organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages o2524-o2525

10-Meth­oxy­benzo[g]imidazo[1,2-a][1,8]naphthyridine-4-carbo­nitrile

aDepartment of Chemistry, National Taras Shevchenko University, 64 Volodymyrska St, Kyiv 01601, Ukraine, and bLaboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, 31077 Toulouse CEDEX 4, France
*Correspondence e-mail: antaran@gala.net

(Received 17 June 2009; accepted 16 September 2009; online 26 September 2009)

In the title compound, C16H10N4O, both the meth­oxy and nitrile substituents lie in the plane defined by the benzo[g]imidazo[1,2-a]-1,8-naphthyridine ring system, resulting in a nearly planar geometry for the entire mol­ecule (r.m.s. deviation of the non-H atoms from the mean plane is 0.044 Å). In the solid-state, the mol­ecules form a three-dimensional polymer through inter­molecular C—H⋯N and C—H⋯O hydrogen bonds. In addition, the packing mode results in stabilizing ππ stacking inter­actions between the asymmetric units.

Related literature

For the synthesis of the title compound and a series of similar products, see: Volovnenko et al. (2009[Volovnenko, T. A., Tarasov, A. V., Zubatyuk, R. I., Shishkin, O. V., Turov, A. V. & Volovenko, Yu. M. (2009). Chem. Heterocycl. Compd. In the press.]). For related compounds and their anti­bacterial or photophysical properties, see: Kondo et al. (1990[Kondo, H., Taguchi, M., Inoue, Y., Sakamoto, F. & Tsukamoto, G. (1990). J. Med. Chem. 33, 2012-2015.]); Gokhale & Seshadri (1987[Gokhale, U. V. & Seshadri, S. (1987). Dyes Pigm. 8, 157-163.]); Rajagopal & Seshadri (1991[Rajagopal, R. & Seshadri, S. (1991). Dyes Pigm. 17, 57-69.]); Vijila et al. (2000[Vijila, C., Ramalingam, A., Gowri, V. S., Chua, S. O. & Sivakumar, K. (2000). Spectrochim. Acta, A56, 983-989.]). For the solid-state structures of other imidazonaphthyridine derivatives, see: Fun et al. (1996[Fun, H.-K., Sivakumar, K., Chua, S.-O., Ooi, M.-F., Anwair, M. A. S., Gan, E.-K. & Jackson, W. R. (1996). Acta Cryst. C52, 2231-2236.]); Sivakumar et al. (1996a[Sivakumar, K., Fun, H.-K., Chua, S.-O., Ooi, M.-F., Anwair, M. A. S., Gan, E.-K. & Jackson, W. R. (1996a). Acta Cryst. C52, 2236-2239.],b[Sivakumar, K., Fun, H.-K., Chua, S.-O., Ooi, M.-F., Anwair, M. A. S., Gan, E.-K. & Jackson, W. R. (1996b). Acta Cryst. C52, 2239-2243.]); Muthamizhchelvan et al. (2005a[Muthamizhchelvan, C., Saminathan, K., SethuSankar, K., Fraanje, J., Peschar, R. & Sivakumar, K. (2005a). Acta Cryst. E61, o1377-o1380.],b[Muthamizhchelvan, C., Saminathan, K., SethuSankar, K., Fraanje, J., Peschar, R. & Sivakumar, K. (2005b). Acta Cryst. E61, o2910-o2912.]). For general metrical features within organic compounds, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C16H10N4O

  • Mr = 274.28

  • Monoclinic, P 21 /c

  • a = 7.710 (2) Å

  • b = 11.970 (2) Å

  • c = 13.340 (3) Å

  • β = 93.55 (3)°

  • V = 1228.8 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 180 K

  • 0.40 × 0.40 × 0.35 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.95, Tmax = 0.97

  • 45253 measured reflections

  • 3532 independent reflections

  • 2507 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.164

  • S = 1.08

  • 3532 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O1i 0.93 2.50 3.366 (3) 156
C3—H3⋯N1ii 0.93 2.62 3.394 (2) 141
Symmetry codes: (i) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Table 2
ππ stacking interactions (Å, °)

Cgi Cgj Centroid distance Interplanar spacing i αii γiii
Cg1 Cg2iv 3.487 (2) 3.322 2.68 15.42
Cg2 Cg1iv 3.487 (2) 3.361 2.68 17.68
Cg3 Cg3iv 3.710 (2) 3.382 0.00 24.27
Cg1 Cg4v 3.689 (2) 3.336 5.01 25.28
Cg4 Cg1v 3.689 (2) 3.397 5.01 22.98
Notes: (i) perpendicular distance between the centroid of the first ring and the plane of the second ring; (ii) dihedral angle between the plane of the first ring and the plane of the second ring; (iii) angle between the centroid of the first ring and the normal to the plane of the second ring; (iv) symmetry code: -x, -y, 1-z; (v) symmetry code: 1 - x, -y,1 - z. Cg1 is the centroid of atoms N1/C1/N2/C13/C14, Cg2 is the centroid of atoms N3/C12/C4–C6/C11, Cg3 is the centroid of atoms N2/C1–C4/C12 and Cg4 is the centroid of atoms C6–C11.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker (2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and CAMERON (Watkin et al., 1993[Watkin, D. M., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

New heterocyclic nitrogen-containing systems are always of great interest to synthetic as well as pharmaceutical organic chemists. We have recently reported an efficient and versatile route to benzo[g]imidazo[1,2-a]-1,8-naphthyridines upon thermal reaction of 2-chloroquinoline-3-carbaldehydes with 1-substitued hetarylacetonitriles (Volovnenko et al., 2009). Here we report the crystal structure of the one of synthesized compound, namely, 10-methoxybenzo[g]imidazo[1,2-a]-1,8-naphthyridine-4-carbonitrile. It has been reported that products with similar structures possess not only antibacterial activity (Kondo et al., 1990) but also interesting photophysical properties (Gokhale & Seshadri, 1987; Rajagopal & Seshadri, 1991; Vijila et al., 2000).

Fig. 1 shows a perspective view of the asymetric unit of the title compound, including the labelling scheme. Selected bond distances and angles are given in Table 1. The benzo[g]imidazo[1,2-a]-1,8-naphthyridine core is almost planar (RMS deviation of C1>C14 and N1>N3 from mean plane is 0.035 Å). In addition, both methoxy and carbonitrile substituents attached to C(2) and C(11), respectively, are oriented in such a way that they both lay in heterocyle plane granting a nearly planar geometry to the entire molecule (RMS deviation of the all non-hydrogen atoms from mean plane is 0.044 Å). Bond distances and angles in the title compound are normal (Allen et al., 1987) and compare well with other imidazonaphtyridines derivatives (Fun et al., 1996; Sivakumar et al..1996a,b; Muthamizhchelvan et al., 2005a,b).

The crystal structure is stabilized by C—H···N and C—H···O intermolecular hydrogen bonds (Table 1) forming a three dimensional polymeric structure (Figure 2). In addition, the asymmetric units are seen to be stacked along the (100) axis with relatively short interplanar distances (Table 3) possibly allowing additional stabilization through ππ stacking interactions (Figure 3).

Related literature top

For the synthesis of the title compound and a series of similar products, see: Volovnenko et al. (2009). For related compounds and their antibacterial or photophysical properties, see: Kondo et al. (1990); Gokhale & Seshadri (1987); Rajagopal & Seshadri (1991); Vijila et al. (2000). For the solid-state structures of other imidazonaphthyridine derivatives, see: Fun et al. (1996); Sivakumar et al. (1996a,b); Muthamizhchelvan et al. (2005a,b). For general metrical features within organic compounds, see: Allen et al. (1987).

Experimental top

The title compound was synthesized by the reaction of 2-chloro-8-methoxyquinoline-3-carbaldehyde (2 mmol) with (1-benzyl-1H-imidazol-2-yl)acetonitrile (2 mmol) in dimethylformamide (3 ml). After refluxing for 1 h, the reaction mixture was left to stand overnight. The resulting crude solid was filtered, washed twice with acetone (10 ml) and dried. Yield: 96%. Crystals suitable for X-ray analysis were obtained by slow crystallization from hot dimethylformamide.

Refinement top

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl) or 0.93 Å (aromatic) with Uiso(H) = 1.2Ueq(Carom) or Uiso(H) = 1.5Ueq(Cmethyl).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: sAINT (Bruker (2007); data reduction: SAINT (Bruker (2007); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: WinGX (Farrugia, 1999) and publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. A perspective view of the title compound, with 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. A packing diagram for the title compound, evidencing C—H···N et C—H···O hydrogen bonds (blue dotted lines).
[Figure 3] Fig. 3. A packing diagram for the title compound, evidencing π-π stacking interactions (red dotted lines).
10-Methoxybenzo[g]imidazo[1,2-a][1,8]naphthyridine-4-carbonitrile top
Crystal data top
C16H10N4OF(000) = 568
Mr = 274.28Dx = 1.483 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9999 reflections
a = 7.710 (2) Åθ = 2.7–34.9°
b = 11.970 (2) ŵ = 0.10 mm1
c = 13.340 (3) ÅT = 180 K
β = 93.55 (3)°Block, brown
V = 1228.8 (5) Å30.40 × 0.40 × 0.35 mm
Z = 4
Data collection top
Bruker APEXII
diffractometer
3532 independent reflections
Radiation source: sealed tube2507 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
ϕ scansθmax = 29.8°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1010
Tmin = 0.95, Tmax = 0.97k = 1616
45253 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.164H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0616P)2 + 1.0259P]
where P = (Fo2 + 2Fc2)/3
3532 reflections(Δ/σ)max < 0.001
191 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.34 e Å3
0 constraints
Crystal data top
C16H10N4OV = 1228.8 (5) Å3
Mr = 274.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.710 (2) ŵ = 0.10 mm1
b = 11.970 (2) ÅT = 180 K
c = 13.340 (3) Å0.40 × 0.40 × 0.35 mm
β = 93.55 (3)°
Data collection top
Bruker APEXII
diffractometer
3532 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2507 reflections with I > 2σ(I)
Tmin = 0.95, Tmax = 0.97Rint = 0.050
45253 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.164H-atom parameters constrained
S = 1.08Δρmax = 0.33 e Å3
3532 reflectionsΔρmin = 0.34 e Å3
191 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1160 (2)0.16186 (14)0.60289 (12)0.0239 (3)
C20.0449 (2)0.22693 (14)0.51977 (13)0.0257 (3)
C30.0661 (2)0.19331 (15)0.42439 (13)0.0264 (4)
H30.02010.23580.37080.032*
C40.1593 (2)0.09249 (14)0.40567 (12)0.0239 (3)
C50.1800 (2)0.05231 (15)0.31021 (13)0.0271 (4)
H50.13520.09210.25460.033*
C60.2686 (2)0.04838 (15)0.29677 (12)0.0262 (4)
C70.2865 (3)0.09560 (17)0.20044 (13)0.0339 (4)
H70.24070.05880.14330.041*
C80.3705 (3)0.19467 (18)0.19165 (15)0.0378 (5)
H80.38000.22600.12840.045*
C90.4435 (3)0.25045 (16)0.27749 (15)0.0344 (4)
H90.50290.31730.26980.041*
C100.4285 (2)0.20791 (14)0.37173 (13)0.0268 (4)
C110.3374 (2)0.10535 (14)0.38426 (12)0.0232 (3)
C120.2307 (2)0.02653 (14)0.48692 (12)0.0222 (3)
C130.2521 (2)0.01703 (15)0.67504 (13)0.0282 (4)
H130.31260.04940.68690.034*
C140.1924 (3)0.08839 (16)0.74444 (14)0.0329 (4)
H140.20650.07730.81350.039*
C150.0484 (2)0.32689 (16)0.54198 (14)0.0307 (4)
C160.5661 (3)0.36456 (17)0.45063 (18)0.0399 (5)
H16A0.47940.41390.42070.060*
H16B0.60290.39130.51640.060*
H16C0.66390.36210.40950.060*
N10.1082 (2)0.17940 (14)0.69986 (11)0.0311 (3)
N20.31704 (18)0.06777 (12)0.47856 (10)0.0231 (3)
N30.20387 (18)0.06431 (12)0.58360 (10)0.0233 (3)
N40.1221 (3)0.40663 (16)0.55947 (15)0.0451 (5)
O10.49489 (18)0.25543 (11)0.45838 (10)0.0338 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0238 (8)0.0251 (8)0.0228 (8)0.0042 (6)0.0013 (6)0.0000 (6)
C20.0248 (8)0.0261 (8)0.0263 (8)0.0034 (6)0.0010 (6)0.0034 (6)
C30.0277 (8)0.0265 (8)0.0248 (8)0.0023 (6)0.0009 (6)0.0060 (6)
C40.0253 (8)0.0247 (8)0.0215 (7)0.0043 (6)0.0006 (6)0.0037 (6)
C50.0313 (9)0.0297 (8)0.0201 (7)0.0062 (7)0.0001 (6)0.0037 (6)
C60.0294 (8)0.0281 (8)0.0211 (8)0.0089 (7)0.0025 (6)0.0002 (6)
C70.0440 (11)0.0377 (10)0.0205 (8)0.0124 (8)0.0049 (7)0.0007 (7)
C80.0487 (12)0.0401 (11)0.0257 (9)0.0111 (9)0.0107 (8)0.0086 (8)
C90.0401 (10)0.0298 (9)0.0344 (10)0.0070 (8)0.0113 (8)0.0078 (7)
C100.0292 (8)0.0236 (8)0.0282 (8)0.0061 (6)0.0051 (7)0.0006 (6)
C110.0249 (8)0.0237 (8)0.0213 (7)0.0074 (6)0.0031 (6)0.0008 (6)
C120.0224 (7)0.0242 (7)0.0200 (7)0.0060 (6)0.0011 (6)0.0013 (6)
C130.0329 (9)0.0296 (8)0.0218 (8)0.0015 (7)0.0018 (6)0.0046 (6)
C140.0385 (10)0.0368 (10)0.0234 (8)0.0033 (8)0.0014 (7)0.0012 (7)
C150.0314 (9)0.0321 (9)0.0285 (9)0.0003 (7)0.0019 (7)0.0026 (7)
C160.0434 (11)0.0258 (9)0.0509 (13)0.0023 (8)0.0056 (9)0.0012 (8)
N10.0360 (8)0.0337 (8)0.0239 (7)0.0032 (6)0.0048 (6)0.0023 (6)
N20.0261 (7)0.0234 (7)0.0199 (6)0.0041 (5)0.0016 (5)0.0002 (5)
N30.0260 (7)0.0237 (7)0.0199 (6)0.0025 (5)0.0000 (5)0.0009 (5)
N40.0515 (11)0.0399 (10)0.0444 (10)0.0086 (9)0.0066 (8)0.0008 (8)
O10.0423 (8)0.0264 (6)0.0330 (7)0.0034 (6)0.0050 (6)0.0004 (5)
Geometric parameters (Å, º) top
C1—N11.315 (2)C9—C101.368 (3)
C1—N31.382 (2)C9—H90.9300
C1—C21.436 (2)C10—O11.360 (2)
C2—C31.354 (2)C10—C111.429 (2)
C2—C151.436 (3)C11—N21.354 (2)
C3—C41.434 (2)C12—N21.319 (2)
C3—H30.9300C12—N31.394 (2)
C4—C51.380 (2)C13—C141.361 (3)
C4—C121.424 (2)C13—N31.375 (2)
C5—C61.402 (3)C13—H130.9300
C5—H50.9300C14—N11.384 (3)
C6—C71.418 (2)C14—H140.9300
C6—C111.425 (2)C15—N41.142 (3)
C7—C81.360 (3)C16—O11.423 (2)
C7—H70.9300C16—H16A0.9600
C8—C91.412 (3)C16—H16B0.9600
C8—H80.9300C16—H16C0.9600
N1—C1—N3111.76 (15)O1—C10—C11114.95 (15)
N1—C1—C2129.36 (16)C9—C10—C11119.84 (17)
N3—C1—C2118.86 (15)N2—C11—C6122.89 (16)
C3—C2—C1120.12 (16)N2—C11—C10118.69 (15)
C3—C2—C15122.18 (16)C6—C11—C10118.41 (15)
C1—C2—C15117.70 (16)N2—C12—N3117.42 (14)
C2—C3—C4120.31 (16)N2—C12—C4125.71 (15)
C2—C3—H3119.8N3—C12—C4116.86 (15)
C4—C3—H3119.8C14—C13—N3105.12 (16)
C5—C4—C12116.60 (16)C14—C13—H13127.4
C5—C4—C3122.82 (15)N3—C13—H13127.4
C12—C4—C3120.55 (15)C13—C14—N1111.80 (16)
C4—C5—C6120.19 (16)C13—C14—H14124.1
C4—C5—H5119.9N1—C14—H14124.1
C6—C5—H5119.9N4—C15—C2179.7 (2)
C5—C6—C7122.25 (17)O1—C16—H16A109.5
C5—C6—C11117.77 (15)O1—C16—H16B109.5
C7—C6—C11119.95 (17)H16A—C16—H16B109.5
C8—C7—C6119.94 (18)O1—C16—H16C109.5
C8—C7—H7120.0H16A—C16—H16C109.5
C6—C7—H7120.0H16B—C16—H16C109.5
C7—C8—C9120.70 (18)C1—N1—C14104.37 (15)
C7—C8—H8119.6C12—N2—C11116.81 (14)
C9—C8—H8119.6C13—N3—C1106.94 (14)
C10—C9—C8121.13 (19)C13—N3—C12129.77 (15)
C10—C9—H9119.4C1—N3—C12123.28 (14)
C8—C9—H9119.4C10—O1—C16116.67 (15)
O1—C10—C9125.21 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O1i0.932.503.366 (3)156
C3—H3···N1ii0.932.623.394 (2)141
Symmetry codes: (i) x, y1/2, z1/2; (ii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC16H10N4O
Mr274.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)180
a, b, c (Å)7.710 (2), 11.970 (2), 13.340 (3)
β (°) 93.55 (3)
V3)1228.8 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.40 × 0.40 × 0.35
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.95, 0.97
No. of measured, independent and
observed [I > 2σ(I)] reflections
45253, 3532, 2507
Rint0.050
(sin θ/λ)max1)0.700
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.164, 1.08
No. of reflections3532
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.34

Computer programs: APEX2 (Bruker, 2007), sAINT (Bruker (2007), SAINT (Bruker (2007), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Watkin et al., 1993), WinGX (Farrugia, 1999) and publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O1i0.93002.50003.366 (3)156.00
C3—H3···N1ii0.93002.62003.394 (2)141.00
Symmetry codes: (i) x, y1/2, z1/2; (ii) x, y+1/2, z1/2.
ππ stacking interactions (Å, °) top
CgiCgjCentroid distanceInterplanar spacing iαiiγiii
Cg1Cg2iv3.487 (2)3.3222.6815.42
Cg2Cg1iv3.487 (2)3.3612.6817.68
Cg3Cg3iv3.710 (2)3.3820.0024.27
Cg1Cg4v3.689 (2)3.3365.0125.28
Cg4Cg1v3.689 (2)3.3975.0122.98
Notes: (i) perpendicular distance between the centroid of the first ring and the plane of the second ring; (ii) dihedral angle between the plane of the first ring and the plane of the second ring; (iii) angle between the centroid of the first ring and the normal to the plane of the second ring; (iv) symmetry code: -x, -y, 1-z; (v) symmetry code: 1 - x, -y,1 - z. Cg1 is the centroid of atoms N1/C1/N2/C13/C14, Cg2 is the centroid of atoms N3/C12/C4–C6/C11, Cg3 is the centroid of atoms N2/C1–C4/C12 and Cg4 is the centroid of atoms C6–C11.
 

Acknowledgements

This research was performed within the framework of the GDRI `Franco–Ukrainian association of Molecular Chemistry'.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Sivakumar, K., Chua, S.-O., Ooi, M.-F., Anwair, M. A. S., Gan, E.-K. & Jackson, W. R. (1996). Acta Cryst. C52, 2231–2236.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGokhale, U. V. & Seshadri, S. (1987). Dyes Pigm. 8, 157–163.  CrossRef CAS Web of Science Google Scholar
First citationKondo, H., Taguchi, M., Inoue, Y., Sakamoto, F. & Tsukamoto, G. (1990). J. Med. Chem. 33, 2012–2015.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMuthamizhchelvan, C., Saminathan, K., SethuSankar, K., Fraanje, J., Peschar, R. & Sivakumar, K. (2005a). Acta Cryst. E61, o1377–o1380.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMuthamizhchelvan, C., Saminathan, K., SethuSankar, K., Fraanje, J., Peschar, R. & Sivakumar, K. (2005b). Acta Cryst. E61, o2910–o2912.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRajagopal, R. & Seshadri, S. (1991). Dyes Pigm. 17, 57–69.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSivakumar, K., Fun, H.-K., Chua, S.-O., Ooi, M.-F., Anwair, M. A. S., Gan, E.-K. & Jackson, W. R. (1996a). Acta Cryst. C52, 2236–2239.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSivakumar, K., Fun, H.-K., Chua, S.-O., Ooi, M.-F., Anwair, M. A. S., Gan, E.-K. & Jackson, W. R. (1996b). Acta Cryst. C52, 2239–2243.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationVijila, C., Ramalingam, A., Gowri, V. S., Chua, S. O. & Sivakumar, K. (2000). Spectrochim. Acta, A56, 983–989.  CrossRef Google Scholar
First citationVolovnenko, T. A., Tarasov, A. V., Zubatyuk, R. I., Shishkin, O. V., Turov, A. V. & Volovenko, Yu. M. (2009). Chem. Heterocycl. Compd. In the press.  Google Scholar
First citationWatkin, D. M., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages o2524-o2525
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds