metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[μ-Bis(di­phenyl­phosphan­yl)aceto­nitrile-κ2P:P]bis­­[chloridogold(I)]

aSchool of Chemistry, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa, and bDepartment of Chemistry, Michigan State University, East Lansing, MI 48824-1322, USA
*Correspondence e-mail: vanzylw@ukzn.ac.za

(Received 26 November 2010; accepted 29 November 2010; online 11 December 2010)

The title complex, [Au2Cl2(C26H21NP2)], has an intra­molecular Au⋯Au inter­action of 3.1669 (4) Å, but no inter­molecular Au⋯Au inter­actions in the solid state. The Cl—Au—P bond angle of 176.84 (7)° is slightly distorted from linearity. The P—C bond length to the phenyl group is shorter [1.810 (7) Å] than the P—C bond length [1.876 (7) Å] to the bridging carbon, indicative of the flexibility of the bidentate bite of the ligand. The C—C≡N fragment is essentially linear at 179.5 (9)° and the C≡N bond length of 1.125 (11) Å indicates predominantly triple-bond character. In the crystal packing, there are no hydrogen-bonding or aurophilic inter­actions between the mol­ecules.

Related literature

For background to bis­(diphenyl­phosphane)methane, Ph2PCH2PPh2, (dppm), see: Puddephatt (1983[Puddephatt, R. J. (1983). Chem. Soc. Rev. 12, 99-127.]); Minahan & Hill (1984[Minahan, D. M. A. & Hill, W. E. (1984). Coord. Chem. Rev. 55, 31-54.]). For polymorphs of the related complex [(AuCl)2(dppm)], see: Schmidbaur et al. (1977[Schmidbaur, H., Wohlleben, A., Wagner, F., Orama, O. & Huttner, H. (1977). Chem. Ber. 110, 1748-1754.]); Healy (2003[Healy, P. C. (2003). Acta Cryst. E59, m1112-m1114.]). For use of the anionic version of the ligand used in the present study, see: Ruiz et al. (1996[Ruiz, J., Riera, V., Vivanco, M., García-Granda, S. & Salvadó, M. A. (1996). Organometallics, 15, 1079-1081.]); Mosquera et al. (2001[Mosquera, M. E. G., Ruiz, J., Riera, V., García-Granda, S., Díaz, M. R. & Bois, C. (2001). Organometallics, 20, 3821-3824.]). For recent work on bis­(diphenyl­phosphane)acetonitrile, see: Braun et al. (2007[Braun, L., Liptau, P., Kehr, G., Ugolotti, J., Fröhlich, R. & Erker, G. (2007). Dalton Trans. pp. 1409-1415.]); Spannhoff et al. (2009[Spannhoff, K., Kuhl, N., Kehr, G., Fröhlich, R. & Erker, G. (2009). J. Am. Chem. Soc. 131, 17836-17842.]). For background to our inter­est in dinuclear gold(I) complexes, see: Van Zyl (2010[Van Zyl, W. E. (2010). Comments Inorg. Chem. 31, 13-45.]).

[Scheme 1]

Experimental

Crystal data
  • [Au2Cl2(C26H21NP2)]

  • Mr = 874.21

  • Orthorhombic, P n a 21

  • a = 13.9062 (8) Å

  • b = 12.6837 (7) Å

  • c = 14.7938 (8) Å

  • V = 2609.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 11.58 mm−1

  • T = 173 K

  • 0.22 × 0.21 × 0.19 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). COSMO, APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.189, Tmax = 0.216

  • 35892 measured reflections

  • 4770 independent reflections

  • 4621 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.063

  • S = 1.05

  • 4770 reflections

  • 298 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.76 e Å−3

  • Δρmin = −0.81 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2283 Friedel pairs

  • Flack parameter: 0.014 (8)

Data collection: COSMO (Bruker, 2009[Bruker (2009). COSMO, APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 (Bruker, 2009[Bruker (2009). COSMO, APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Interest in the chemistry of the ligand bis(diphenylphosphane)acetonitrile, (dppm-CN), was recently rejuvenated with the facile preparation thereof starting with readily available acetonitrile (Braun et al., 2007). Development of its chemistry followed thereafter, including the observed sharp increase in acidity by the replacement of a proton with a cyano group on the bridging carbon atom of the related ligand dppm (Spannhoff et al., 2009, and references therein). We prepared dppm-CN through slight modification of the stoichiometric amounts used in the literature procedure (Braun et al., 2007). Acetonitrile was doubly deprotonated with n-BuLi (2 molar equivalents) to yield the proposed intermediate Li2[CHCN] (not isolated), which was treated in situ with Ph2PCl (2 molar equivalents) to form dppm-CN. In continuing our interest in dinuclear gold(I) complexes (Van Zyl, 2010), we report the first structural investigation of a gold(I) complex with the ligand dppm-CN. Complex (I) was formed in CH2Cl2 solution from the reaction between the ligand and [AuCl(tht)] (tht = tetrahydrothiophene) (molar ratio 1:2) (see Experimental). The solution 31P NMR spectrum of complex(I) showed a singlet peak resonating at δ = 34.8 p.p.m. for the two equivalent P atoms. Complex (I) can be compared with the related [(AuCl)2dppm] complex which exists as two polymorphs. The first polymorph (monoclinic) (Schmidbaur et al., 1977) contains an intramolecular Au···Au interaction of 3.351 (2) Å with no intermolecular Au···Au interaction, whilst the second polymorph (triclinic) (Healy, 2003) contains neither intra- (5.617 (3) Å) nor intermolecular Au···Au interactions. The cause for the structural difference between the two polymorphs can be found in two different conformational structures of the dppm ligand.

Related literature top

For background to bis(diphenylphosphane)methane, Ph2PCH2PPh2, (dppm), see: Puddephatt (1983); Minahan et al. (1984). For polymorphs of the related complex [(AuCl)2(dppm)], see: Schmidbaur et al. (1977); Healy (2003). For use of the anionic version of the ligand used in the present study, see: Ruiz et al. (1996); Mosquera et al. (2001). For recent work on bis(diphenylphosphane)acetonitrile, see: Braun et al. (2007); Spannhoff et al. (2009). For background to our interest in dinuclear gold(I) complexes, see: Van Zyl (2010).

Experimental top

Preparation and characterization of complex(I): A solution of [AuCl(tht)] (156 mg, 0.48 mmol) in dichloromethane (10 ml) was slowly added to a solution of dppm-CN (100 mg, 0.24 mmol) in dichloromethane (5 ml) and the mixture stirred for 45 minutes at room temperature. All solvent and tht were then removed under reduced pressure to give complex (I). Dry Et2O (3 x 2 ml) was used to wash the product which was then further dried in vacuo overnight. The product was obtained as a free-flowing off-white powder. Yield (185 mg, 0.21 mmol) 88%. Mp: 155–158 °C; Elemental analysis for complex C26H21Au2Cl2NP2 Found: C, 35.21; H, 2.28 requires C, 35.72; H, 2.42%. 1H NMR (400 MHz, CDCl3, 298 K) δH= 7.68–7.53 (m, 20H, Ph); 5.52 (t, 1H; CH, 2JP,H = 12.77 Hz). 31P NMR (101 MHz, CDCl3, 298 K) δP = 34.8 (s, 2P). IR (KBr, cm-1): 2243 ν(CN). ESI-MS: m/z 875 [M+]. Single crystals were obtained by slow diffusion of dry hexane into a saturated solution of dry dichloromethane.

Refinement top

All non-hydrogen atoms are refined anisotropically. H atoms were calculated by geometrical methods and refined as a riding model. The Flack parameter (Flack, 1983) is used to determine chirality of the crystal studied, the value should be near zero, a value of one is the other enantiomer and a value of 0.5 is racemic. The Flack parameter was refined to 0.014 (8), confirming the absolute stereochemistry.

Structure description top

Interest in the chemistry of the ligand bis(diphenylphosphane)acetonitrile, (dppm-CN), was recently rejuvenated with the facile preparation thereof starting with readily available acetonitrile (Braun et al., 2007). Development of its chemistry followed thereafter, including the observed sharp increase in acidity by the replacement of a proton with a cyano group on the bridging carbon atom of the related ligand dppm (Spannhoff et al., 2009, and references therein). We prepared dppm-CN through slight modification of the stoichiometric amounts used in the literature procedure (Braun et al., 2007). Acetonitrile was doubly deprotonated with n-BuLi (2 molar equivalents) to yield the proposed intermediate Li2[CHCN] (not isolated), which was treated in situ with Ph2PCl (2 molar equivalents) to form dppm-CN. In continuing our interest in dinuclear gold(I) complexes (Van Zyl, 2010), we report the first structural investigation of a gold(I) complex with the ligand dppm-CN. Complex (I) was formed in CH2Cl2 solution from the reaction between the ligand and [AuCl(tht)] (tht = tetrahydrothiophene) (molar ratio 1:2) (see Experimental). The solution 31P NMR spectrum of complex(I) showed a singlet peak resonating at δ = 34.8 p.p.m. for the two equivalent P atoms. Complex (I) can be compared with the related [(AuCl)2dppm] complex which exists as two polymorphs. The first polymorph (monoclinic) (Schmidbaur et al., 1977) contains an intramolecular Au···Au interaction of 3.351 (2) Å with no intermolecular Au···Au interaction, whilst the second polymorph (triclinic) (Healy, 2003) contains neither intra- (5.617 (3) Å) nor intermolecular Au···Au interactions. The cause for the structural difference between the two polymorphs can be found in two different conformational structures of the dppm ligand.

For background to bis(diphenylphosphane)methane, Ph2PCH2PPh2, (dppm), see: Puddephatt (1983); Minahan et al. (1984). For polymorphs of the related complex [(AuCl)2(dppm)], see: Schmidbaur et al. (1977); Healy (2003). For use of the anionic version of the ligand used in the present study, see: Ruiz et al. (1996); Mosquera et al. (2001). For recent work on bis(diphenylphosphane)acetonitrile, see: Braun et al. (2007); Spannhoff et al. (2009). For background to our interest in dinuclear gold(I) complexes, see: Van Zyl (2010).

Computing details top

Data collection: COSMO (Bruker, 2009); cell refinement: APEX2 (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title complex showing the atom numbering scheme. Ellipsoids are drawn at the 50% probability level.
[µ-Bis(diphenylphosphanyl)acetonitrile- κ2P:P]bis[chloridogold(I)] top
Crystal data top
[Au2Cl2(C26H21NP2)]F(000) = 1624
Mr = 874.21Dx = 2.225 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 9778 reflections
a = 13.9062 (8) Åθ = 2.6–25.3°
b = 12.6837 (7) ŵ = 11.58 mm1
c = 14.7938 (8) ÅT = 173 K
V = 2609.4 (3) Å3Chunk, colourless
Z = 40.22 × 0.21 × 0.19 mm
Data collection top
Bruker APEXII CCD
diffractometer
4770 independent reflections
Radiation source: fine-focus sealed tube4621 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
Detector resolution: 836.6 pixels mm-1θmax = 25.4°, θmin = 2.1°
ω and φ 0.5° scansh = 1616
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1515
Tmin = 0.189, Tmax = 0.216l = 1717
35892 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.063 w = 1/[σ2(Fo2) + (0.011P)2 + 3.9118P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
4770 reflectionsΔρmax = 0.76 e Å3
298 parametersΔρmin = 0.81 e Å3
1 restraintAbsolute structure: Flack (1983), 2283 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.014 (8)
Crystal data top
[Au2Cl2(C26H21NP2)]V = 2609.4 (3) Å3
Mr = 874.21Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 13.9062 (8) ŵ = 11.58 mm1
b = 12.6837 (7) ÅT = 173 K
c = 14.7938 (8) Å0.22 × 0.21 × 0.19 mm
Data collection top
Bruker APEXII CCD
diffractometer
4770 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4621 reflections with I > 2σ(I)
Tmin = 0.189, Tmax = 0.216Rint = 0.059
35892 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.063Δρmax = 0.76 e Å3
S = 1.05Δρmin = 0.81 e Å3
4770 reflectionsAbsolute structure: Flack (1983), 2283 Friedel pairs
298 parametersAbsolute structure parameter: 0.014 (8)
1 restraint
Special details top

Experimental. Data was collected using a BRUKER CCD (charge coupled device) based diffractometer equipped with an Oxford low-temperature apparatus operating at 173 K. A suitable crystal was chosen and mounted on a glass fiber or nylon loop using Paratone oil for Mo radiation and Mineral oil for Copper radiation. Data were measured using omega and phi scans of 0.5° per frame for 30 s. The total number of images were based on results from the program COSMO where redundancy was expected to be 4 and completeness to 0.83Å to 100%. Cell parameters were retrieved using APEX II software and refined using SAINT on all observed reflections.Data reduction was performed using the SAINT software which corrects for Lp. Scaling and absorption corrections were applied using SADABS6 multi-scan technique, supplied by George Sheldrick. The structures are solved by the direct method using the SHELXS97 program and refined by least squares method on F2, SHELXL97, incorporated in SHELXTL.

All H atoms were placed in calculated positions and refined using a riding model. C—H(aromatic) = 0.94 Å and Uiso(H) = 1.2Ueq(C) C—H (alaphatic) = 0.99 Å and Uiso(H) = 1.2Ueq(C) CH2 = 0.98 Å and Uiso(H) = 1.2Ueq(C) CH3 = 0.97Å and Uiso(H) = 1.5Ueq(C) N—H = 0.86 (0.92)Å and Uiso(H) = 1.2 Ueq(N) O—H(alcohol) = 0.85Åand Uiso(H) = 1.2Ueq(O) O—H(acid) = 0.82 Å and Uiso(H) = 1.5Ueq(O)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.07615 (15)0.82567 (17)0.92236 (14)0.0565 (5)
Au10.059247 (18)0.86691 (2)0.77316 (2)0.04850 (8)
Au20.148444 (19)0.78078 (2)0.72563 (2)0.05055 (8)
C40.0452 (5)0.8105 (7)0.4587 (5)0.0498 (17)
H40.04760.87900.43280.060*
Cl20.13552 (17)0.64675 (18)0.82822 (17)0.0687 (5)
P20.16917 (13)0.90358 (15)0.61806 (13)0.0437 (4)
P10.05098 (13)0.91073 (16)0.62748 (13)0.0445 (4)
C50.0428 (6)0.7239 (8)0.4036 (6)0.063 (2)
H50.04200.73250.33980.076*
C60.0414 (6)0.6240 (7)0.4409 (6)0.057 (2)
H60.04240.56400.40250.069*
C70.0388 (5)0.6106 (6)0.5327 (6)0.0510 (17)
H70.03570.54170.55770.061*
C80.0406 (5)0.6990 (6)0.5898 (6)0.0501 (17)
H80.03940.69050.65360.060*
C30.0442 (5)0.7994 (5)0.5514 (5)0.0408 (14)
C150.2655 (5)0.9971 (6)0.6416 (5)0.0490 (17)
C160.3248 (5)0.9752 (7)0.7136 (5)0.0539 (18)
H160.31080.91750.75230.065*
C170.4056 (6)1.0377 (7)0.7298 (7)0.070 (2)
H170.44861.02050.77750.083*
C190.3635 (6)1.1447 (7)0.6058 (8)0.068 (3)
H190.37751.20270.56740.082*
C200.2838 (5)1.0835 (6)0.5887 (6)0.0572 (19)
H200.24161.10120.54050.069*
C10.0603 (5)0.9886 (5)0.6014 (5)0.0449 (16)
H10.05791.01200.53700.054*
C90.1500 (5)0.9924 (6)0.5901 (5)0.0480 (17)
C100.1467 (5)1.0590 (7)0.5165 (6)0.058 (2)
H100.08831.06750.48390.069*
C110.2286 (6)1.1138 (6)0.4897 (7)0.065 (2)
H110.22681.15940.43880.078*
C140.2361 (5)0.9810 (5)0.6381 (5)0.0496 (17)
H140.23930.93500.68870.059*
C20.0620 (5)1.0809 (7)0.6594 (6)0.057 (2)
N10.0639 (6)1.1521 (7)0.7045 (7)0.086 (3)
C210.1903 (5)0.8482 (6)0.5076 (5)0.0443 (15)
C220.1955 (6)0.9097 (6)0.4297 (5)0.0536 (18)
H220.18900.98420.43330.064*
C230.2103 (6)0.8614 (8)0.3471 (6)0.064 (2)
H230.21370.90330.29400.077*
C250.2138 (6)0.6929 (7)0.4167 (6)0.0544 (18)
H250.21980.61850.41220.065*
C260.1985 (5)0.7393 (5)0.4999 (5)0.0477 (17)
H260.19350.69640.55230.057*
C180.4224 (6)1.1235 (7)0.6765 (8)0.070 (3)
H180.47541.16840.68900.085*
C240.2203 (6)0.7542 (7)0.3403 (6)0.0578 (19)
H240.23170.72240.28320.069*
C130.3161 (6)1.0369 (7)0.6115 (6)0.0594 (19)
H130.37411.03030.64500.071*
C120.3136 (6)1.1007 (7)0.5390 (7)0.067 (2)
H120.37011.13720.52110.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0629 (12)0.0548 (11)0.0517 (11)0.0020 (9)0.0055 (9)0.0002 (9)
Au10.04863 (14)0.05302 (15)0.04384 (14)0.00237 (11)0.00289 (15)0.00088 (14)
Au20.05242 (15)0.05362 (15)0.04561 (14)0.00443 (12)0.00177 (14)0.00171 (15)
C40.041 (4)0.059 (4)0.050 (4)0.006 (3)0.003 (3)0.002 (3)
Cl20.0773 (14)0.0705 (13)0.0582 (12)0.0084 (11)0.0039 (11)0.0115 (10)
P20.0410 (9)0.0456 (10)0.0444 (9)0.0022 (7)0.0042 (8)0.0037 (8)
P10.0394 (9)0.0489 (10)0.0453 (10)0.0034 (7)0.0022 (7)0.0012 (8)
C50.056 (5)0.093 (7)0.041 (4)0.004 (4)0.002 (4)0.006 (4)
C60.046 (4)0.063 (5)0.063 (5)0.009 (4)0.009 (4)0.020 (4)
C70.049 (4)0.048 (4)0.056 (5)0.007 (3)0.009 (4)0.009 (3)
C80.049 (4)0.047 (4)0.055 (4)0.014 (3)0.004 (3)0.003 (3)
C30.034 (3)0.047 (4)0.041 (4)0.002 (3)0.004 (3)0.001 (3)
C150.040 (3)0.052 (4)0.055 (4)0.005 (3)0.006 (3)0.016 (3)
C160.045 (4)0.071 (5)0.046 (4)0.003 (3)0.001 (3)0.016 (4)
C170.059 (4)0.084 (6)0.066 (5)0.002 (4)0.018 (5)0.019 (5)
C190.055 (5)0.044 (4)0.106 (8)0.002 (3)0.003 (5)0.005 (4)
C200.047 (4)0.046 (4)0.078 (5)0.001 (3)0.008 (4)0.005 (4)
C10.044 (4)0.045 (4)0.046 (4)0.005 (3)0.005 (3)0.007 (3)
C90.043 (4)0.047 (4)0.054 (4)0.008 (3)0.002 (3)0.005 (3)
C100.046 (4)0.061 (5)0.066 (5)0.001 (3)0.002 (4)0.012 (4)
C110.063 (5)0.050 (5)0.082 (6)0.001 (4)0.021 (5)0.012 (4)
C140.051 (4)0.040 (4)0.058 (4)0.002 (3)0.001 (3)0.007 (3)
C20.042 (4)0.063 (5)0.067 (5)0.005 (3)0.008 (4)0.017 (4)
N10.072 (5)0.071 (5)0.115 (8)0.014 (4)0.015 (5)0.045 (5)
C210.033 (3)0.052 (4)0.048 (4)0.001 (3)0.004 (3)0.006 (3)
C220.063 (5)0.045 (4)0.052 (4)0.000 (4)0.005 (4)0.001 (3)
C230.066 (5)0.076 (6)0.051 (5)0.002 (4)0.007 (4)0.007 (4)
C250.049 (4)0.053 (4)0.061 (5)0.001 (3)0.003 (4)0.012 (4)
C260.043 (4)0.045 (4)0.055 (4)0.001 (3)0.007 (3)0.003 (3)
C180.052 (5)0.059 (5)0.100 (7)0.002 (4)0.002 (5)0.031 (5)
C240.051 (4)0.072 (5)0.051 (5)0.004 (4)0.005 (4)0.006 (4)
C130.046 (4)0.062 (5)0.071 (5)0.000 (4)0.003 (4)0.003 (4)
C120.053 (5)0.066 (5)0.082 (6)0.011 (4)0.014 (5)0.004 (5)
Geometric parameters (Å, º) top
Cl1—Au12.281 (2)C19—C201.377 (11)
Au1—P12.229 (2)C19—H190.9500
Au1—Au23.1669 (4)C20—H200.9500
Au2—P22.245 (2)C1—C21.451 (10)
Au2—Cl22.286 (2)C1—H11.0000
C4—C51.367 (12)C9—C101.379 (12)
C4—C31.379 (11)C9—C141.398 (10)
C4—H40.9500C10—C111.391 (11)
P2—C211.802 (7)C10—H100.9500
P2—C151.822 (7)C11—C121.399 (13)
P2—C11.874 (7)C11—H110.9500
P1—C31.808 (7)C14—C131.377 (11)
P1—C91.810 (7)C14—H140.9500
P1—C11.876 (7)C2—N11.125 (11)
C5—C61.383 (13)C21—C261.391 (10)
C5—H50.9500C21—C221.394 (11)
C6—C71.369 (13)C22—C231.383 (12)
C6—H60.9500C22—H220.9500
C7—C81.404 (10)C23—C241.370 (12)
C7—H70.9500C23—H230.9500
C8—C31.396 (10)C25—C241.374 (12)
C8—H80.9500C25—C261.381 (11)
C15—C201.371 (11)C25—H250.9500
C15—C161.375 (10)C26—H260.9500
C16—C171.396 (11)C18—H180.9500
C16—H160.9500C24—H240.9500
C17—C181.364 (14)C13—C121.344 (13)
C17—H170.9500C13—H130.9500
C19—C181.355 (15)C12—H120.9500
P1—Au1—Cl1176.84 (7)C15—C20—H20120.1
P1—Au1—Au279.88 (5)C19—C20—H20120.1
Cl1—Au1—Au2103.28 (5)C2—C1—P2112.0 (5)
P2—Au2—Cl2175.21 (8)C2—C1—P1108.4 (5)
P2—Au2—Au192.01 (5)P2—C1—P1109.7 (4)
Cl2—Au2—Au192.15 (6)C2—C1—H1108.9
C5—C4—C3120.7 (8)P2—C1—H1108.9
C5—C4—H4119.6P1—C1—H1108.9
C3—C4—H4119.6C10—C9—C14119.5 (6)
C21—P2—C15107.9 (3)C10—C9—P1124.5 (6)
C21—P2—C1103.7 (3)C14—C9—P1115.9 (6)
C15—P2—C1104.1 (3)C9—C10—C11120.2 (8)
C21—P2—Au2113.2 (3)C9—C10—H10119.9
C15—P2—Au2114.2 (3)C11—C10—H10119.9
C1—P2—Au2112.8 (3)C10—C11—C12118.9 (8)
C3—P1—C9107.2 (3)C10—C11—H11120.5
C3—P1—C1103.9 (3)C12—C11—H11120.5
C9—P1—C1105.3 (3)C13—C14—C9119.6 (7)
C3—P1—Au1114.2 (2)C13—C14—H14120.2
C9—P1—Au1113.5 (3)C9—C14—H14120.2
C1—P1—Au1111.9 (2)N1—C2—C1179.5 (9)
C4—C5—C6119.9 (8)C26—C21—C22118.9 (7)
C4—C5—H5120.0C26—C21—P2118.4 (6)
C6—C5—H5120.0C22—C21—P2122.7 (6)
C7—C6—C5120.7 (8)C23—C22—C21119.4 (8)
C7—C6—H6119.7C23—C22—H22120.3
C5—C6—H6119.7C21—C22—H22120.3
C6—C7—C8119.8 (8)C24—C23—C22121.3 (8)
C6—C7—H7120.1C24—C23—H23119.3
C8—C7—H7120.1C22—C23—H23119.3
C3—C8—C7119.0 (8)C24—C25—C26120.1 (8)
C3—C8—H8120.5C24—C25—H25120.0
C7—C8—H8120.5C26—C25—H25120.0
C4—C3—C8119.9 (7)C25—C26—C21120.6 (7)
C4—C3—P1122.6 (6)C25—C26—H26119.7
C8—C3—P1117.5 (6)C21—C26—H26119.7
C20—C15—C16119.4 (7)C19—C18—C17120.1 (8)
C20—C15—P2123.2 (6)C19—C18—H18120.0
C16—C15—P2117.3 (6)C17—C18—H18120.0
C15—C16—C17120.2 (8)C23—C24—C25119.6 (8)
C15—C16—H16119.9C23—C24—H24120.2
C17—C16—H16119.9C25—C24—H24120.2
C18—C17—C16119.4 (9)C12—C13—C14121.1 (8)
C18—C17—H17120.3C12—C13—H13119.5
C16—C17—H17120.3C14—C13—H13119.5
C18—C19—C20121.1 (10)C13—C12—C11120.7 (8)
C18—C19—H19119.4C13—C12—H12119.7
C20—C19—H19119.4C11—C12—H12119.7
C15—C20—C19119.7 (8)
P1—Au1—Au2—P229.20 (7)C21—P2—C1—P192.2 (4)
Cl1—Au1—Au2—P2150.94 (7)C15—P2—C1—P1155.0 (4)
P1—Au1—Au2—Cl2148.43 (8)Au2—P2—C1—P130.6 (4)
Cl1—Au1—Au2—Cl231.43 (9)C3—P1—C1—C2179.9 (5)
Au1—Au2—P2—C21120.8 (2)C9—P1—C1—C267.3 (6)
Au1—Au2—P2—C15115.3 (3)Au1—P1—C1—C256.4 (6)
Au1—Au2—P2—C13.4 (2)C3—P1—C1—P257.6 (4)
Au2—Au1—P1—C364.8 (2)C9—P1—C1—P2170.2 (4)
Au2—Au1—P1—C9171.9 (3)Au1—P1—C1—P266.1 (4)
Au2—Au1—P1—C152.9 (2)C3—P1—C9—C1076.6 (8)
C3—C4—C5—C61.4 (12)C1—P1—C9—C1033.7 (8)
C4—C5—C6—C72.5 (13)Au1—P1—C9—C10156.3 (6)
C5—C6—C7—C82.1 (12)C3—P1—C9—C14100.1 (6)
C6—C7—C8—C30.6 (11)C1—P1—C9—C14149.7 (5)
C5—C4—C3—C80.1 (11)Au1—P1—C9—C1427.0 (6)
C5—C4—C3—P1178.1 (6)C14—C9—C10—C110.5 (12)
C7—C8—C3—C40.5 (10)P1—C9—C10—C11176.0 (7)
C7—C8—C3—P1177.8 (5)C9—C10—C11—C120.5 (14)
C9—P1—C3—C448.9 (7)C10—C9—C14—C130.4 (11)
C1—P1—C3—C462.3 (6)P1—C9—C14—C13177.2 (6)
Au1—P1—C3—C4175.5 (5)C15—P2—C21—C26122.9 (6)
C9—P1—C3—C8129.4 (6)C1—P2—C21—C26127.0 (6)
C1—P1—C3—C8119.4 (6)Au2—P2—C21—C264.4 (6)
Au1—P1—C3—C82.7 (6)C15—P2—C21—C2259.2 (7)
C21—P2—C15—C2059.5 (7)C1—P2—C21—C2250.9 (7)
C1—P2—C15—C2050.3 (7)Au2—P2—C21—C22173.5 (6)
Au2—P2—C15—C20173.8 (6)C26—C21—C22—C231.1 (12)
C21—P2—C15—C16117.1 (6)P2—C21—C22—C23179.0 (7)
C1—P2—C15—C16133.2 (6)C21—C22—C23—C240.2 (13)
Au2—P2—C15—C169.7 (6)C24—C25—C26—C210.5 (12)
C20—C15—C16—C173.1 (11)C22—C21—C26—C251.5 (11)
P2—C15—C16—C17173.5 (6)P2—C21—C26—C25179.4 (6)
C15—C16—C17—C183.3 (12)C20—C19—C18—C172.9 (15)
C16—C15—C20—C192.8 (12)C16—C17—C18—C193.2 (14)
P2—C15—C20—C19173.7 (7)C22—C23—C24—C251.2 (14)
C18—C19—C20—C152.7 (14)C26—C25—C24—C230.8 (13)
C21—P2—C1—C2147.4 (6)C9—C14—C13—C121.4 (12)
C15—P2—C1—C234.5 (7)C14—C13—C12—C111.5 (14)
Au2—P2—C1—C289.8 (6)C10—C11—C12—C130.5 (14)

Experimental details

Crystal data
Chemical formula[Au2Cl2(C26H21NP2)]
Mr874.21
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)173
a, b, c (Å)13.9062 (8), 12.6837 (7), 14.7938 (8)
V3)2609.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)11.58
Crystal size (mm)0.22 × 0.21 × 0.19
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.189, 0.216
No. of measured, independent and
observed [I > 2σ(I)] reflections
35892, 4770, 4621
Rint0.059
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.063, 1.05
No. of reflections4770
No. of parameters298
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.76, 0.81
Absolute structureFlack (1983), 2283 Friedel pairs
Absolute structure parameter0.014 (8)

Computer programs: COSMO (Bruker, 2009), APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

WEvZ gratefully acknowledges financial support through a UKZN Competitive Grant, and thanks Rand Refineries (South Africa) for a gift of gold salt. SVS thanks the National Research Foundation (NRF) for an Innovative Grant.

References

First citationBraun, L., Liptau, P., Kehr, G., Ugolotti, J., Fröhlich, R. & Erker, G. (2007). Dalton Trans. pp. 1409–1415.  Web of Science CSD CrossRef PubMed Google Scholar
First citationBruker (2009). COSMO, APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHealy, P. C. (2003). Acta Cryst. E59, m1112–m1114.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMinahan, D. M. A. & Hill, W. E. (1984). Coord. Chem. Rev. 55, 31–54.  CrossRef CAS Web of Science Google Scholar
First citationMosquera, M. E. G., Ruiz, J., Riera, V., García-Granda, S., Díaz, M. R. & Bois, C. (2001). Organometallics, 20, 3821–3824.  Web of Science CSD CrossRef CAS Google Scholar
First citationPuddephatt, R. J. (1983). Chem. Soc. Rev. 12, 99–127.  CrossRef CAS Web of Science Google Scholar
First citationRuiz, J., Riera, V., Vivanco, M., García-Granda, S. & Salvadó, M. A. (1996). Organometallics, 15, 1079–1081.  CSD CrossRef CAS Web of Science Google Scholar
First citationSchmidbaur, H., Wohlleben, A., Wagner, F., Orama, O. & Huttner, H. (1977). Chem. Ber. 110, 1748–1754.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpannhoff, K., Kuhl, N., Kehr, G., Fröhlich, R. & Erker, G. (2009). J. Am. Chem. Soc. 131, 17836–17842.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationVan Zyl, W. E. (2010). Comments Inorg. Chem. 31, 13–45.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds