organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[3,5-Bis(4-chloro­phen­yl)-4,5-di­hydro-1H-pyrazol-1-yl]ethanone

aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 14 June 2010; accepted 29 June 2010; online 7 July 2010)

In the title compound, C17H14Cl2N2O, the dihedral angles between the pyrazole ring and the mean planes of the benzene and chloro-substituted benzene rings are 75.97 (1) and 16.63 (1)° respectively. In the crystal, two weak C—H⋯O inter­molecular hydrogen bonds and ππ stacking inter­actions [centroid–centroid distances = 3.774 (4) and 3.716 (7) Å] are observed.

Related literature

For the anti­tumor, anti­bacterial, anti­fungal, anti­viral, anti­parasitic, anti-tubercular and insecticidal properties of substituted pyrazolines, see: Hes et al. (1978[Hes, R. V., Wellinga, K. & Grosscurt, A. C. (1978). J. Agric. Food Chem. 26, 915-918.]); Manna et al. (2005[Manna, F., Chimenti, F., Fioravanti, R., Bolasco, A., Secci, D., Chimenti, P., Ferlini, C. & Scambia, G. (2005). Bioorg. Med. Chem. Lett. 15, 4632-4635.]); Amir et al. (2008[Amir, M., Kumar, H. & Khan, S. A. (2008). Bioorg. Med. Chem. Lett. 18, 918-922.]). For their anti-inflammatory, anti-diabetic, anaesthetic and analgesic properties, see: Regaila et al. (1979[Regaila, H. A., El-Bayonk, A. K. & Hammad, M. (1979). Egypt. J. Chem. 20, 197-202.]). For their use in organic synthesis, see: Klimova et al. (1999[Klimova, E. I., Marcos, M., Klimova, T. B., Cecilio, A. T., Ruben, A. T. & Lena, R. R. (1999). J. Organomet. Chem. 585, 106-111.]); Bhaskarreddy et al. (1997[Bhaskarreddy, D., Chandrasekhar, B. N., Padmavathi, V. & Sumathi, R. P. (1997). Synthesis, 3, 491-494.]). For a continuation of the work on pyrazoline derivatives, see: Samshuddin et al. (2010[Samshuddin, S., Narayana, B., Yathirajan, H. S., Safwan, A. P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1279-o1280.]); Fun et al. (2010[Fun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o582-o583.]); Yathirajan et al. (2007a[Yathirajan, H. S., Bindya, S., Sarojini, B. K., Narayana, B. & Bolte, M. (2007a). Acta Cryst. E63, o2718.],b[Yathirajan, H. S., Bindya, S., Sarojini, B. K., Narayana, B. & Bolte, M. (2007b). Acta Cryst. E63, o2566.]); Butcher et al. (2007[Butcher, R. J., Jasinski, J. P., Prasad, D. J., Narayana, B. & Yathirajan, H. S. (2007). Acta Cryst. E63, o4005-o4006.]). For related structures, see: Jian & Wang (2006[Jian, F.-F. & Wang, J. (2006). Acta Cryst. E62, o5303-o5304.]); Anuradha et al. (2008[Anuradha, N., Thiruvalluvar, A., Mahalinga, M. & Butcher, R. J. (2008). Acta Cryst. E64, o2160.]); Lu et al. (2008[Lu, Z.-K., Diao, H.-L., Li, S. & He, B. (2008). Acta Cryst. E64, o1638.]); Jian et al. (2006[Jian, F.-F., Wang, J. & Xiao, H.-L. (2006). Acta Cryst. E62, o4771-o4772.]); Wang et al. (2005[Wang, S.-F., Zhu, W., Yang, X. & Zhou, L.-J. (2005). Acta Cryst. E61, o3985-o3986.]).

[Scheme 1]

Experimental

Crystal data
  • C17H14Cl2N2O

  • Mr = 333.20

  • Monoclinic, P 21 /n

  • a = 6.0716 (9) Å

  • b = 13.160 (2) Å

  • c = 19.782 (3) Å

  • β = 98.412 (2)°

  • V = 1563.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.42 mm−1

  • T = 100 K

  • 0.55 × 0.38 × 0.21 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (APEX2; Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA]) Tmin = 0.803, Tmax = 0.917

  • 18906 measured reflections

  • 4809 independent reflections

  • 4141 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.111

  • S = 1.44

  • 4809 reflections

  • 200 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯Cl1i 0.93 2.80 3.5996 (13) 145
C9—H9⋯O1ii 0.93 2.59 3.4620 (15) 156
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x-1, y, z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Due to the interesting activity of variously substituted pyrazolines as biological agents considerable attention has been focused on this class of compounds. They are used as antitumor, antibacterial, antifungal, antiviral, antiparasitic, anti-tubercular and insecticidal agents (Hes et al., 1978; Manna et al. 2005; Amir et al., 2008).Some of these compounds have also anti-inflammatory, anti-diabetic, anaesthetic and analgesic properties Regaila et al., 1979). Among the existing various pyrazoline type derivatives, 1-acetyl-pyrazolines have been identified as one of the most promising scaffolds. In the field of medicinal chemistry, 1-acetyl-pyrazoline derivatives were found to display anticancer and anti-inflammatory activities. In addition, pyrazolines have played a crucial part in the development of theory in heterocyclic chemistry and also used extensively in organic synthesis (Klimova et al., 1999 & Bhaskarreddy et al., 1997). In continuation of our work on pyrazoline derivatives (Samshuddin et al., 2010, Fun et al., 2010, Yathirajan et al., 2007a,b, Butcher et al., 2007) and in view of the importance of these derivatives, the title compound (I) is synthesized and its crystal structure is reported here.

In (I), two chloro-substituted benzene rings are bonded to opposite ends of an acetyl substituted pyrazole ring in a slightly distorted envelope conformation (Fig. 1). The dihedral angle between the mean planes of the benzene (C4–C9) and chloro substituted benzene rings (C10–C15) with the pyrazole ring are 75.97 ° and 16.63 ° respectively. Two weak C—H···O intermolecular hydrogen bonds (Table 1) and π-π stacking interactions (Table 2) are observed which contribute to crystal packing stability (Fig. 2).

Related literature top

For the antitumor, antibacterial, antifungal, antiviral, antiparasitic, anti-tubercular and insecticidal properties of substituted pyrazolines, see: Hes et al. (1978); Manna et al. (2005); Amir et al. (2008). For their anti-inflammatory, anti-diabetic, anaesthetic and analgesic properties, see: Regaila et al. (1979). For their use in organic synthesis, see: Klimova et al. (1999); Bhaskarreddy et al. (1997). For a continuation of the work on pyrazoline derivatives, see: Samshuddin et al. (2010); Fun et al. (2010); Yathirajan et al. (2007a,b); Butcher et al. (2007). For related structures, see: Jian & Wang (2006); Anuradha et al. (2008); Lu et al. (2008); Jian et al. (2006); Wang et al. (2005).

Experimental top

A mixture of (2E)-1,3-bis(4-chlorophenyl)prop-2-en-1-one (2.77 g, 0.01 mol) and hydrazine hydrate (0.5 ml, 0.01 mol) in 25 ml e thanol in presence of 2 ml glacial acetic acid was refluxed for 5 h (Fig. 3). The reaction mixture was cooled and poured into 50 ml ice-cold water. The precipitate was collected by filtration and purified by recrystallization from ethanol. The single-crystal was grown from DMF by slow evaporation method and yield of the compound was 84%.(m.p. 376 K). Analytical data: Found (Calculated): C %: 61.21(61.28); H%: 4.25 (4.23); N%: 8.35(8.41).

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with C—H = 0.93–0.98 Å, and with Uiso(H) = 1.17–1.49Ueq(C).

Structure description top

Due to the interesting activity of variously substituted pyrazolines as biological agents considerable attention has been focused on this class of compounds. They are used as antitumor, antibacterial, antifungal, antiviral, antiparasitic, anti-tubercular and insecticidal agents (Hes et al., 1978; Manna et al. 2005; Amir et al., 2008).Some of these compounds have also anti-inflammatory, anti-diabetic, anaesthetic and analgesic properties Regaila et al., 1979). Among the existing various pyrazoline type derivatives, 1-acetyl-pyrazolines have been identified as one of the most promising scaffolds. In the field of medicinal chemistry, 1-acetyl-pyrazoline derivatives were found to display anticancer and anti-inflammatory activities. In addition, pyrazolines have played a crucial part in the development of theory in heterocyclic chemistry and also used extensively in organic synthesis (Klimova et al., 1999 & Bhaskarreddy et al., 1997). In continuation of our work on pyrazoline derivatives (Samshuddin et al., 2010, Fun et al., 2010, Yathirajan et al., 2007a,b, Butcher et al., 2007) and in view of the importance of these derivatives, the title compound (I) is synthesized and its crystal structure is reported here.

In (I), two chloro-substituted benzene rings are bonded to opposite ends of an acetyl substituted pyrazole ring in a slightly distorted envelope conformation (Fig. 1). The dihedral angle between the mean planes of the benzene (C4–C9) and chloro substituted benzene rings (C10–C15) with the pyrazole ring are 75.97 ° and 16.63 ° respectively. Two weak C—H···O intermolecular hydrogen bonds (Table 1) and π-π stacking interactions (Table 2) are observed which contribute to crystal packing stability (Fig. 2).

For the antitumor, antibacterial, antifungal, antiviral, antiparasitic, anti-tubercular and insecticidal properties of substituted pyrazolines, see: Hes et al. (1978); Manna et al. (2005); Amir et al. (2008). For their anti-inflammatory, anti-diabetic, anaesthetic and analgesic properties, see: Regaila et al. (1979). For their use in organic synthesis, see: Klimova et al. (1999); Bhaskarreddy et al. (1997). For a continuation of the work on pyrazoline derivatives, see: Samshuddin et al. (2010); Fun et al. (2010); Yathirajan et al. (2007a,b); Butcher et al. (2007). For related structures, see: Jian & Wang (2006); Anuradha et al. (2008); Lu et al. (2008); Jian et al. (2006); Wang et al. (2005).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), C17H14C12N2O, showing the atom labeling scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the title compound, (I), viewed down the a axis.
[Figure 3] Fig. 3. Reaction scheme of (I).
1-[3,5-Bis(4-chlorophenyl)-4,5-dihydro-1H-pyrazol-1-yl]ethanone top
Crystal data top
C17H14Cl2N2OF(000) = 688
Mr = 333.20Dx = 1.415 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6706 reflections
a = 6.0716 (9) Åθ = 2.6–30.8°
b = 13.160 (2) ŵ = 0.42 mm1
c = 19.782 (3) ÅT = 100 K
β = 98.412 (2)°Block, colourless
V = 1563.6 (4) Å30.55 × 0.38 × 0.21 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
4809 independent reflections
Radiation source: fine-focus sealed tube4141 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 31.3°, θmin = 1.9°
Absorption correction: multi-scan
(APEX2; Bruker, 2008)
h = 88
Tmin = 0.803, Tmax = 0.917k = 1818
18906 measured reflectionsl = 2828
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.44 w = 1/[σ2(Fo2) + (0.0475P)2]
where P = (Fo2 + 2Fc2)/3
4809 reflections(Δ/σ)max = 0.001
200 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C17H14Cl2N2OV = 1563.6 (4) Å3
Mr = 333.20Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.0716 (9) ŵ = 0.42 mm1
b = 13.160 (2) ÅT = 100 K
c = 19.782 (3) Å0.55 × 0.38 × 0.21 mm
β = 98.412 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
4809 independent reflections
Absorption correction: multi-scan
(APEX2; Bruker, 2008)
4141 reflections with I > 2σ(I)
Tmin = 0.803, Tmax = 0.917Rint = 0.026
18906 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.44Δρmax = 0.39 e Å3
4809 reflectionsΔρmin = 0.26 e Å3
200 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.05600 (5)0.67498 (2)0.037299 (16)0.02593 (9)
Cl21.07200 (6)0.31318 (3)0.545917 (17)0.03442 (10)
O11.42292 (14)0.36398 (8)0.25597 (5)0.0284 (2)
N11.10312 (16)0.44665 (8)0.22241 (5)0.0223 (2)
N20.90756 (16)0.45866 (8)0.17716 (5)0.0215 (2)
C10.80954 (19)0.53952 (9)0.19412 (6)0.0198 (2)
C20.93583 (19)0.59546 (9)0.25404 (6)0.0227 (2)
H2A0.84380.60660.28950.027*
H2B0.99000.66040.24010.027*
C31.13032 (19)0.52236 (9)0.27851 (6)0.0205 (2)
H31.27300.55780.28020.025*
C41.11491 (18)0.47227 (8)0.34639 (6)0.0185 (2)
C51.29877 (19)0.46775 (9)0.39706 (6)0.0204 (2)
H51.43220.49730.38950.024*
C61.2861 (2)0.41974 (9)0.45879 (6)0.0226 (2)
H61.41000.41640.49240.027*
C71.0866 (2)0.37695 (9)0.46945 (6)0.0227 (2)
C80.9003 (2)0.38125 (9)0.42023 (6)0.0239 (2)
H80.76650.35280.42850.029*
C90.91492 (19)0.42834 (9)0.35855 (6)0.0218 (2)
H90.79080.43080.32490.026*
C100.59722 (19)0.57204 (8)0.15606 (6)0.0189 (2)
C110.4946 (2)0.51628 (9)0.10008 (6)0.0230 (2)
H110.56140.45710.08740.028*
C120.2948 (2)0.54783 (9)0.06325 (6)0.0236 (2)
H120.22820.51080.02570.028*
C130.19554 (19)0.63577 (9)0.08334 (6)0.0200 (2)
C140.2917 (2)0.69243 (9)0.13857 (6)0.0214 (2)
H140.22270.75100.15150.026*
C150.4939 (2)0.66028 (9)0.17462 (6)0.0214 (2)
H150.56100.69820.21160.026*
C161.2506 (2)0.37105 (9)0.21546 (6)0.0233 (2)
C171.1866 (2)0.29880 (10)0.15692 (6)0.0307 (3)
H17A1.30520.25120.15490.046*
H17B1.15970.33630.11490.046*
H17C1.05390.26280.16360.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02224 (16)0.02398 (16)0.02988 (17)0.00321 (10)0.00184 (11)0.00217 (11)
Cl20.0471 (2)0.03506 (19)0.02341 (17)0.00037 (14)0.01295 (14)0.00586 (12)
O10.0234 (5)0.0361 (5)0.0260 (5)0.0063 (4)0.0045 (3)0.0069 (4)
N10.0212 (5)0.0270 (5)0.0184 (5)0.0046 (4)0.0016 (4)0.0002 (4)
N20.0211 (5)0.0251 (5)0.0181 (5)0.0027 (4)0.0023 (4)0.0016 (4)
C10.0212 (5)0.0202 (5)0.0181 (5)0.0008 (4)0.0034 (4)0.0016 (4)
C20.0245 (6)0.0202 (6)0.0229 (6)0.0004 (4)0.0010 (4)0.0009 (4)
C30.0194 (5)0.0212 (5)0.0203 (5)0.0013 (4)0.0011 (4)0.0014 (4)
C40.0183 (5)0.0175 (5)0.0194 (5)0.0005 (4)0.0020 (4)0.0000 (4)
C50.0171 (5)0.0214 (5)0.0223 (5)0.0033 (4)0.0015 (4)0.0019 (4)
C60.0246 (6)0.0223 (5)0.0201 (5)0.0008 (4)0.0004 (4)0.0023 (4)
C70.0301 (6)0.0200 (5)0.0194 (5)0.0003 (4)0.0087 (5)0.0005 (4)
C80.0205 (5)0.0227 (6)0.0300 (6)0.0016 (4)0.0085 (5)0.0010 (5)
C90.0168 (5)0.0218 (5)0.0266 (6)0.0009 (4)0.0021 (4)0.0002 (4)
C100.0200 (5)0.0183 (5)0.0188 (5)0.0001 (4)0.0046 (4)0.0024 (4)
C110.0228 (6)0.0209 (5)0.0255 (6)0.0024 (4)0.0044 (4)0.0043 (4)
C120.0227 (6)0.0218 (6)0.0259 (6)0.0000 (4)0.0018 (4)0.0053 (4)
C130.0188 (5)0.0195 (5)0.0219 (6)0.0003 (4)0.0037 (4)0.0019 (4)
C140.0257 (6)0.0173 (5)0.0215 (6)0.0034 (4)0.0043 (4)0.0011 (4)
C150.0273 (6)0.0187 (5)0.0177 (5)0.0009 (4)0.0018 (4)0.0010 (4)
C160.0240 (6)0.0272 (6)0.0202 (6)0.0055 (5)0.0083 (4)0.0064 (4)
C170.0373 (7)0.0318 (7)0.0239 (6)0.0122 (6)0.0069 (5)0.0006 (5)
Geometric parameters (Å, º) top
Cl1—C131.7382 (12)C6—H60.9300
Cl2—C71.7435 (12)C7—C81.3817 (17)
O1—C161.2249 (15)C8—C91.3829 (17)
N1—C161.3588 (15)C8—H80.9300
N1—N21.3875 (14)C9—H90.9300
N1—C31.4826 (15)C10—C151.3946 (16)
N2—C11.2875 (14)C10—C111.3968 (16)
C1—C101.4587 (16)C11—C121.3842 (17)
C1—C21.5063 (16)C11—H110.9300
C2—C31.5449 (16)C12—C131.3895 (16)
C2—H2A0.9700C12—H120.9300
C2—H2B0.9700C13—C141.3799 (17)
C3—C41.5110 (16)C14—C151.3923 (17)
C3—H30.9800C14—H140.9300
C4—C51.3881 (16)C15—H150.9300
C4—C91.3972 (16)C16—C171.5049 (18)
C5—C61.3871 (16)C17—H17A0.9600
C5—H50.9300C17—H17B0.9600
C6—C71.3795 (17)C17—H17C0.9600
C16—N1—N2122.18 (10)C7—C8—H8120.4
C16—N1—C3124.39 (10)C9—C8—H8120.4
N2—N1—C3113.42 (9)C8—C9—C4120.47 (11)
C1—N2—N1108.10 (10)C8—C9—H9119.8
N2—C1—C10121.01 (11)C4—C9—H9119.8
N2—C1—C2114.05 (10)C15—C10—C11118.71 (11)
C10—C1—C2124.93 (10)C15—C10—C1120.40 (11)
C1—C2—C3102.71 (9)C11—C10—C1120.88 (10)
C1—C2—H2A111.2C12—C11—C10120.98 (11)
C3—C2—H2A111.2C12—C11—H11119.5
C1—C2—H2B111.2C10—C11—H11119.5
C3—C2—H2B111.2C11—C12—C13118.86 (11)
H2A—C2—H2B109.1C11—C12—H12120.6
N1—C3—C4110.94 (9)C13—C12—H12120.6
N1—C3—C2100.81 (9)C14—C13—C12121.71 (11)
C4—C3—C2113.97 (9)C14—C13—Cl1119.46 (9)
N1—C3—H3110.3C12—C13—Cl1118.82 (9)
C4—C3—H3110.3C13—C14—C15118.71 (11)
C2—C3—H3110.3C13—C14—H14120.6
C5—C4—C9119.03 (10)C15—C14—H14120.6
C5—C4—C3120.83 (10)C14—C15—C10121.01 (11)
C9—C4—C3120.13 (10)C14—C15—H15119.5
C6—C5—C4120.86 (11)C10—C15—H15119.5
C6—C5—H5119.6O1—C16—N1120.13 (12)
C4—C5—H5119.6O1—C16—C17123.72 (11)
C7—C6—C5118.91 (11)N1—C16—C17116.14 (11)
C7—C6—H6120.5C16—C17—H17A109.5
C5—C6—H6120.5C16—C17—H17B109.5
C6—C7—C8121.49 (11)H17A—C17—H17B109.5
C6—C7—Cl2119.10 (10)C16—C17—H17C109.5
C8—C7—Cl2119.39 (9)H17A—C17—H17C109.5
C7—C8—C9119.23 (11)H17B—C17—H17C109.5
C16—N1—N2—C1176.08 (10)Cl2—C7—C8—C9177.42 (9)
C3—N1—N2—C15.01 (13)C7—C8—C9—C40.83 (18)
N1—N2—C1—C10179.54 (10)C5—C4—C9—C80.14 (17)
N1—N2—C1—C21.70 (13)C3—C4—C9—C8179.19 (11)
N2—C1—C2—C37.14 (13)N2—C1—C10—C15179.43 (11)
C10—C1—C2—C3174.16 (10)C2—C1—C10—C150.81 (17)
C16—N1—C3—C466.76 (14)N2—C1—C10—C110.06 (17)
N2—N1—C3—C4112.11 (10)C2—C1—C10—C11178.56 (11)
C16—N1—C3—C2172.18 (11)C15—C10—C11—C120.38 (18)
N2—N1—C3—C28.95 (12)C1—C10—C11—C12179.00 (11)
C1—C2—C3—N18.80 (11)C10—C11—C12—C130.77 (18)
C1—C2—C3—C4110.09 (11)C11—C12—C13—C140.43 (18)
N1—C3—C4—C5113.38 (12)C11—C12—C13—Cl1179.69 (9)
C2—C3—C4—C5133.67 (11)C12—C13—C14—C150.28 (18)
N1—C3—C4—C965.65 (13)Cl1—C13—C14—C15179.60 (9)
C2—C3—C4—C947.30 (15)C13—C14—C15—C100.67 (18)
C9—C4—C5—C60.53 (17)C11—C10—C15—C140.35 (17)
C3—C4—C5—C6178.51 (11)C1—C10—C15—C14179.73 (11)
C4—C5—C6—C70.50 (17)N2—N1—C16—O1178.94 (10)
C5—C6—C7—C80.21 (18)C3—N1—C16—O12.28 (18)
C5—C6—C7—Cl2178.08 (9)N2—N1—C16—C171.78 (16)
C6—C7—C8—C90.87 (18)C3—N1—C16—C17177.00 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···Cl1i0.932.803.5996 (13)145
C9—H9···O1ii0.932.593.4620 (15)156
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC17H14Cl2N2O
Mr333.20
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)6.0716 (9), 13.160 (2), 19.782 (3)
β (°) 98.412 (2)
V3)1563.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.42
Crystal size (mm)0.55 × 0.38 × 0.21
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(APEX2; Bruker, 2008)
Tmin, Tmax0.803, 0.917
No. of measured, independent and
observed [I > 2σ(I)] reflections
18906, 4809, 4141
Rint0.026
(sin θ/λ)max1)0.731
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.111, 1.44
No. of reflections4809
No. of parameters200
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.26

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···Cl1i0.932.803.5996 (13)145
C9—H9···O1ii0.932.593.4620 (15)156
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x1, y, z.
Cg···Cg π stacking interactions, top
Cg1 is the centroid of the ring N1/N2/C1/C2/C3, Cg2 is the centroid of the ring C4–C9 and Cg3 is the centroid of the ring C10–C125.
CgX···CgY (Å)Cg1···Perp (Å)Cg2···Perp (Å)Cg3···Perp (Å)
Cg1···Cg2i3.774 (4)-0.283 (8)-2.559 (6)
Cg1···Cg3ii3.716 (7)-3.572 (2)-3.594 (1)
Symmetry codes: (i) x, y, z; (ii) 1 + x, y, z.
 

Acknowledgements

JPJ thanks Dr Matthias Zeller and the YSU Department of Chemistry for their assistance with the data collection. The diffractometer was funded by NSF grant 0087210, by Ohio Board of Regents grant CAP-491, and by YSU. CSC thanks the University of Mysore for research facilities and HSY thanks University of Mysore for sabbatical leave.

References

First citationAmir, M., Kumar, H. & Khan, S. A. (2008). Bioorg. Med. Chem. Lett. 18, 918–922.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAnuradha, N., Thiruvalluvar, A., Mahalinga, M. & Butcher, R. J. (2008). Acta Cryst. E64, o2160.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBhaskarreddy, D., Chandrasekhar, B. N., Padmavathi, V. & Sumathi, R. P. (1997). Synthesis, 3, 491–494.  Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA  Google Scholar
First citationButcher, R. J., Jasinski, J. P., Prasad, D. J., Narayana, B. & Yathirajan, H. S. (2007). Acta Cryst. E63, o4005–o4006.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o582–o583.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHes, R. V., Wellinga, K. & Grosscurt, A. C. (1978). J. Agric. Food Chem. 26, 915–918.  Google Scholar
First citationJian, F.-F. & Wang, J. (2006). Acta Cryst. E62, o5303–o5304.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJian, F.-F., Wang, J. & Xiao, H.-L. (2006). Acta Cryst. E62, o4771–o4772.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKlimova, E. I., Marcos, M., Klimova, T. B., Cecilio, A. T., Ruben, A. T. & Lena, R. R. (1999). J. Organomet. Chem. 585, 106–111.  Web of Science CSD CrossRef CAS Google Scholar
First citationLu, Z.-K., Diao, H.-L., Li, S. & He, B. (2008). Acta Cryst. E64, o1638.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationManna, F., Chimenti, F., Fioravanti, R., Bolasco, A., Secci, D., Chimenti, P., Ferlini, C. & Scambia, G. (2005). Bioorg. Med. Chem. Lett. 15, 4632–4635.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRegaila, H. A., El-Bayonk, A. K. & Hammad, M. (1979). Egypt. J. Chem. 20, 197–202.  Google Scholar
First citationSamshuddin, S., Narayana, B., Yathirajan, H. S., Safwan, A. P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1279–o1280.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, S.-F., Zhu, W., Yang, X. & Zhou, L.-J. (2005). Acta Cryst. E61, o3985–o3986.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYathirajan, H. S., Bindya, S., Sarojini, B. K., Narayana, B. & Bolte, M. (2007a). Acta Cryst. E63, o2718.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYathirajan, H. S., Bindya, S., Sarojini, B. K., Narayana, B. & Bolte, M. (2007b). Acta Cryst. E63, o2566.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds