/h and then was quenched to room temperature. The excess halides were removed with distilled water and black needle shaped crystals were obtained. The crystals are stable in air and water. A microprobe analysis of the crystals was made with an EDAX equipped scanning electron microscope (Jeol JSM-6700 F). Analysis of these crystals showed only the presence of K, Nb, V, P, and S. A quantitative analysis performed with standards gave the ratio of Nb: V = 87: 13, which corresponds to KNb1.74V0.26PS10.

Refinement top

The refinement of the model with occupational disorder on the M site caused significant decrease of the R-factor (wR2 = 0.042) in comparison if the full occupation by either metal had been considered (wR2 > 0.05). Also the displacement parameters in the disordered model became plausible. The disordered atoms were supposed to have the same displacement parameters. The nonstoichiometry of the K site was checked by refining the occupancy of K while those of the other atoms were fixed. With the nonstoichiometric model, the parameter remained the same. The large anisotropic displacement parameters for alkali metals are also found in the related compounds such as KNb2PS10 (Do & Yun, 1996). The highest residual electron density is 0.86 Å from the M2 site and the deepest hole is 0.85 Å from the M1 site.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2006); cell refinement: RAPID-AUTO (Rigaku, 2006); data reduction: RAPID-AUTO (Rigaku, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: locally modified version of ORTEP (Johnson, 1965); software used to prepare material for publication: STRUCTURE TIDY (Gelato & Parthé, 1987) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of the bicapped trigonal biprismatic [M2S12] unit (M=V/Nb) and its neighboring tetrahedral [PS4] groups. Open circles are S atoms, filled circle are Nb atoms, dark and pale gray circles are P and K atoms, respectively. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (i) 1 - x, -y, -1/2 + z; (ii) 0.5 - x, -y, -1/2 + z; (ii) -1/2 + x, -y, z]
[Figure 2] Fig. 2. View of the KNb2 - xVxPS10 down the b axis showing the one-dimensional nature of the compound. Atoms are as marked in Fig. 1.
potassium diniobium vanadium phosphorus decasulfide top
Crystal data top
KNb1.75V0.25PS10F(000) = 1086
Mr = 2264.39Dx = 2.892 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 11171 reflections
a = 12.9696 (3) Åθ = 3.1–27.5°
b = 7.5229 (2) ŵ = 3.73 mm1
c = 13.3248 (4) ÅT = 290 K
V = 1300.09 (6) Å3Needle, black
Z = 10.36 × 0.06 × 0.06 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2859 reflections with I > 2σ(I)
ω scansRint = 0.028
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
θmax = 27.5°, θmin = 3.1°
Tmin = 0.649, Tmax = 1.000h = 1616
11855 measured reflectionsk = 99
2970 independent reflectionsl = 1717
Refinement top
Refinement on F21 restraint
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0125P)2 + 1.1461P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.019(Δ/σ)max = 0.002
wR(F2) = 0.042Δρmax = 0.49 e Å3
S = 1.07Δρmin = 0.28 e Å3
2970 reflectionsAbsolute structure: Flack (1983), 1417 Friedel pairs
130 parametersAbsolute structure parameter: 0.47 (4)
Crystal data top
KNb1.75V0.25PS10V = 1300.09 (6) Å3
Mr = 2264.39Z = 1
Orthorhombic, Pca21Mo Kα radiation
a = 12.9696 (3) ŵ = 3.73 mm1
b = 7.5229 (2) ÅT = 290 K
c = 13.3248 (4) Å0.36 × 0.06 × 0.06 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2970 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2859 reflections with I > 2σ(I)
Tmin = 0.649, Tmax = 1.000Rint = 0.028
11855 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0191 restraint
wR(F2) = 0.042Δρmax = 0.49 e Å3
S = 1.07Δρmin = 0.28 e Å3
2970 reflectionsAbsolute structure: Flack (1983), 1417 Friedel pairs
130 parametersAbsolute structure parameter: 0.47 (4)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
K10.38307 (10)0.50472 (16)0.30096 (10)0.0642 (3)
Nb10.023833 (17)0.05293 (3)0.03457 (3)0.01512 (9)0.861 (4)
V10.023833 (17)0.05293 (3)0.03457 (3)0.01512 (9)0.139 (4)
Nb20.313453 (17)0.07166 (3)0.03513 (3)0.01521 (10)0.889 (4)
V20.313453 (17)0.07166 (3)0.03513 (3)0.01521 (10)0.111 (4)
P10.15973 (6)0.40030 (12)0.11232 (7)0.02169 (18)
S10.03047 (5)0.39473 (11)0.02326 (8)0.0258 (2)
S20.05595 (7)0.15141 (14)0.40819 (7)0.0255 (2)
S30.15066 (9)0.58306 (14)0.21803 (9)0.0408 (3)
S40.16690 (6)0.13978 (11)0.16577 (6)0.01913 (18)
S50.29187 (5)0.41184 (10)0.02883 (11)0.03005 (19)
S60.33126 (6)0.05595 (12)0.40601 (7)0.02107 (19)
S70.44830 (7)0.13335 (13)0.16897 (6)0.02327 (19)
S80.60124 (7)0.10543 (14)0.39868 (7)0.0257 (2)
S90.60983 (7)0.11862 (12)0.66562 (6)0.02271 (19)
S100.67360 (6)0.15938 (11)0.00015 (6)0.02081 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.0831 (8)0.0470 (6)0.0625 (8)0.0035 (6)0.0317 (7)0.0031 (5)
Nb10.01049 (12)0.01887 (15)0.01601 (14)0.00123 (9)0.00013 (16)0.00103 (15)
V10.01049 (12)0.01887 (15)0.01601 (14)0.00123 (9)0.00013 (16)0.00103 (15)
Nb20.01068 (13)0.01820 (15)0.01675 (14)0.00116 (9)0.00020 (16)0.00022 (15)
V20.01068 (13)0.01820 (15)0.01675 (14)0.00116 (9)0.00020 (16)0.00022 (15)
P10.0173 (4)0.0182 (4)0.0296 (5)0.0017 (3)0.0002 (3)0.0028 (4)
S10.0170 (3)0.0225 (4)0.0380 (5)0.0025 (3)0.0034 (4)0.0057 (4)
S20.0177 (4)0.0362 (5)0.0225 (4)0.0038 (4)0.0021 (4)0.0077 (4)
S30.0463 (6)0.0299 (5)0.0462 (6)0.0077 (5)0.0039 (5)0.0184 (5)
S40.0164 (4)0.0221 (4)0.0188 (4)0.0005 (3)0.0004 (3)0.0008 (4)
S50.0178 (3)0.0214 (4)0.0510 (5)0.0009 (3)0.0070 (5)0.0067 (5)
S60.0153 (4)0.0292 (5)0.0187 (4)0.0010 (3)0.0004 (3)0.0031 (3)
S70.0203 (4)0.0279 (5)0.0216 (4)0.0006 (4)0.0003 (4)0.0050 (4)
S80.0178 (4)0.0374 (5)0.0219 (4)0.0055 (4)0.0024 (3)0.0087 (4)
S90.0200 (4)0.0274 (5)0.0208 (4)0.0013 (4)0.0012 (3)0.0034 (4)
S100.0187 (4)0.0185 (4)0.0252 (4)0.0001 (3)0.0012 (3)0.0014 (3)
Geometric parameters (Å, º) top
Nb1—S8i2.4631 (10)Nb2—S6i2.5490 (9)
Nb1—S7ii2.4760 (9)Nb2—S10ii2.5551 (8)
Nb1—S2iii2.5039 (10)Nb2—S52.5758 (8)
Nb1—S9i2.5098 (9)Nb2—S42.6279 (8)
Nb1—S6i2.5431 (9)Nb2—V1v2.8851 (3)
Nb1—S10ii2.5562 (8)Nb2—Nb1v2.8851 (3)
Nb1—S12.5772 (9)P1—S31.9718 (13)
Nb1—S42.6319 (8)P1—S52.0451 (13)
Nb1—Nb2ii2.8851 (3)P1—S12.0544 (13)
Nb1—V2ii2.8851 (3)P1—S42.0874 (13)
Nb2—S9iv2.4622 (9)S2—S8ii2.0235 (15)
Nb2—S2i2.4678 (9)S6—S10vi2.0498 (12)
Nb2—S8iv2.5110 (10)S7—S9iv2.0405 (14)
Nb2—S72.5406 (9)
S8i—Nb1—S7ii111.22 (3)S9iv—Nb2—S748.11 (3)
S8i—Nb1—S2iii48.07 (4)S2i—Nb2—S787.95 (3)
S7ii—Nb1—S2iii88.59 (3)S8iv—Nb2—S7107.57 (3)
S8i—Nb1—S9i91.43 (3)S9iv—Nb2—S6i138.35 (3)
S7ii—Nb1—S9i48.31 (3)S2i—Nb2—S6i93.10 (3)
S2iii—Nb1—S9i107.66 (3)S8iv—Nb2—S6i79.11 (3)
S8i—Nb1—S6i89.43 (3)S7—Nb2—S6i171.57 (3)
S7ii—Nb1—S6i141.69 (3)S9iv—Nb2—S10ii91.16 (3)
S2iii—Nb1—S6i81.83 (3)S2i—Nb2—S10ii121.84 (3)
S9i—Nb1—S6i167.80 (3)S8iv—Nb2—S10ii79.62 (3)
S8i—Nb1—S10ii117.95 (3)S7—Nb2—S10ii137.82 (3)
S7ii—Nb1—S10ii94.40 (3)S6i—Nb2—S10ii47.36 (3)
S2iii—Nb1—S10ii79.03 (3)S9iv—Nb2—S5130.13 (4)
S9i—Nb1—S10ii140.60 (3)S2i—Nb2—S579.09 (3)
S6i—Nb1—S10ii47.40 (3)S8iv—Nb2—S5123.47 (4)
S8i—Nb1—S179.57 (3)S7—Nb2—S585.19 (3)
S7ii—Nb1—S1128.33 (3)S6i—Nb2—S586.79 (3)
S2iii—Nb1—S1125.94 (3)S10ii—Nb2—S5126.35 (3)
S9i—Nb1—S182.37 (3)S9iv—Nb2—S486.44 (3)
S6i—Nb1—S185.81 (3)S2i—Nb2—S4154.57 (3)
S10ii—Nb1—S1125.98 (3)S8iv—Nb2—S4154.40 (3)
S8i—Nb1—S4155.91 (3)S7—Nb2—S489.85 (3)
S7ii—Nb1—S486.50 (3)S6i—Nb2—S485.62 (3)
S2iii—Nb1—S4152.94 (3)S10ii—Nb2—S474.93 (3)
S9i—Nb1—S488.62 (3)S5—Nb2—S475.48 (3)
S6i—Nb1—S485.65 (3)S9iv—Nb2—V1v55.30 (2)
S10ii—Nb1—S474.84 (3)S2i—Nb2—V1v55.11 (2)
S1—Nb1—S476.56 (3)S8iv—Nb2—V1v53.78 (2)
S8i—Nb1—Nb2ii55.33 (2)S7—Nb2—V1v53.85 (2)
S7ii—Nb1—Nb2ii55.95 (2)S6i—Nb2—V1v132.81 (2)
S2iii—Nb1—Nb2ii53.95 (2)S10ii—Nb2—V1v116.74 (2)
S9i—Nb1—Nb2ii53.76 (2)S5—Nb2—V1v115.182 (19)
S6i—Nb1—Nb2ii134.72 (2)S4—Nb2—V1v138.52 (2)
S10ii—Nb1—Nb2ii121.07 (2)S9iv—Nb2—Nb1v55.30 (2)
S1—Nb1—Nb2ii110.848 (18)S2i—Nb2—Nb1v55.11 (2)
S4—Nb1—Nb2ii138.22 (2)S8iv—Nb2—Nb1v53.78 (2)
S8i—Nb1—V2ii55.33 (2)S7—Nb2—Nb1v53.85 (2)
S7ii—Nb1—V2ii55.95 (2)S6i—Nb2—Nb1v132.81 (2)
S2iii—Nb1—V2ii53.95 (2)S10ii—Nb2—Nb1v116.74 (2)
S9i—Nb1—V2ii53.76 (2)S5—Nb2—Nb1v115.182 (19)
S6i—Nb1—V2ii134.72 (2)S4—Nb2—Nb1v138.52 (2)
S10ii—Nb1—V2ii121.07 (2)V1v—Nb2—Nb1v0.000 (17)
S1—Nb1—V2ii110.848 (18)S3—P1—S5114.14 (6)
S4—Nb1—V2ii138.22 (2)S3—P1—S1112.22 (6)
Nb2ii—Nb1—V2ii0.000 (18)S5—P1—S1111.74 (7)
S9iv—Nb2—S2i110.37 (3)S3—P1—S4114.43 (6)
S9iv—Nb2—S8iv91.42 (3)S5—P1—S4100.84 (5)
S2i—Nb2—S8iv47.95 (4)S1—P1—S4102.37 (5)
Symmetry codes: (i) x+1/2, y, z1/2; (ii) x1/2, y, z; (iii) x, y, z1/2; (iv) x+1, y, z1/2; (v) x+1/2, y, z; (vi) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formulaKNb1.75V0.25PS10
Mr2264.39
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)290
a, b, c (Å)12.9696 (3), 7.5229 (2), 13.3248 (4)
V3)1300.09 (6)
Z1
Radiation typeMo Kα
µ (mm1)3.73
Crystal size (mm)0.36 × 0.06 × 0.06
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.649, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
11855, 2970, 2859
Rint0.028
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.042, 1.07
No. of reflections2970
No. of parameters130
No. of restraints1
Δρmax, Δρmin (e Å3)0.49, 0.28
Absolute structureFlack (1983), 1417 Friedel pairs
Absolute structure parameter0.47 (4)

Computer programs: RAPID-AUTO (Rigaku, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), locally modified version of ORTEP (Johnson, 1965), STRUCTURE TIDY (Gelato & Parthé, 1987) and WinGX (Farrugia, 1999).

 

Acknowledgements

This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2010–0029617). Use was made of the X-ray facilities supported by Ajou University.

References

First citationAngenault, J., Cieren, X. & Quarton, M. (2000). J. Solid State Chem. 153, 55–65.  Web of Science CrossRef CAS Google Scholar
First citationBang, H., Kim, Y., Kim, S. & Kim, S. (2008). J. Solid State Chem. 181, 1978–1802.  Web of Science CrossRef Google Scholar
First citationBrec, R., Grenouilleau, P., Evain, M. & Rouxel, J. (1983a). Rev. Chim. Mineral. 20, 295–304.  CAS Google Scholar
First citationBrec, R., Ouvrard, G., Evain, M., Grenouilleau, P. & Rouxel, J. (1983b). J. Solid State Chem. 47, 174–184.  CrossRef CAS Web of Science Google Scholar
First citationDo, J. & Yun, H. (1996). Inorg. Chem. 35, 3729–3730.  CrossRef PubMed CAS Web of Science Google Scholar
First citationDo, J. & Yun, H. (2009). Acta Cryst. E65, i56–i57.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDong, Y., Kim, S. & Yun, H. (2005b). Acta Cryst. C61, i25–i26.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDong, Y., Kim, S., Yun, H. & Lim, H. (2005a). Bull. Kor. Chem. Soc. 26, 309–311.  CAS Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGelato, L. M. & Parthé, E. (1987). J. Appl. Cryst. 20, 139–143.  CrossRef Web of Science IUCr Journals Google Scholar
First citationGoh, E., Kim, S. & Jung, D. (2002). J. Solid State Chem. 168, 119–125.  Web of Science CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJohnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationKim, C.-K. & Yun, H.-S. (2002). Acta Cryst. C58, i53–i54.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKwak, J., Kim, C., Yun, H. & Do, J. (2007). Bull. Kor. Chem. Soc. 28, 701–704.  CAS Google Scholar
First citationKwak, J. & Yun, H. (2008). Bull. Kor. Chem. Soc. 29, 273–275.  CAS Google Scholar
First citationPark, S. & Yun, H. (2010). Acta Cryst. E66, i51–i52.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds