organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(4-Chloro­phen­yl)-3-(2,4-di­methyl­thiazol-5-yl)-1,2,4-triazolo[3,4-a]iso­quinoline

aOrganic and Medicinal Chemistry Research Laboratory, Organic Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014, Tamil Nadu, India, bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India, and cDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 3 April 2010; accepted 6 April 2010; online 10 April 2010)

In the title mol­ecule, C21H15ClN4S, the triazoloisoquinoline ring system is approximately planar, with an r.m.s. deviation of 0.054 (2) Å and a maximum deviation of 0.098 (2) Å from the mean plane for the triazole ring C atom that is bonded to the thia­zole ring. The thia­zole and benzene rings are twisted by 66.36 (7) and 56.32 (7)°, respectively, with respect to the mean plane of the triazoloisoquinoline ring system. In the crystal structure, mol­ecules are linked by inter­molecular C—H⋯N inter­actions along the a axis. The mol­ecular conformation is stabilized by a weak intra­molecular ππ inter­action involving the thia­zole and benzene rings, with a centroid–centroid distance of 3.6546 (11) Å. In addition, two other intermolecular ππ stacking inter­actions are observed, between the triazole and benzene rings and between the dihydro­pyridine and benzene rings [centroid–centroid distances = 3.6489 (11) and 3.5967 (10) Å, respectively].

Related literature

For the synthesis and anti­helmintic activity of triazolo compounds similar to the title compound, see: Nadkarni et al. (2001[Nadkarni, B. A., Kamat, V. R. & Khadse, B. G. (2001). Arzneim. Forsch. 51, 569-573.]). For related structures, see: Hui et al. (1999[Hui, X. P., Zhang, L. M. & Zhang, Z. Y. (1999). Indian J. Chem. Sect. B, 38, 1066-1069.]); Khan et al. (2010[Khan, F. N., Manivel, P., Prabakaran, K., Hathwar, V. R. & Ng, S. W. (2010). Acta Cryst. E66, o488.]); Zou et al. (2004[Zou, K.-H., Cai, X.-Q., Chen, J.-X., Zhang, L.-X., Zhang, A.-J. & Hu, M.-L. (2004). Acta Cryst. E60, o1736-o1738.]).

[Scheme 1]

Experimental

Crystal data
  • C21H15ClN4S

  • Mr = 390.89

  • Triclinic, [P \overline 1]

  • a = 7.8286 (5) Å

  • b = 8.1754 (6) Å

  • c = 15.1264 (9) Å

  • α = 93.514 (5)°

  • β = 94.805 (5)°

  • γ = 105.963 (6)°

  • V = 923.92 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 290 K

  • 0.40 × 0.25 × 0.24 mm

Data collection
  • Oxford Xcalibur diffractometer with an Eos (Nova) CCD detector

  • Absorption correction: multi-scan (CrysAlis PRO RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.851, Tmax = 0.924

  • 19579 measured reflections

  • 3439 independent reflections

  • 2518 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.111

  • S = 1.09

  • 3439 reflections

  • 246 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯N2i 0.93 2.62 3.495 (2) 158
C8—H8⋯N3i 0.93 2.51 3.383 (2) 156
Symmetry code: (i) x+1, y, z.

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO CCD; data reduction: CrysAlis PRO RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Drugs including alprazolam (tranquilizer), estazolam (hypnotic, sedative, tranquilizer), rilmazafon (hypnotic, anxiolytic, used in the case of neurotic insomnia), benatradin (diuretic), trapidil (hypotensive), trazodon (antidepressant, anxiolytic), etoperidone (antidepressant), nefazodone (antidepressant, 5-HT2 A-antagonist), anastazole (antineoplastic, non-steroidal aromatase inhibitor), letrozole (antineoplastic, aromatase inhibitor), ribavirin (antiviral), fluconazole, itraconazole, terconazole (antifungal) possess 1,2,4-Triazole as the structural element. Besides, it follows from the literature data that 1,2,4-triazoles and their fused systems show antibacterial, antifungal and antiflammatory properties. As part of our search for new isoquinoline analogues, we focused on synthesis of titled compounds and the crystal structure is reported.

In the title molecule (I), Fig. 1, the triazoloisoquinoline ring system (N1–N3/C1–C9/C16) is nearly planar, with an r.m.s. deviation of 0.054 (2) Å and a maximum deviation of 0.098 (2) Å from the mean plane for the triazole ring C16 atom which is bonded to the thiazole ring (S1/N4/C17/C18/C20). The thiazole (S1/N4/C17/C18/C20) and benzene (C10—C15) rings are twisted by 66.36 (7) and 56.32 (7)°, respectively, with respect to the mean plane of the triazoloisoquinoline ring system. The thiazole ring forms a dihedral angle of 23.34 (9)° with benzene ring.

In the crystal structure of (I), molecules are linked by intermolecular C—H···N interactions along the [100] direction (Table 1, Fig. 2). Furthermore, π-π interactions [Cg1···Cg5(x, y, z) = 3.6546 (11) Å and Cg2···Cg4(2-x, 2-y, 1-z) = 3.6489 (11) Å. Where Cg1, Cg2, Cg4 and Cg5 are the centroids of the S1/N4/C17/C18/C20, N1–N3/C1/C16, C2–C7 and C10–C15 rings, respectively] are observed.

Related literature top

For the synthesis and antihelmintic activity of triazolo compounds similar to the title compound, see: Nadkarni et al. (2001). For related literature, see: Hui et al. (1999); Khan et al. (2010); Zou et al. (2004). [It would be much more useful to readers if the "Related literature" section had some kind of simple sub-division, so that, instead of just "For related literature, see···" it said, for example, "For general background to···, see··· For related structures, see···; etc. Please revise this section as indicated.]

Experimental top

2-(3-(4-Chlorophenylisoquinolin-1-yl)hydrazine (1 mmol) was condensed with 2,4-dimethylthiazole-5-carbaldehyde (1.1 mmol) under refluxing conditions in isopropanol (10 ml) solvent to give the corresponding hydrazone in high yield. After removal of the solvent the compound was then oxidatively cyclized in nitrobenzene (10 ml) at 473 K. The product was recrystallized from dichlomethane to give block-shaped crystals.

Refinement top

All H atoms were placed in calculated positions with C–H = 0.93 and 0.96 Å and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2 or 1.5Ueq(C).

Structure description top

Drugs including alprazolam (tranquilizer), estazolam (hypnotic, sedative, tranquilizer), rilmazafon (hypnotic, anxiolytic, used in the case of neurotic insomnia), benatradin (diuretic), trapidil (hypotensive), trazodon (antidepressant, anxiolytic), etoperidone (antidepressant), nefazodone (antidepressant, 5-HT2 A-antagonist), anastazole (antineoplastic, non-steroidal aromatase inhibitor), letrozole (antineoplastic, aromatase inhibitor), ribavirin (antiviral), fluconazole, itraconazole, terconazole (antifungal) possess 1,2,4-Triazole as the structural element. Besides, it follows from the literature data that 1,2,4-triazoles and their fused systems show antibacterial, antifungal and antiflammatory properties. As part of our search for new isoquinoline analogues, we focused on synthesis of titled compounds and the crystal structure is reported.

In the title molecule (I), Fig. 1, the triazoloisoquinoline ring system (N1–N3/C1–C9/C16) is nearly planar, with an r.m.s. deviation of 0.054 (2) Å and a maximum deviation of 0.098 (2) Å from the mean plane for the triazole ring C16 atom which is bonded to the thiazole ring (S1/N4/C17/C18/C20). The thiazole (S1/N4/C17/C18/C20) and benzene (C10—C15) rings are twisted by 66.36 (7) and 56.32 (7)°, respectively, with respect to the mean plane of the triazoloisoquinoline ring system. The thiazole ring forms a dihedral angle of 23.34 (9)° with benzene ring.

In the crystal structure of (I), molecules are linked by intermolecular C—H···N interactions along the [100] direction (Table 1, Fig. 2). Furthermore, π-π interactions [Cg1···Cg5(x, y, z) = 3.6546 (11) Å and Cg2···Cg4(2-x, 2-y, 1-z) = 3.6489 (11) Å. Where Cg1, Cg2, Cg4 and Cg5 are the centroids of the S1/N4/C17/C18/C20, N1–N3/C1/C16, C2–C7 and C10–C15 rings, respectively] are observed.

For the synthesis and antihelmintic activity of triazolo compounds similar to the title compound, see: Nadkarni et al. (2001). For related literature, see: Hui et al. (1999); Khan et al. (2010); Zou et al. (2004). [It would be much more useful to readers if the "Related literature" section had some kind of simple sub-division, so that, instead of just "For related literature, see···" it said, for example, "For general background to···, see··· For related structures, see···; etc. Please revise this section as indicated.]

Computing details top

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO CCD (Oxford Diffraction, 2009); data reduction: CrysAlis PRO RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The title molecule with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
[Figure 2] Fig. 2. View of the packing diagram and the hydrogen bonding of (I) down the [100] direction. H atoms not involved in the motif shown have been omitted for clarity.
5-(4-Chlorophenyl)-3-(2,4-dimethylthiazol-5-yl)-1,2,4- triazolo[3,4-a]isoquinoline top
Crystal data top
C21H15ClN4SZ = 2
Mr = 390.89F(000) = 404
Triclinic, P1Dx = 1.405 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8286 (5) ÅCell parameters from 954 reflections
b = 8.1754 (6) Åθ = 2.0–20.4°
c = 15.1264 (9) ŵ = 0.33 mm1
α = 93.514 (5)°T = 290 K
β = 94.805 (5)°Block, pale yellow
γ = 105.963 (6)°0.40 × 0.25 × 0.24 mm
V = 923.92 (11) Å3
Data collection top
Oxford Xcalibur Eos (Nova) CCD detector
diffractometer
3439 independent reflections
Radiation source: Enhance (Mo) X-ray Source2518 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω scansθmax = 25.5°, θmin = 3.0°
Absorption correction: multi-scan
(CrysAlis PRO RED; Oxford Diffraction, 2009)
h = 99
Tmin = 0.851, Tmax = 0.924k = 99
19579 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0635P)2]
where P = (Fo2 + 2Fc2)/3
3439 reflections(Δ/σ)max < 0.001
246 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C21H15ClN4Sγ = 105.963 (6)°
Mr = 390.89V = 923.92 (11) Å3
Triclinic, P1Z = 2
a = 7.8286 (5) ÅMo Kα radiation
b = 8.1754 (6) ŵ = 0.33 mm1
c = 15.1264 (9) ÅT = 290 K
α = 93.514 (5)°0.40 × 0.25 × 0.24 mm
β = 94.805 (5)°
Data collection top
Oxford Xcalibur Eos (Nova) CCD detector
diffractometer
3439 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO RED; Oxford Diffraction, 2009)
2518 reflections with I > 2σ(I)
Tmin = 0.851, Tmax = 0.924Rint = 0.035
19579 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.09Δρmax = 0.20 e Å3
3439 reflectionsΔρmin = 0.21 e Å3
246 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.55766 (7)0.44377 (7)0.27355 (3)0.05951 (19)
Cl10.90834 (9)0.16939 (8)0.06573 (5)0.0843 (2)
N10.84486 (17)0.86756 (18)0.31082 (9)0.0404 (3)
N20.69901 (19)1.0456 (2)0.36035 (10)0.0527 (4)
N30.57837 (19)0.9079 (2)0.31201 (11)0.0552 (4)
N40.4093 (2)0.4452 (2)0.11718 (11)0.0566 (4)
C10.8562 (2)1.0182 (2)0.36077 (11)0.0422 (4)
C21.0238 (2)1.1181 (2)0.40777 (11)0.0424 (4)
C31.0384 (3)1.2657 (2)0.46264 (12)0.0518 (5)
H30.93901.30530.46840.062*
C41.2006 (3)1.3523 (2)0.50822 (13)0.0567 (5)
H41.21031.45030.54520.068*
C51.3493 (3)1.2952 (3)0.49973 (13)0.0572 (5)
H51.45811.35450.53130.069*
C61.3375 (2)1.1514 (3)0.44506 (13)0.0542 (5)
H61.43881.11500.43900.065*
C71.1733 (2)1.0589 (2)0.39819 (11)0.0444 (4)
C81.1543 (2)0.9065 (2)0.34138 (12)0.0466 (4)
H81.25580.87100.33410.056*
C90.9971 (2)0.8117 (2)0.29783 (11)0.0423 (4)
C100.9794 (2)0.6564 (2)0.23864 (11)0.0428 (4)
C111.0353 (2)0.5235 (3)0.27137 (13)0.0519 (5)
H111.08700.53470.32990.062*
C121.0157 (3)0.3744 (3)0.21852 (14)0.0573 (5)
H121.05320.28530.24120.069*
C130.9398 (3)0.3592 (3)0.13168 (13)0.0541 (5)
C140.8902 (2)0.4919 (3)0.09643 (12)0.0527 (5)
H140.84330.48200.03710.063*
C150.9105 (2)0.6405 (2)0.14989 (12)0.0475 (4)
H150.87760.73110.12620.057*
C160.6634 (2)0.8009 (2)0.28300 (11)0.0453 (4)
C170.5732 (2)0.6376 (2)0.23238 (12)0.0471 (4)
C180.4858 (2)0.6136 (2)0.14858 (12)0.0498 (5)
C190.4738 (3)0.7494 (3)0.09026 (15)0.0764 (7)
H19A0.35630.76450.08840.115*
H19B0.49690.71760.03120.115*
H19C0.56050.85440.11320.115*
C200.4383 (2)0.3425 (3)0.17513 (14)0.0558 (5)
C210.3769 (4)0.1526 (3)0.16023 (18)0.0799 (7)
H21A0.25050.11370.16410.120*
H21B0.43820.10430.20480.120*
H21C0.40230.11730.10230.120*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0593 (3)0.0633 (4)0.0552 (3)0.0153 (3)0.0034 (2)0.0122 (2)
Cl10.0961 (5)0.0658 (4)0.0907 (5)0.0316 (3)0.0026 (3)0.0189 (3)
N10.0364 (8)0.0490 (9)0.0405 (8)0.0185 (7)0.0070 (6)0.0052 (6)
N20.0451 (9)0.0614 (10)0.0577 (10)0.0276 (8)0.0029 (7)0.0021 (8)
N30.0402 (9)0.0680 (11)0.0614 (10)0.0249 (8)0.0008 (7)0.0027 (8)
N40.0550 (10)0.0589 (11)0.0559 (10)0.0203 (9)0.0029 (8)0.0027 (8)
C10.0411 (10)0.0502 (10)0.0406 (9)0.0200 (8)0.0084 (7)0.0062 (8)
C20.0439 (10)0.0467 (10)0.0384 (9)0.0135 (8)0.0085 (7)0.0095 (8)
C30.0581 (12)0.0523 (11)0.0503 (11)0.0232 (10)0.0079 (9)0.0074 (9)
C40.0691 (13)0.0485 (11)0.0486 (11)0.0115 (10)0.0044 (9)0.0009 (9)
C50.0509 (12)0.0561 (13)0.0566 (12)0.0024 (10)0.0006 (9)0.0088 (10)
C60.0384 (10)0.0640 (13)0.0588 (12)0.0106 (9)0.0084 (8)0.0072 (10)
C70.0399 (10)0.0520 (11)0.0435 (10)0.0135 (8)0.0111 (7)0.0098 (8)
C80.0342 (9)0.0601 (12)0.0501 (10)0.0192 (9)0.0110 (8)0.0049 (9)
C90.0364 (9)0.0548 (11)0.0422 (9)0.0209 (8)0.0116 (7)0.0083 (8)
C100.0362 (9)0.0540 (11)0.0435 (10)0.0190 (8)0.0112 (7)0.0054 (8)
C110.0526 (11)0.0644 (13)0.0468 (11)0.0290 (10)0.0064 (8)0.0078 (9)
C120.0618 (12)0.0573 (12)0.0628 (13)0.0308 (11)0.0119 (10)0.0114 (10)
C130.0511 (11)0.0549 (12)0.0586 (12)0.0183 (10)0.0109 (9)0.0014 (9)
C140.0518 (11)0.0665 (13)0.0436 (10)0.0232 (10)0.0066 (8)0.0011 (9)
C150.0457 (10)0.0586 (12)0.0454 (10)0.0242 (9)0.0099 (8)0.0085 (9)
C160.0344 (9)0.0608 (12)0.0442 (10)0.0189 (9)0.0041 (7)0.0053 (9)
C170.0354 (9)0.0592 (12)0.0495 (11)0.0181 (9)0.0048 (8)0.0037 (9)
C180.0460 (10)0.0538 (11)0.0521 (11)0.0215 (9)0.0021 (8)0.0002 (9)
C190.0994 (17)0.0625 (14)0.0660 (14)0.0318 (13)0.0244 (12)0.0001 (11)
C200.0501 (11)0.0564 (12)0.0623 (13)0.0169 (10)0.0088 (9)0.0039 (10)
C210.0942 (18)0.0585 (14)0.0864 (17)0.0212 (13)0.0081 (13)0.0040 (12)
Geometric parameters (Å, º) top
S1—C171.7150 (19)C8—C91.351 (2)
S1—C201.722 (2)C8—H80.9300
Cl1—C131.7387 (19)C9—C101.475 (2)
N1—C11.382 (2)C10—C111.382 (2)
N1—C161.392 (2)C10—C151.389 (2)
N1—C91.413 (2)C11—C121.381 (3)
N2—C11.310 (2)C11—H110.9300
N2—N31.376 (2)C12—C131.379 (3)
N3—C161.313 (2)C12—H120.9300
N4—C201.299 (3)C13—C141.371 (3)
N4—C181.378 (2)C14—C151.381 (2)
C1—C21.441 (2)C14—H140.9300
C2—C31.394 (2)C15—H150.9300
C2—C71.399 (2)C16—C171.460 (2)
C3—C41.374 (3)C17—C181.365 (3)
C3—H30.9300C18—C191.477 (3)
C4—C51.380 (3)C19—H19A0.9600
C4—H40.9300C19—H19B0.9600
C5—C61.372 (2)C19—H19C0.9600
C5—H50.9300C20—C211.490 (3)
C6—C71.405 (3)C21—H21A0.9600
C6—H60.9300C21—H21B0.9600
C7—C81.435 (2)C21—H21C0.9600
C17—S1—C2089.71 (9)C12—C11—H11119.5
C1—N1—C16104.18 (13)C10—C11—H11119.5
C1—N1—C9122.02 (14)C13—C12—C11119.11 (18)
C16—N1—C9133.80 (15)C13—C12—H12120.4
C1—N2—N3106.96 (14)C11—C12—H12120.4
C16—N3—N2109.14 (14)C14—C13—C12121.03 (18)
C20—N4—C18111.44 (17)C14—C13—Cl1119.56 (16)
N2—C1—N1110.74 (15)C12—C13—Cl1119.41 (16)
N2—C1—C2128.52 (16)C13—C14—C15119.30 (18)
N1—C1—C2120.68 (14)C13—C14—H14120.3
C3—C2—C7120.43 (17)C15—C14—H14120.3
C3—C2—C1122.28 (16)C14—C15—C10120.84 (18)
C7—C2—C1117.26 (16)C14—C15—H15119.6
C4—C3—C2119.62 (18)C10—C15—H15119.6
C4—C3—H3120.2N3—C16—N1108.91 (16)
C2—C3—H3120.2N3—C16—C17123.14 (15)
C3—C4—C5120.64 (19)N1—C16—C17127.92 (15)
C3—C4—H4119.7C18—C17—C16126.79 (17)
C5—C4—H4119.7C18—C17—S1109.80 (14)
C6—C5—C4120.41 (19)C16—C17—S1123.38 (14)
C6—C5—H5119.8C17—C18—N4114.72 (17)
C4—C5—H5119.8C17—C18—C19125.94 (18)
C5—C6—C7120.40 (18)N4—C18—C19119.29 (17)
C5—C6—H6119.8C18—C19—H19A109.5
C7—C6—H6119.8C18—C19—H19B109.5
C2—C7—C6118.48 (17)H19A—C19—H19B109.5
C2—C7—C8119.24 (16)C18—C19—H19C109.5
C6—C7—C8122.28 (16)H19A—C19—H19C109.5
C9—C8—C7123.62 (16)H19B—C19—H19C109.5
C9—C8—H8118.2N4—C20—C21124.4 (2)
C7—C8—H8118.2N4—C20—S1114.31 (16)
C8—C9—N1116.99 (16)C21—C20—S1121.26 (17)
C8—C9—C10123.21 (15)C20—C21—H21A109.5
N1—C9—C10119.80 (14)C20—C21—H21B109.5
C11—C10—C15118.60 (17)H21A—C21—H21B109.5
C11—C10—C9119.53 (16)C20—C21—H21C109.5
C15—C10—C9121.87 (16)H21A—C21—H21C109.5
C12—C11—C10121.00 (18)H21B—C21—H21C109.5
C1—N2—N3—C160.8 (2)N1—C9—C10—C1557.7 (2)
N3—N2—C1—N12.2 (2)C15—C10—C11—C123.1 (3)
N3—N2—C1—C2174.89 (17)C9—C10—C11—C12178.05 (16)
C16—N1—C1—N22.68 (19)C10—C11—C12—C130.3 (3)
C9—N1—C1—N2177.60 (14)C11—C12—C13—C142.5 (3)
C16—N1—C1—C2174.71 (15)C11—C12—C13—Cl1178.02 (15)
C9—N1—C1—C25.0 (2)C12—C13—C14—C152.5 (3)
N2—C1—C2—C30.4 (3)Cl1—C13—C14—C15178.05 (13)
N1—C1—C2—C3176.44 (16)C13—C14—C15—C100.4 (3)
N2—C1—C2—C7178.86 (17)C11—C10—C15—C143.1 (3)
N1—C1—C2—C72.0 (2)C9—C10—C15—C14178.05 (15)
C7—C2—C3—C40.7 (3)N2—N3—C16—N10.8 (2)
C1—C2—C3—C4177.71 (16)N2—N3—C16—C17177.39 (16)
C2—C3—C4—C50.4 (3)C1—N1—C16—N32.09 (18)
C3—C4—C5—C60.4 (3)C9—N1—C16—N3178.24 (17)
C4—C5—C6—C71.1 (3)C1—N1—C16—C17176.03 (17)
C3—C2—C7—C60.1 (3)C9—N1—C16—C173.6 (3)
C1—C2—C7—C6178.40 (15)N3—C16—C17—C1866.9 (3)
C3—C2—C7—C8179.91 (16)N1—C16—C17—C18115.2 (2)
C1—C2—C7—C81.4 (2)N3—C16—C17—S1111.10 (18)
C5—C6—C7—C20.8 (3)N1—C16—C17—S166.8 (2)
C5—C6—C7—C8179.03 (17)C20—S1—C17—C181.01 (14)
C2—C7—C8—C92.1 (3)C20—S1—C17—C16179.31 (15)
C6—C7—C8—C9177.69 (17)C16—C17—C18—N4178.77 (15)
C7—C8—C9—N10.7 (3)S1—C17—C18—N40.5 (2)
C7—C8—C9—C10179.18 (16)C16—C17—C18—C193.7 (3)
C1—N1—C9—C84.3 (2)S1—C17—C18—C19178.11 (17)
C16—N1—C9—C8175.35 (17)C20—N4—C18—C170.5 (2)
C1—N1—C9—C10175.59 (15)C20—N4—C18—C19177.28 (18)
C16—N1—C9—C104.8 (3)C18—N4—C20—C21178.43 (18)
C8—C9—C10—C1156.7 (2)C18—N4—C20—S11.3 (2)
N1—C9—C10—C11123.46 (18)C17—S1—C20—N41.35 (15)
C8—C9—C10—C15122.2 (2)C17—S1—C20—C21178.36 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···N2i0.932.623.495 (2)158
C8—H8···N3i0.932.513.383 (2)156
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC21H15ClN4S
Mr390.89
Crystal system, space groupTriclinic, P1
Temperature (K)290
a, b, c (Å)7.8286 (5), 8.1754 (6), 15.1264 (9)
α, β, γ (°)93.514 (5), 94.805 (5), 105.963 (6)
V3)923.92 (11)
Z2
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.40 × 0.25 × 0.24
Data collection
DiffractometerOxford Xcalibur Eos (Nova) CCD detector
Absorption correctionMulti-scan
(CrysAlis PRO RED; Oxford Diffraction, 2009)
Tmin, Tmax0.851, 0.924
No. of measured, independent and
observed [I > 2σ(I)] reflections
19579, 3439, 2518
Rint0.035
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.111, 1.09
No. of reflections3439
No. of parameters246
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.21

Computer programs: CrysAlis PRO CCD (Oxford Diffraction, 2009), CrysAlis PRO RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···N2i0.932.623.495 (2)158
C8—H8···N3i0.932.513.383 (2)156
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

We thank the FIST program for data collection on the single-crystal diffractometer at SSCU, IISc, Bangalore. We also thank Professor T. N. Guru Row, IISc, Bangalore, for his help with the data collection. FNK thanks the DST for Fast Track Proposal funding.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHui, X. P., Zhang, L. M. & Zhang, Z. Y. (1999). Indian J. Chem. Sect. B, 38, 1066–1069.  Google Scholar
First citationKhan, F. N., Manivel, P., Prabakaran, K., Hathwar, V. R. & Ng, S. W. (2010). Acta Cryst. E66, o488.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNadkarni, B. A., Kamat, V. R. & Khadse, B. G. (2001). Arzneim. Forsch. 51, 569–573.  CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZou, K.-H., Cai, X.-Q., Chen, J.-X., Zhang, L.-X., Zhang, A.-J. & Hu, M.-L. (2004). Acta Cryst. E60, o1736–o1738.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds