organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-N′-(4-Hydr­­oxy-4-methyl­pentan-2-yl­­idene)-2-(8-quinol­yl­oxy)acetohydrazide

aCollege of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China
*Correspondence e-mail: liusongcai09@126.com, songdg00@163.com

(Received 3 June 2009; accepted 29 June 2009; online 4 July 2009)

The title compound, C17H21N3O3, has a Z configuration about the N=N double bond. The molecular conformation is stabilized by intramolecular N—H⋯O and O—H⋯N hydrogen bonds.

Related literature

For the potential pharmacological and anti­tumor properties of acidamide compounds, see: Harrop et al. (2003[Harrop, T. C., Olmstead, M. M. & Mascharak, P. K. (2003). Chem. Commun. pp. 410-411.]); Ren et al. (2002[Ren, S., Wang, R., Komatsu, K., Bonaz-Krause, P., Zyrianov, Y., McKenna, C. E., Csipke, C., Tokes, Z. A. & Lien, E. J. (2002). J. Med. Chem. 45, 410-419.]). For related structures, see: Lei et al. (2008[Lei, J.-T., Jiang, Y.-X., Tao, L.-Y., Huang, S.-S. & Zhang, H.-L. (2008). Acta Cryst. E64, o909.]); Yang et al. (2007[Yang, D. S. (2007). J. Chem. Crystallogr. 37, 343-348.]).

[Scheme 1]

Experimental

Crystal data
  • C17H21N3O3

  • Mr = 315.37

  • Orthorhombic, P 21 21 21

  • a = 9.3297 (12) Å

  • b = 10.1621 (13) Å

  • c = 18.213 (2) Å

  • V = 1726.7 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 273 K

  • 0.20 × 0.18 × 0.15 mm

Data collection
  • Rigaku Saturn 724+ CCD detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2000[Rigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.983, Tmax = 0.987

  • 9084 measured reflections

  • 1761 independent reflections

  • 1593 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.101

  • S = 1.04

  • 1761 reflections

  • 212 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯N1 0.82 2.10 2.820 (3) 146
N2—H2⋯O3 0.86 1.97 2.753 (2) 151

Data collection: CrystalClear (Rigaku, 2000[Rigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Acidamide compounds have been found to possess potential pharmacological and antitumor properties (Harrop et al.,2003; Ren et al.,2002). Up to now, a scant few of Acidamide compounds have been appeared (Lei et al.,2008; Yang et al.,2007). As a further study of such compounds, we report here the structure of the title compound.

In the molecule of (I) (Fig. 1), the bond lengths and angles are within normal ranges. In the crystal structure, intramolecular O—H···N and N—H···O hydrogen bonds (Table 1) seem to be effective in the stabilization of the structure.

Related literature top

For the potential pharmacological and

antitumor properties of acidamide compounds, see: Harrop et al. (2003); Ren et al. (2002). For related structures, see: Lei et al. (2008); Yang et al. (2007).

Experimental top

3-hydroxy-3-methylbutanal (0.1 mmol, 10.2 mg) and 2-(quinolin-8-yloxy)acetohydrazide (0.1 mmol, 21.7 mg) were dissolved in methanol(20 ml). Then the mixture was stirred and refluxed for 1 h, and cooled to room temperature. After keeping the solution in air for about two weeks, yellow block crystals of the title compound were abtained. yield: 60% (based on 2-(quinolin-8-yloxy)acetohydrazide). Anal calcd for C17H21N3O3: C, 64.74%; H, 6.71%; N, 13.32%. Found: C, 64.46%; H, 6.48%; N, 13.59%.

Refinement top

H atoms of OH and NH groups were located in difference syntheses and constrained to ride on its parent atom [O—H = 0.82 Å and Uiso(H) = 1.5Ueq(O) (for OH); N—H = 0.86 Å and Uiso(H) = 1.2Ueq(N) (for NH)]. The remaining H atoms were positioned geometrically, with C—H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.2 for aromatic and methylene H atoms, and x = 1.5 for methyl H atoms.

Friedel data were measured by MoKa radiation, but as there are no atoms heavier than Si, the absolute structure cannot been determined reliably and Friedel-pair data were averaged.

Computing details top

Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear (Rigaku, 2000); data reduction: CrystalClear (Rigaku, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres. The O—H···N and N—H···O intramolecular hydrogen bond are shown dashed.
[Figure 2] Fig. 2. The crystal packing for (I).
(Z)-N'-(4-Hydroxy-4-methylpentan-2-ylidene)-2-(8-quinolyloxy)acetohydrazide top
Crystal data top
C17H21N3O3F(000) = 672
Mr = 315.37Dx = 1.213 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4517 reflections
a = 9.3297 (12) Åθ = 2.2–24.9°
b = 10.1621 (13) ŵ = 0.09 mm1
c = 18.213 (2) ÅT = 273 K
V = 1726.7 (4) Å3Block, colorless
Z = 40.20 × 0.18 × 0.15 mm
Data collection top
Rigaku Saturn 724+ CCD detector
diffractometer
1761 independent reflections
Radiation source: fine-focus sealed tube1593 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 9 pixels mm-1θmax = 25.0°, θmin = 2.2°
ω scansh = 1110
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2000)
k = 1211
Tmin = 0.983, Tmax = 0.987l = 2021
9084 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0681P)2 + 0.1302P]
where P = (Fo2 + 2Fc2)/3
1761 reflections(Δ/σ)max = 0.001
212 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C17H21N3O3V = 1726.7 (4) Å3
Mr = 315.37Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.3297 (12) ŵ = 0.09 mm1
b = 10.1621 (13) ÅT = 273 K
c = 18.213 (2) Å0.20 × 0.18 × 0.15 mm
Data collection top
Rigaku Saturn 724+ CCD detector
diffractometer
1761 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2000)
1593 reflections with I > 2σ(I)
Tmin = 0.983, Tmax = 0.987Rint = 0.025
9084 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.04Δρmax = 0.15 e Å3
1761 reflectionsΔρmin = 0.16 e Å3
212 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.14080 (16)0.04549 (14)0.89142 (8)0.0517 (4)
O20.0517 (2)0.26572 (17)1.03499 (9)0.0689 (5)
O30.06563 (17)0.17486 (16)0.93454 (10)0.0610 (4)
H30.05650.14300.89340.091*
N10.0639 (2)0.1419 (2)0.79583 (10)0.0575 (5)
N20.03984 (19)0.06920 (18)0.99886 (10)0.0520 (4)
H20.03910.00950.96540.062*
N30.1400 (2)0.06223 (19)1.05559 (10)0.0570 (5)
C10.0301 (3)0.2370 (3)0.74871 (15)0.0738 (7)
H10.05750.27910.75510.089*
C20.1156 (4)0.2780 (3)0.69090 (14)0.0781 (8)
H2A0.08600.34580.66010.094*
C30.2431 (3)0.2174 (3)0.68019 (13)0.0717 (8)
H3A0.30140.24250.64120.086*
C40.2882 (3)0.1155 (2)0.72835 (12)0.0578 (6)
C50.4203 (3)0.0503 (3)0.72093 (14)0.0721 (7)
H50.48270.07290.68320.087*
C60.4560 (3)0.0455 (3)0.76902 (15)0.0750 (7)
H60.54290.08920.76320.090*
C70.3655 (3)0.0816 (3)0.82796 (13)0.0628 (6)
H70.39340.14690.86070.075*
C80.2363 (2)0.0194 (2)0.83633 (11)0.0478 (5)
C90.1937 (2)0.0816 (2)0.78632 (11)0.0488 (5)
C100.1728 (2)0.1518 (2)0.94005 (12)0.0542 (5)
H10A0.18280.23260.91220.065*
H10B0.26280.13490.96490.065*
C110.0544 (2)0.1672 (2)0.99604 (11)0.0492 (5)
C120.2509 (3)0.0078 (2)1.04208 (14)0.0640 (6)
C130.2906 (3)0.0687 (3)0.96876 (16)0.0684 (7)
H13A0.26990.00510.93050.082*
H13B0.39320.08410.96840.082*
C140.2151 (3)0.1985 (3)0.94902 (19)0.0747 (8)
C150.3571 (4)0.0213 (3)1.10411 (19)0.1010 (12)
H15A0.44340.02521.09200.151*
H15B0.31670.01491.14820.151*
H15C0.37860.11271.11170.151*
C160.2178 (4)0.2961 (3)1.0126 (3)0.1322 (18)
H16A0.16060.26291.05230.198*
H16B0.17970.37910.99650.198*
H16C0.31470.30801.02900.198*
C170.2846 (4)0.2557 (5)0.8806 (3)0.156 (2)
H17A0.23520.33460.86650.234*
H17B0.27920.19270.84130.234*
H17C0.38320.27570.89060.234*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0499 (8)0.0465 (8)0.0587 (8)0.0073 (7)0.0036 (7)0.0125 (7)
O20.0794 (11)0.0569 (9)0.0705 (10)0.0125 (9)0.0105 (9)0.0225 (8)
O30.0504 (8)0.0505 (9)0.0819 (10)0.0052 (7)0.0098 (8)0.0055 (8)
N10.0578 (11)0.0573 (11)0.0576 (10)0.0058 (10)0.0067 (9)0.0118 (9)
N20.0524 (10)0.0476 (9)0.0559 (9)0.0032 (8)0.0013 (8)0.0081 (8)
N30.0623 (11)0.0507 (10)0.0580 (10)0.0003 (9)0.0067 (9)0.0015 (9)
C10.0736 (17)0.0745 (17)0.0733 (15)0.0074 (14)0.0140 (14)0.0225 (14)
C20.089 (2)0.0799 (18)0.0652 (15)0.0027 (17)0.0173 (15)0.0288 (14)
C30.086 (2)0.0785 (17)0.0504 (12)0.0184 (16)0.0044 (13)0.0145 (12)
C40.0641 (14)0.0624 (14)0.0468 (11)0.0124 (11)0.0033 (10)0.0003 (10)
C50.0668 (15)0.0862 (19)0.0634 (13)0.0068 (15)0.0140 (12)0.0047 (15)
C60.0607 (14)0.0828 (18)0.0814 (16)0.0112 (14)0.0151 (13)0.0023 (15)
C70.0557 (14)0.0650 (14)0.0677 (13)0.0069 (12)0.0026 (11)0.0073 (12)
C80.0501 (11)0.0445 (10)0.0487 (10)0.0018 (9)0.0024 (9)0.0001 (8)
C90.0541 (12)0.0448 (10)0.0475 (10)0.0065 (10)0.0069 (9)0.0008 (9)
C100.0549 (12)0.0460 (11)0.0616 (12)0.0079 (10)0.0025 (10)0.0130 (10)
C110.0518 (11)0.0444 (11)0.0513 (10)0.0004 (10)0.0060 (9)0.0059 (9)
C120.0616 (13)0.0463 (11)0.0839 (15)0.0000 (11)0.0131 (13)0.0044 (11)
C130.0457 (12)0.0603 (13)0.0992 (17)0.0002 (11)0.0014 (13)0.0088 (14)
C140.0490 (13)0.0541 (13)0.121 (2)0.0120 (11)0.0157 (15)0.0222 (15)
C150.105 (3)0.0767 (19)0.121 (2)0.0196 (19)0.051 (2)0.0065 (19)
C160.100 (3)0.0574 (17)0.239 (5)0.0046 (17)0.081 (3)0.032 (2)
C170.064 (2)0.174 (4)0.231 (5)0.028 (2)0.006 (3)0.137 (4)
Geometric parameters (Å, º) top
O1—C81.368 (2)C7—C81.370 (3)
O1—C101.429 (2)C7—H70.9300
O2—C111.228 (3)C8—C91.429 (3)
O3—C141.440 (3)C10—C111.512 (3)
O3—H30.8200C10—H10A0.9700
N1—C11.331 (3)C10—H10B0.9700
N1—C91.368 (3)C12—C151.508 (4)
N2—C111.329 (3)C12—C131.518 (4)
N2—N31.395 (3)C13—C141.538 (4)
N2—H20.8600C13—H13A0.9700
N3—C121.280 (3)C13—H13B0.9700
C1—C21.385 (4)C14—C171.520 (5)
C1—H10.9300C14—C161.525 (5)
C2—C31.354 (4)C15—H15A0.9600
C2—H2A0.9300C15—H15B0.9600
C3—C41.421 (4)C15—H15C0.9600
C3—H3A0.9300C16—H16A0.9600
C4—C51.406 (4)C16—H16B0.9600
C4—C91.418 (3)C16—H16C0.9600
C5—C61.351 (4)C17—H17A0.9600
C5—H50.9300C17—H17B0.9600
C6—C71.414 (4)C17—H17C0.9600
C6—H60.9300
C8—O1—C10117.74 (16)C11—C10—H10B109.6
C14—O3—H3109.5H10A—C10—H10B108.2
C1—N1—C9117.0 (2)O2—C11—N2125.1 (2)
C11—N2—N3120.64 (17)O2—C11—C10119.26 (19)
C11—N2—H2119.7N2—C11—C10115.61 (17)
N3—N2—H2119.7N3—C12—C15115.9 (2)
C12—N3—N2115.31 (18)N3—C12—C13126.4 (2)
N1—C1—C2124.9 (3)C15—C12—C13117.5 (2)
N1—C1—H1117.5C12—C13—C14116.3 (2)
C2—C1—H1117.5C12—C13—H13A108.2
C3—C2—C1118.6 (3)C14—C13—H13A108.2
C3—C2—H2A120.7C12—C13—H13B108.2
C1—C2—H2A120.7C14—C13—H13B108.2
C2—C3—C4120.2 (2)H13A—C13—H13B107.4
C2—C3—H3A119.9O3—C14—C17109.0 (3)
C4—C3—H3A119.9O3—C14—C16105.3 (3)
C5—C4—C9120.2 (2)C17—C14—C16111.5 (3)
C5—C4—C3122.9 (2)O3—C14—C13110.1 (2)
C9—C4—C3116.9 (2)C17—C14—C13108.9 (3)
C6—C5—C4119.6 (2)C16—C14—C13111.9 (3)
C6—C5—H5120.2C12—C15—H15A109.5
C4—C5—H5120.2C12—C15—H15B109.5
C5—C6—C7122.1 (3)H15A—C15—H15B109.5
C5—C6—H6119.0C12—C15—H15C109.5
C7—C6—H6119.0H15A—C15—H15C109.5
C8—C7—C6119.4 (2)H15B—C15—H15C109.5
C8—C7—H7120.3C14—C16—H16A109.5
C6—C7—H7120.3C14—C16—H16B109.5
O1—C8—C7124.42 (19)H16A—C16—H16B109.5
O1—C8—C9115.21 (18)C14—C16—H16C109.5
C7—C8—C9120.4 (2)H16A—C16—H16C109.5
N1—C9—C4122.4 (2)H16B—C16—H16C109.5
N1—C9—C8119.15 (19)C14—C17—H17A109.5
C4—C9—C8118.4 (2)C14—C17—H17B109.5
O1—C10—C11110.08 (17)H17A—C17—H17B109.5
O1—C10—H10A109.6C14—C17—H17C109.5
C11—C10—H10A109.6H17A—C17—H17C109.5
O1—C10—H10B109.6H17B—C17—H17C109.5
C11—N2—N3—C12159.0 (2)C5—C4—C9—C80.1 (3)
C9—N1—C1—C20.6 (4)C3—C4—C9—C8179.3 (2)
N1—C1—C2—C30.5 (5)O1—C8—C9—N11.0 (3)
C1—C2—C3—C41.0 (4)C7—C8—C9—N1179.8 (2)
C2—C3—C4—C5178.9 (3)O1—C8—C9—C4179.09 (18)
C2—C3—C4—C90.4 (3)C7—C8—C9—C40.1 (3)
C9—C4—C5—C60.5 (4)C8—O1—C10—C11178.94 (17)
C3—C4—C5—C6179.8 (3)N3—N2—C11—O29.8 (3)
C4—C5—C6—C71.1 (4)N3—N2—C11—C10169.88 (18)
C5—C6—C7—C81.1 (4)O1—C10—C11—O2168.6 (2)
C10—O1—C8—C75.2 (3)O1—C10—C11—N211.7 (3)
C10—O1—C8—C9175.65 (17)N2—N3—C12—C15177.3 (2)
C6—C7—C8—O1179.5 (2)N2—N3—C12—C137.7 (3)
C6—C7—C8—C90.4 (3)N3—C12—C13—C1481.1 (3)
C1—N1—C9—C41.3 (3)C15—C12—C13—C14104.0 (3)
C1—N1—C9—C8178.8 (2)C12—C13—C14—O369.5 (3)
C5—C4—C9—N1179.8 (2)C12—C13—C14—C17171.0 (3)
C3—C4—C9—N10.8 (3)C12—C13—C14—C1647.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N10.822.102.820 (3)146
N2—H2···O30.861.972.753 (2)151

Experimental details

Crystal data
Chemical formulaC17H21N3O3
Mr315.37
Crystal system, space groupOrthorhombic, P212121
Temperature (K)273
a, b, c (Å)9.3297 (12), 10.1621 (13), 18.213 (2)
V3)1726.7 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.20 × 0.18 × 0.15
Data collection
DiffractometerRigaku Saturn 724+ CCD detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2000)
Tmin, Tmax0.983, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
9084, 1761, 1593
Rint0.025
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.101, 1.04
No. of reflections1761
No. of parameters212
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.16

Computer programs: CrystalClear (Rigaku, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N10.822.102.820 (3)146
N2—H2···O30.861.972.753 (2)151
 

Acknowledgements

This work was supported by Jilin University.

References

First citationHarrop, T. C., Olmstead, M. M. & Mascharak, P. K. (2003). Chem. Commun. pp. 410–411.  Web of Science CSD CrossRef Google Scholar
First citationLei, J.-T., Jiang, Y.-X., Tao, L.-Y., Huang, S.-S. & Zhang, H.-L. (2008). Acta Cryst. E64, o909.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRen, S., Wang, R., Komatsu, K., Bonaz-Krause, P., Zyrianov, Y., McKenna, C. E., Csipke, C., Tokes, Z. A. & Lien, E. J. (2002). J. Med. Chem. 45, 410–419.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, D. S. (2007). J. Chem. Crystallogr. 37, 343–348.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds