organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

ent-5α,3,15-Dioxodolabr-4(18)-ene-16,18-diol

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and cCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
*Correspondence e-mail: hkfun@usm.my

(Received 12 October 2010; accepted 17 October 2010; online 23 October 2010)

The title compound, C20H30O4, is a dolabrane diterpenoid isolated from Ceriops tagal, in which one of the three fused cyclo­hexane rings adopts a half-chair conformation and the other two are in the standard chair conformations. The hy­droxy­methyl­idene substituent is attached to the half-chair cyclo­hexane. An intra­molecular O—H⋯O hydrogen bond generate an S(6) ring motif. In the crystal, mol­ecules are arranged into screw chains along the [001] direction. The crystal is stabilized by O—H⋯O hydrogen bonds and weaker C—H⋯O inter­actions.

Related literature

For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For background to diterpenoids, see, for example: Hu et al. (2010[Hu, W.-M., Li, M.-Y., Li, J., Xiao, Q., Feng, G. & Wu, J. (2010). J. Nat. Prod. In the press. doi:10.1021/np100484w.]); Zhang et al. (2005[Zhang, Y., Deng, Z., Gao, T., Proksch, P. & Lin, W. (2005). Phytochemistry, 66, 1465-1471.]). For related structures, see: Chantrapromma et al. (2007[Chantrapromma, S., Fun, H.-K., Pakhathirathien, C., Karalai, C. & Chantrapromma, K. (2007). Acta Cryst. E63, o459-o461.]); Fun et al. (2006[Fun, H.-K., Pakhathirathien, C., Chantrapromma, S., Karalai, C. & Chantrapromma, K. (2006). Acta Cryst. E62, o5539-o5541.]). For the stability of the temperature controller used in the data collection, see Cosier & Glazer, (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C20H30O4

  • Mr = 334.44

  • Orthorhombic, P 21 21 21

  • a = 7.9633 (3) Å

  • b = 10.7166 (4) Å

  • c = 20.8338 (7) Å

  • V = 1777.95 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.58 × 0.51 × 0.10 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.952, Tmax = 0.992

  • 20568 measured reflections

  • 2691 independent reflections

  • 2084 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.157

  • S = 1.09

  • 2691 reflections

  • 220 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1O2⋯O1 0.82 1.69 2.424 (4) 148
O4—H1O4⋯O1i 0.82 2.07 2.841 (3) 156
C1—H1B⋯O2ii 0.97 2.48 3.368 (5) 152
C12—H12A⋯O3 0.97 2.41 2.799 (4) 103
C17—H17A⋯O4iii 0.96 2.53 3.460 (5) 164
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+1, z+{\script{1\over 2}}]; (ii) x-1, y, z; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Ceriops tagal (Perr.) C. B. Robinson is a mangrove plant belonging to the Rhizophoraceae family. Diterpenoids and triterpenoids are the main secondary metabolites of C. tagal (Chantrapromma et al., 2007; Hu et al., 2010; Zhang et al., 2005). During the course of our studies on the chemical constituents and bioactive compounds from Thai medicinal plants, the title dolabrane diterpenoid compound (I), which is known as Tagalsin S (Hu et al., 2010), was isolated from the the stem barks of C. tagal. We have also previously reported the crystal structures of two diterpenoid compounds isolated from the same plant (Chantrapromma et al., 2007; Fun et al., 2006). We herein report the crystal structure of (I).

The molecule of the title compound contains a fused three-ring system A/B/C (Fig. 1). The A/B ring junction is cis-fused and B/C is trans-fused. The cyclohexane ring A adopts half-chair conformation with puckering parameters Q = 0.539 (3) Å, θ = 111.0 (3)° and φ = 92.5 (4)°, rings B and C are in standard chair conformations (Cremer & Pople 1975). The hydroxylmethylidine substituent is planarly attached to cyclohexane ring A at atom C4 as indicated by the torsion angle C3—C4—C18—O2 of 4.4 (5)° and the bond angles around atom C4 are indicative of sp2 hybridization for this atom. The orientations of the carbonyl and alcohol substituent groups at atom C13 are described by the torsion angles C13–C15—C16—O4 = 166.3 (3)° and O3–C15–C16–O4 = -11.1 (5)°. Intramolecular O2—H1O2···O1 hydrogen bond (Table 1) generates S(6) ring motif (Fig. 1) (Bernstein et al., 1995). The bond distances are of normal values (Allen et al., 1987) and are comparable with the related structures (Chantrapromma et al., 2007; Fun et al., 2006).

In the crystal structure (Fig. 2), the molecules are arranged into screw chains along the [0 0 1] direction and the adjacent chains are further linked by weak C—H···O interactions (Table 1). The crystal packing of (I) is stabilized by intermolecular O—H···O hydrogen bonds and weak C—H···O interactions (Fig. 2 and Table 1).

Related literature top

For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For ring conformations, see: Cremer & Pople (1975). For background to diterpenoids, see, for example: Hu et al. (2010); Zhang et al. (2005). For related structures, see: Chantrapromma et al. (2007); Fun et al. (2006). For the stability of the temperature controller used in the data collection, see Cosier & Glazer, (1986).

Experimental top

The air-dried and crushed stem barks of C. tagal (4.8 kg) were extracted with methylene chloride and then concentrated in vacuo to give a residue (17.4 g). This residue was subjected to quick column chromatography over silica gel using solvents of increasing polarity from hexane through 50% acetone/hexane. The eluates were collected and combined, based on TLC, to give 20 fractions (F1—F20). Fraction F14 was further purified by repeated quick column chromatography with CH2Cl2/acetone (9:1 v/v) yielding title compound (30.4 mg). Colorless block-shaped single crystals of the title compound suitable for x-ray structure determination were recrystallized from hexane/CH2Cl2 (1:1, v/v) after several days, Mp. 395–396 K.

Refinement top

All H atoms were placed in calculated positions with d(O—H) = 0.82 Å and d(C—H) = 0.93 Å for aromatic and CH, 0.97 for CH2 and 0.96 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for hydroxy and methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.18 Å from H1B and the deepest hole is located at 0.50 Å from O2. A total of 2024 Friedel pairs were merged before final refinement as there is no large anomalous dispersion for the determination of the absolute configuration.

Structure description top

Ceriops tagal (Perr.) C. B. Robinson is a mangrove plant belonging to the Rhizophoraceae family. Diterpenoids and triterpenoids are the main secondary metabolites of C. tagal (Chantrapromma et al., 2007; Hu et al., 2010; Zhang et al., 2005). During the course of our studies on the chemical constituents and bioactive compounds from Thai medicinal plants, the title dolabrane diterpenoid compound (I), which is known as Tagalsin S (Hu et al., 2010), was isolated from the the stem barks of C. tagal. We have also previously reported the crystal structures of two diterpenoid compounds isolated from the same plant (Chantrapromma et al., 2007; Fun et al., 2006). We herein report the crystal structure of (I).

The molecule of the title compound contains a fused three-ring system A/B/C (Fig. 1). The A/B ring junction is cis-fused and B/C is trans-fused. The cyclohexane ring A adopts half-chair conformation with puckering parameters Q = 0.539 (3) Å, θ = 111.0 (3)° and φ = 92.5 (4)°, rings B and C are in standard chair conformations (Cremer & Pople 1975). The hydroxylmethylidine substituent is planarly attached to cyclohexane ring A at atom C4 as indicated by the torsion angle C3—C4—C18—O2 of 4.4 (5)° and the bond angles around atom C4 are indicative of sp2 hybridization for this atom. The orientations of the carbonyl and alcohol substituent groups at atom C13 are described by the torsion angles C13–C15—C16—O4 = 166.3 (3)° and O3–C15–C16–O4 = -11.1 (5)°. Intramolecular O2—H1O2···O1 hydrogen bond (Table 1) generates S(6) ring motif (Fig. 1) (Bernstein et al., 1995). The bond distances are of normal values (Allen et al., 1987) and are comparable with the related structures (Chantrapromma et al., 2007; Fun et al., 2006).

In the crystal structure (Fig. 2), the molecules are arranged into screw chains along the [0 0 1] direction and the adjacent chains are further linked by weak C—H···O interactions (Table 1). The crystal packing of (I) is stabilized by intermolecular O—H···O hydrogen bonds and weak C—H···O interactions (Fig. 2 and Table 1).

For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For ring conformations, see: Cremer & Pople (1975). For background to diterpenoids, see, for example: Hu et al. (2010); Zhang et al. (2005). For related structures, see: Chantrapromma et al. (2007); Fun et al. (2006). For the stability of the temperature controller used in the data collection, see Cosier & Glazer, (1986).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme. Hydrogen bonds was drawn as dash line.
[Figure 2] Fig. 2. The crystal packing of (I) viewed along the b axis, showing one dimensional chains along the [0 0 1] direction. Hydrogen bonds were shown as dashed lines.
ent-5α,3,15-Dioxodolabr-4(18)-ene-16,18-diol top
Crystal data top
C20H30O4Dx = 1.249 Mg m3
Mr = 334.44Melting point = 495–496 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2691 reflections
a = 7.9633 (3) Åθ = 2.0–29.0°
b = 10.7166 (4) ŵ = 0.09 mm1
c = 20.8338 (7) ÅT = 100 K
V = 1777.95 (11) Å3Plate, colourless
Z = 40.58 × 0.51 × 0.10 mm
F(000) = 728
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2691 independent reflections
Radiation source: sealed tube2084 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
φ and ω scansθmax = 29.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1010
Tmin = 0.952, Tmax = 0.992k = 1410
20568 measured reflectionsl = 2428
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.077P)2 + 0.7994P]
where P = (Fo2 + 2Fc2)/3
2691 reflections(Δ/σ)max < 0.001
220 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
C20H30O4V = 1777.95 (11) Å3
Mr = 334.44Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.9633 (3) ŵ = 0.09 mm1
b = 10.7166 (4) ÅT = 100 K
c = 20.8338 (7) Å0.58 × 0.51 × 0.10 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2691 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2084 reflections with I > 2σ(I)
Tmin = 0.952, Tmax = 0.992Rint = 0.030
20568 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.157H-atom parameters constrained
S = 1.09Δρmax = 0.31 e Å3
2691 reflectionsΔρmin = 0.45 e Å3
220 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.9767 (3)0.4254 (2)0.05460 (11)0.0420 (6)
O21.2362 (4)0.3517 (3)0.10215 (15)0.0633 (8)
H1O21.17240.39880.08300.095*
O30.5983 (4)0.4271 (2)0.41250 (10)0.0413 (6)
O40.6697 (4)0.3378 (2)0.52946 (11)0.0552 (8)
H1O40.61020.40000.52730.083*
C10.6196 (4)0.2200 (3)0.09423 (15)0.0360 (8)
H1A0.57590.15500.06650.043*
H1B0.52420.26580.11100.043*
C20.7243 (4)0.3092 (3)0.05327 (15)0.0379 (8)
H2A0.72180.27920.00940.045*
H2B0.66960.39000.05370.045*
C30.9026 (4)0.3276 (3)0.07172 (13)0.0294 (7)
C40.9885 (3)0.2325 (3)0.10845 (12)0.0221 (5)
C50.8927 (4)0.1186 (3)0.13108 (13)0.0230 (6)
C60.9782 (4)0.0532 (3)0.18765 (13)0.0301 (7)
H6A0.92390.02670.19470.036*
H6B1.09440.03700.17650.036*
C70.9731 (4)0.1276 (3)0.24997 (14)0.0272 (6)
H7A1.03370.20540.24460.033*
H7B1.02690.08050.28400.033*
C80.7911 (4)0.1547 (2)0.26801 (13)0.0226 (6)
H8A0.73440.07370.27080.027*
C90.6987 (3)0.2298 (2)0.21580 (13)0.0200 (5)
C100.7108 (4)0.1569 (3)0.15117 (13)0.0241 (6)
H10A0.65100.07830.15850.029*
C110.5122 (4)0.2385 (3)0.23683 (14)0.0318 (7)
H11A0.45140.28890.20590.038*
H11B0.46360.15550.23630.038*
C120.4884 (4)0.2955 (3)0.30434 (14)0.0338 (7)
H12A0.52000.38280.30300.041*
H12B0.37050.29120.31570.041*
C130.5915 (4)0.2302 (3)0.35673 (14)0.0276 (6)
C140.7769 (4)0.2146 (2)0.33451 (13)0.0227 (6)
H14A0.83050.29580.33360.027*
H14B0.83640.16330.36540.027*
C150.6017 (4)0.3139 (3)0.41616 (14)0.0290 (6)
C160.6242 (5)0.2539 (3)0.48109 (14)0.0394 (8)
H16A0.52010.21330.49320.047*
H16B0.71000.19000.47780.047*
C170.5129 (5)0.1042 (3)0.37320 (18)0.0463 (9)
H17A0.40500.11720.39260.070*
H17B0.58440.06030.40260.070*
H17C0.49980.05590.33470.070*
C181.1538 (4)0.2500 (3)0.11951 (15)0.0342 (7)
H18A1.21300.18720.14040.041*
C190.8839 (5)0.0238 (3)0.07522 (15)0.0352 (7)
H19A0.99380.00990.06740.053*
H19B0.84410.06490.03720.053*
H19C0.80850.04270.08640.053*
C200.7677 (4)0.3630 (2)0.21044 (13)0.0236 (6)
H20A0.73700.40950.24800.035*
H20B0.72130.40260.17310.035*
H20C0.88780.36020.20680.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0564 (16)0.0328 (12)0.0369 (12)0.0036 (12)0.0098 (12)0.0126 (10)
O20.0435 (16)0.0705 (19)0.076 (2)0.0151 (15)0.0071 (15)0.0049 (17)
O30.0643 (16)0.0281 (11)0.0314 (11)0.0050 (12)0.0030 (12)0.0080 (10)
O40.088 (2)0.0437 (14)0.0337 (12)0.0225 (15)0.0180 (13)0.0096 (11)
C10.0222 (14)0.056 (2)0.0301 (15)0.0036 (14)0.0107 (12)0.0167 (15)
C20.0410 (19)0.0438 (19)0.0290 (16)0.0139 (16)0.0147 (14)0.0040 (14)
C30.0375 (16)0.0331 (16)0.0177 (13)0.0076 (14)0.0011 (12)0.0008 (12)
C40.0231 (13)0.0252 (13)0.0180 (12)0.0007 (11)0.0014 (10)0.0005 (10)
C50.0233 (13)0.0212 (13)0.0245 (13)0.0021 (11)0.0020 (11)0.0020 (10)
C60.0374 (17)0.0228 (14)0.0303 (14)0.0123 (13)0.0022 (13)0.0022 (12)
C70.0310 (15)0.0272 (14)0.0232 (12)0.0127 (13)0.0015 (12)0.0032 (11)
C80.0289 (14)0.0133 (11)0.0254 (13)0.0001 (11)0.0041 (11)0.0011 (10)
C90.0154 (11)0.0198 (12)0.0248 (13)0.0013 (10)0.0024 (10)0.0051 (11)
C100.0212 (13)0.0241 (14)0.0269 (14)0.0030 (11)0.0016 (11)0.0068 (12)
C110.0190 (13)0.0440 (18)0.0325 (16)0.0016 (13)0.0016 (11)0.0148 (14)
C120.0187 (14)0.0483 (18)0.0345 (15)0.0004 (14)0.0012 (12)0.0138 (14)
C130.0288 (14)0.0250 (14)0.0290 (14)0.0062 (13)0.0068 (12)0.0070 (12)
C140.0293 (14)0.0145 (12)0.0242 (13)0.0027 (11)0.0002 (11)0.0009 (10)
C150.0265 (14)0.0320 (15)0.0286 (15)0.0014 (13)0.0044 (12)0.0051 (12)
C160.050 (2)0.0347 (17)0.0333 (18)0.0056 (17)0.0005 (15)0.0039 (15)
C170.057 (2)0.0367 (18)0.0451 (19)0.0219 (17)0.0195 (18)0.0115 (15)
C180.0254 (14)0.0401 (18)0.0372 (17)0.0031 (14)0.0048 (13)0.0034 (15)
C190.0434 (19)0.0287 (15)0.0335 (16)0.0018 (15)0.0058 (15)0.0086 (13)
C200.0285 (14)0.0170 (12)0.0253 (13)0.0036 (11)0.0081 (11)0.0002 (11)
Geometric parameters (Å, º) top
O1—C31.254 (4)C9—C201.534 (4)
O2—C181.323 (4)C9—C111.551 (4)
O2—H1O20.8200C9—C101.560 (4)
O3—C151.216 (4)C10—H10A0.9800
O4—C161.398 (4)C11—C121.545 (4)
O4—H1O40.8200C11—H11A0.9700
C1—C21.529 (5)C11—H11B0.9700
C1—C101.547 (4)C12—C131.535 (4)
C1—H1A0.9700C12—H12A0.9700
C1—H1B0.9700C12—H12B0.9700
C2—C31.484 (5)C13—C171.527 (4)
C2—H2A0.9700C13—C151.531 (4)
C2—H2B0.9700C13—C141.556 (4)
C3—C41.446 (4)C14—H14A0.9700
C4—C181.350 (4)C14—H14B0.9700
C4—C51.515 (4)C15—C161.508 (4)
C5—C61.531 (4)C16—H16A0.9700
C5—C191.547 (4)C16—H16B0.9700
C5—C101.563 (4)C17—H17A0.9600
C6—C71.525 (4)C17—H17B0.9600
C6—H6A0.9700C17—H17C0.9600
C6—H6B0.9700C18—H18A0.9300
C7—C81.525 (4)C19—H19A0.9600
C7—H7A0.9700C19—H19B0.9600
C7—H7B0.9700C19—H19C0.9600
C8—C141.531 (4)C20—H20A0.9600
C8—C91.540 (4)C20—H20B0.9600
C8—H8A0.9800C20—H20C0.9600
C18—O2—H1O2109.5C5—C10—H10A105.5
C16—O4—H1O4109.5C12—C11—C9113.5 (2)
C2—C1—C10116.4 (3)C12—C11—H11A108.9
C2—C1—H1A108.2C9—C11—H11A108.9
C10—C1—H1A108.2C12—C11—H11B108.9
C2—C1—H1B108.2C9—C11—H11B108.9
C10—C1—H1B108.2H11A—C11—H11B107.7
H1A—C1—H1B107.3C13—C12—C11113.7 (3)
C3—C2—C1117.4 (3)C13—C12—H12A108.8
C3—C2—H2A107.9C11—C12—H12A108.8
C1—C2—H2A107.9C13—C12—H12B108.8
C3—C2—H2B107.9C11—C12—H12B108.8
C1—C2—H2B107.9H12A—C12—H12B107.7
H2A—C2—H2B107.2C17—C13—C15111.0 (2)
O1—C3—C4121.1 (3)C17—C13—C12110.1 (3)
O1—C3—C2119.2 (3)C15—C13—C12109.7 (2)
C4—C3—C2119.7 (3)C17—C13—C14111.2 (3)
C18—C4—C3117.0 (3)C15—C13—C14104.7 (2)
C18—C4—C5123.4 (3)C12—C13—C14110.2 (2)
C3—C4—C5119.6 (3)C8—C14—C13112.6 (2)
C4—C5—C6112.6 (2)C8—C14—H14A109.1
C4—C5—C19108.5 (2)C13—C14—H14A109.1
C6—C5—C19107.4 (2)C8—C14—H14B109.1
C4—C5—C10109.8 (2)C13—C14—H14B109.1
C6—C5—C10109.0 (2)H14A—C14—H14B107.8
C19—C5—C10109.4 (2)O3—C15—C16118.9 (3)
C7—C6—C5113.8 (2)O3—C15—C13122.2 (3)
C7—C6—H6A108.8C16—C15—C13118.8 (3)
C5—C6—H6A108.8O4—C16—C15113.8 (3)
C7—C6—H6B108.8O4—C16—H16A108.8
C5—C6—H6B108.8C15—C16—H16A108.8
H6A—C6—H6B107.7O4—C16—H16B108.8
C6—C7—C8109.5 (3)C15—C16—H16B108.8
C6—C7—H7A109.8H16A—C16—H16B107.7
C8—C7—H7A109.8C13—C17—H17A109.5
C6—C7—H7B109.8C13—C17—H17B109.5
C8—C7—H7B109.8H17A—C17—H17B109.5
H7A—C7—H7B108.2C13—C17—H17C109.5
C7—C8—C14111.9 (2)H17A—C17—H17C109.5
C7—C8—C9112.3 (2)H17B—C17—H17C109.5
C14—C8—C9112.6 (2)O2—C18—C4123.4 (3)
C7—C8—H8A106.5O2—C18—H18A118.3
C14—C8—H8A106.5C4—C18—H18A118.3
C9—C8—H8A106.5C5—C19—H19A109.5
C20—C9—C8111.5 (2)C5—C19—H19B109.5
C20—C9—C11107.9 (2)H19A—C19—H19B109.5
C8—C9—C11106.8 (2)C5—C19—H19C109.5
C20—C9—C10112.4 (2)H19A—C19—H19C109.5
C8—C9—C10108.6 (2)H19B—C19—H19C109.5
C11—C9—C10109.5 (2)C9—C20—H20A109.5
C1—C10—C9114.5 (2)C9—C20—H20B109.5
C1—C10—C5110.2 (2)H20A—C20—H20B109.5
C9—C10—C5114.9 (2)C9—C20—H20C109.5
C1—C10—H10A105.5H20A—C20—H20C109.5
C9—C10—H10A105.5H20B—C20—H20C109.5
C10—C1—C2—C30.2 (4)C8—C9—C10—C552.4 (3)
C1—C2—C3—O1157.0 (3)C11—C9—C10—C5168.7 (3)
C1—C2—C3—C423.7 (4)C4—C5—C10—C157.8 (3)
O1—C3—C4—C184.4 (4)C6—C5—C10—C1178.4 (2)
C2—C3—C4—C18175.0 (3)C19—C5—C10—C161.2 (3)
O1—C3—C4—C5177.0 (2)C4—C5—C10—C973.3 (3)
C2—C3—C4—C53.6 (4)C6—C5—C10—C950.6 (3)
C18—C4—C5—C622.3 (4)C19—C5—C10—C9167.7 (2)
C3—C4—C5—C6159.2 (2)C20—C9—C11—C1264.2 (3)
C18—C4—C5—C1996.4 (3)C8—C9—C11—C1255.8 (3)
C3—C4—C5—C1982.1 (3)C10—C9—C11—C12173.2 (3)
C18—C4—C5—C10144.0 (3)C9—C11—C12—C1353.6 (4)
C3—C4—C5—C1037.5 (3)C11—C12—C13—C1774.3 (3)
C4—C5—C6—C769.2 (3)C11—C12—C13—C15163.3 (3)
C19—C5—C6—C7171.3 (3)C11—C12—C13—C1448.6 (3)
C10—C5—C6—C752.9 (3)C7—C8—C14—C13174.0 (2)
C5—C6—C7—C858.1 (3)C9—C8—C14—C1358.3 (3)
C6—C7—C8—C14172.7 (2)C17—C13—C14—C871.3 (3)
C6—C7—C8—C959.5 (3)C15—C13—C14—C8168.8 (2)
C7—C8—C9—C2068.1 (3)C12—C13—C14—C851.0 (3)
C14—C8—C9—C2059.3 (3)C17—C13—C15—O3151.8 (4)
C7—C8—C9—C11174.2 (2)C12—C13—C15—O330.0 (4)
C14—C8—C9—C1158.4 (3)C14—C13—C15—O388.2 (4)
C7—C8—C9—C1056.2 (3)C17—C13—C15—C1631.0 (4)
C14—C8—C9—C10176.4 (2)C12—C13—C15—C16152.8 (3)
C2—C1—C10—C991.3 (3)C14—C13—C15—C1689.0 (3)
C2—C1—C10—C540.0 (3)O3—C15—C16—O411.1 (5)
C20—C9—C10—C157.5 (3)C13—C15—C16—O4166.3 (3)
C8—C9—C10—C1178.7 (2)C3—C4—C18—O24.4 (5)
C11—C9—C10—C162.4 (3)C5—C4—C18—O2177.1 (3)
C20—C9—C10—C571.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1O2···O10.821.692.424 (4)148
O4—H1O4···O1i0.822.072.841 (3)156
C1—H1B···O2ii0.972.483.368 (5)152
C12—H12A···O30.972.412.799 (4)103
C17—H17A···O4iii0.962.533.460 (5)164
Symmetry codes: (i) x+3/2, y+1, z+1/2; (ii) x1, y, z; (iii) x1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC20H30O4
Mr334.44
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)7.9633 (3), 10.7166 (4), 20.8338 (7)
V3)1777.95 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.58 × 0.51 × 0.10
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.952, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
20568, 2691, 2084
Rint0.030
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.157, 1.09
No. of reflections2691
No. of parameters220
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.45

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1O2···O10.821.692.424 (4)148
O4—H1O4···O1i0.822.072.841 (3)156
C1—H1B···O2ii0.972.483.368 (5)152
C12—H12A···O30.972.412.799 (4)103
C17—H17A···O4iii0.962.533.460 (5)164
Symmetry codes: (i) x+3/2, y+1, z+1/2; (ii) x1, y, z; (iii) x1/2, y+1/2, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Additional correspondence author, e-mail: suchada.c@psu.ac.th. Thomson Reuters ResearcherID: A-5085-2009.

Acknowledgements

The authors thank the Prince of Songkla University for financial support through the Crystal Materials Research Unit. The authors also thank Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChantrapromma, S., Fun, H.-K., Pakhathirathien, C., Karalai, C. & Chantrapromma, K. (2007). Acta Cryst. E63, o459–o461.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFun, H.-K., Pakhathirathien, C., Chantrapromma, S., Karalai, C. & Chantrapromma, K. (2006). Acta Cryst. E62, o5539–o5541.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHu, W.-M., Li, M.-Y., Li, J., Xiao, Q., Feng, G. & Wu, J. (2010). J. Nat. Prod. In the press. doi:10.1021/np100484w.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Y., Deng, Z., Gao, T., Proksch, P. & Lin, W. (2005). Phytochemistry, 66, 1465–1471.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds