organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages o895-o896

(7R,8R,8aS)-8-Hydr­­oxy-7-phenyl­per­hydro­indolizin-3-one

aInstitute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava, Slovak Republic 81237, bInstitute of Organic Chemistry, Catalysis and Petrochemistry, Faculty of Chemical and Food Technology, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava, Slovak Republic 81237, and cInstitute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak Technical University, Radlinského 9, Bratislava, Slovak Republic 81237
*Correspondence e-mail: viktor.vrabel@stuba.sk

(Received 10 March 2009; accepted 24 March 2009; online 28 March 2009)

The absolute configuration of the title compound, C14H17NO2, was assigned from the synthesis. There are two mol­ecules in the asymmetric unit. Their geometries are very similar and corresponding bond lengths are almost identical [mean deviation for all non-H atoms = 0.015 (2) Å]. The six-membered ring of the indolizine system adopts a chair conformation. In the crystal structure, mol­ecules form chains parallel to the a axis via inter­molecular O—H⋯O hydrogen bonds, which help to stabilize the crystal structure.

Related literature

Polyhydroxy­lated indolizidine alkaloids are excellent inhibitors of biologically important pathways, see: Melo et al. (2006[Melo, E. B., Gomes, A. D. & Carvalho, I. (2006). Tetrahedron, 62, 10277-10302.]); Michael (2003[Michael, J. P. (2003). Nat. Prod. Rep. 20, 458-475.]); Lillelund et al. (2002[Lillelund, V. H., Jensen, H. H., Liang, X. F. & Bols, M. (2002). Chem. Rev. 102, 515-554.]); Gerber-Lemaire & Juillerat-Jeanneret (2006[Gerber-Lemaire, S. & Juillerat-Jeanneret, L. (2006). Mini Rev. Med. Chem. 6, 1043-1052.]); Butters (2002[Butters, T. D. (2002). Chem. Biol. 9, 1266-1268.]); Compain & Martin (2001[Compain, P. & Martin, O. R. (2001). Bioorg. Med. Chem. 9, 3077-3092.]); Shi et al. (2008[Shi, G.-F., Li, J.-Q., Jiang, X.-P. & Cheng, Y. (2008). Tetrahedron, 64, 5005-5012.]); Fujita et al. (2004[Fujita, T., Nagasawa, H., Uto, Y., Hashimoto, T., Asakawa, Y. & Hori, H. (2004). Org. Lett. 6, 827-830.]). For indolizines as anti­mycobacterial agents against mycobacterial tuberculosis, see: Gundersen et al. (2003[Gundersen, L. L., Negussie, A. H., Rise, F. & Ostby, O. B. (2003). Arch. Pharm. (Weinheim), 336, 191-195.]). For the biological activity of indolizine derivatives, see: Teklu et al. (2005[Teklu, S., Gundersen, L. L., Larsen, T., Malterud, K. E. & Rise, F. (2005). Bioorg. Med. Chem. 13, 3127-3139.]); Foster et al. (1995[Foster, C., Ritchie, M., Selwood, D. I. & Snowden, W. (1995). Antivir. Chem. Chemother. 6, 289-297.]). For their pharmacological applications, see: Couture et al. (2000[Couture, A., Deniau, E., Grandclaudon, P., Leburn, S., Leonce, S., Renard, P. & Pfeiffer, B. (2000). Bioorg. Med. Chem. 8, 2113-2125.]); Jorgensen et al. (2000[Jorgensen, A. S., Jacobsen, P., Chirstiansen, L. B., Bury, P. S., Kanstrup, A., Thorp, S. M., Bain, S., Naerum, L. & Wassermann, K. (2000). Bioorg. Med. Chem. Lett. 10, 399-402.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For conjugation of the lone-pair electrons in simple amides, see: Brown & Corbridge (1954[Brown, C. J. & Corbridge, D. E. C. (1954). Acta Cryst. 7, 711-715.]); Pedersen (1967[Pedersen, B. F. (1967). Acta Chem. Scand. 21, 1415-1424.]). For bond lengths and angles in related structures, see: Vrábel et al. (2004[Vrábel, V., Kožíšek, J., Langer, V. & Marchalín, Š. (2004). Acta Cryst. E60, o932-o933.]); Švorc et al. (2008[Švorc, Ľ., Vrábel, V., Kožíšek, J., Marchalín, Š. & Šafář, P. (2008). Acta Cryst. E64, o1164-o1165.]). For the synthesis, see: Šafář et al. (2009[Šafář, P., Žúžiová, J., Marchalín, Š., Tóthová, E., Prónayová, N., Švorc, Ľ., Vrábel, V. & Daich, A. (2009). Tetrahedron Asymmetry. In the press.]).

[Scheme 1]

Experimental

Crystal data
  • C14H17NO2

  • Mr = 231.29

  • Orthorhombic, P 21 21 2

  • a = 25.3592 (4) Å

  • b = 16.1467 (2) Å

  • c = 6.0086 (1) Å

  • V = 2460.33 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.33 × 0.26 × 0.15 mm

Data collection
  • Oxford Diffraction Gemini R CCD diffractometer

  • Absorption correction: analytical (Clark & Reid, 1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.]) Tmin = 0.965, Tmax = 0.988

  • 60218 measured reflections

  • 3791 independent reflections

  • 1856 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.097

  • S = 0.98

  • 3791 reflections

  • 311 parameters

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.11 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O1i 0.82 1.92 2.7366 (19) 175
O2—H2⋯O3ii 0.82 1.88 2.6963 (18) 179
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+1]; (ii) -x+2, -y+1, z-1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2001[Brandenburg, K. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

The synthesis of biologically active indolizine derivatives continues to attract the attention of organic chemists, because of their wide spectrum of biological activity. Indolizines are natural structures, which are remarkable in its diversity and efficacy. For example, polyhydroxylated indolizidine alkaloids represented by the so popular castanospermine and swainsonine are well known for their ability to function as excellent inhibitors of biologically important pathways. These include the binding and processing of glycoproteins, potent glycosidase inhibitory activities (Melo et al., 2006; Michael, 2003; Lillelund et al., 2002), activity against AIDS virus HIV and some carcinogenic cells as well as against other important pathologies (Gerber-Lemaire & Juillerat-Jeanneret, 2006; Butters, 2002; Compain & Martin, 2001). More importantly, some hybrids of these structures have shown in numerous cases an increase of glycosidase activities as demonstrated by the Pearson's group and others (Shi et al., 2008; Fujita et al., 2004). Indolizines have also been tested as antimycobacterial agents against mycobacterial tuberculosis (Gundersen, et al., 2003). Many studies demonstrated that indolizine derivatives show biological activity such as antioxidative (Teklu et al., 2005) and antiherpes (Foster et al., 1995). The other well known pharmacological applications associated with this ring compounds are well documented in the literature (Couture et al., 2000; Jorgensen et al., 2000).

Due to the diverse properties of indolizine derivatives, the structure of the title compound, (I), has been determined as part of our study of the conformational changes caused by different substituents at various positions on the indolizine ring system. We report here the synthesis, molecular and crystal structure. The absolute configuration was established by synthesis and is depicted in the scheme and figure. The asymmetric unit of title compound contains two crystallographic independent molecules as shown in Fig. 1. The expected stereochemistry of atoms C5, C6 and C7 (C19, C20 and C21 for molecule B) was confirmed as S, R and R, respectively. The corresponding bond lengths and angles in the independent molecules agree with each other and are almost identical (mean deviation for all non-H atoms 0.015 (2) Å). The central six-membered N-heterocyclic ring is not planar and adopts a chair conformation (Cremer & Pople, 1975). A calculation of least-squares planes shows that this ring is puckered in such a manner that the four atoms C5, C6, C8 and C9 (C19, C20, C22 and C23 for molecule B) are coplanar to within 0.012 (2)Å [0.014 (1) Å], while atoms N1 (N2) and C7 (C21) are displaced from this plane on opposite sides, with out-of-plane displacements of -0.573 (2) and 0.639 (2)Å [-0.573 (1) and 0.664 (2)Å for molecule B], respectively. The phenyl ring attached to the indolizine ring system is planar (mean deviation is 0.009 (2)Å for molecule A and 0.011 (2)Å for molecule B). As shown in Table of geometric parameters, the N1—C5 (N2—C19) and N1—C9 (N2—C23) bonds are approximately equivalent and both are much longer than the N1—C2 (N2—C16) bond. Moreover, the N1 (N2) atom is sp2 hybridized, as evidenced by the sum of the valence angles around it [359.8 (2)° for molecule A and 358.4 (2)° for molecule B]. These data are consistent with conjugation of the lone-pair electrons on N1 (N2) with the adjacent carbonyl and agree with literature values for simple amides (Brown & Corbridge, 1954; Pedersen, 1967). The bond length of the carbonyl group C2=O1 (C16=O3) is 1.228 (2)Å [1.229 (2) Å], respectively, is somewhat longer than typical carbonyl bonds. This may be due to the fact that atoms O1 and O3 participate as acceptors in intermolecular hydrogen bonds with atoms O4 and O2 as donators. These intermolecular O—H···O hydrogen bonds link the molecules of (I) into extended chains, which run parallel to the a axis (Fig. 2) and help to stabilize the crystal structure of the compound. The bond lengths and angles in the indolizine ring system are in good agreement with values from the literature (Vrábel et al., 2004, Švorc et al., 2008).

Related literature top

Polyhydroxylated indolizidine alkaloids are excellent inhibitors of

biologically important pathways, see: Melo et al. (2006); Michael (2003); Lillelund et al. (2002); Gerber-Lemaire & Juillerat-Jeanneret (2006); Butters (2002); Compain & Martin (2001); Shi et al. (2008); Fujita et al. (2004). For indolizines asantimycobacterial agents against mycobacterial tuberculosis, see: Gundersen et al. (2003). For the biological activity of indolizine derivatives, see: Teklu et al. (2005); Foster et al. (1995). For their pharmacological applications, see: Couture et al. (2000); Jorgensen et al. (2000). For puckering parameters, see: Cremer & Pople (1975). For conjugation of the lone-pair electrons in simple amides, see: Brown & Corbridge (1954); Pedersen (1967). For bond lengths and angles, see: Vrábel et al. (2004); Švorc et al. (2008). For the synthesis, see: Šafář et al. (2009).

Experimental top

The title compound (7R,8R,8aS)-8-hydroxy-7-phenylhexahydroindolizin-3(5H)-one was prepared according literature procedures of Šafář et al. (2009).

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93 - 0.98Å and O—H distance 0.85Å and Uiso set at 1.2Ueq of the parent atom. The absolute configuration could not be reliably determined for this compound using Mo radiation, and has been assigned according to the synthesis. Friedel pairs have been merged.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level (Brandenburg, 2001).
[Figure 2] Fig. 2. A packing of the molecule of (I), viewed along the a axis.
(7R,8R,8aS)-8-Hydroxy-7-phenylperhydroindolizin-3-one top
Crystal data top
C14H17NO2F(000) = 992
Mr = 231.29Dx = 1.249 Mg m3
Orthorhombic, P21212Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2 2abCell parameters from 19073 reflections
a = 25.3592 (4) Åθ = 3.0–29.5°
b = 16.1467 (2) ŵ = 0.08 mm1
c = 6.0086 (1) ÅT = 298 K
V = 2460.33 (6) Å3Block, white
Z = 80.33 × 0.26 × 0.15 mm
Data collection top
Oxford Diffraction Gemini R CCD
diffractometer
3791 independent reflections
Radiation source: fine-focus sealed tube1856 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 10.4340 pixels mm-1θmax = 29.6°, θmin = 3.0°
Rotation method data acquisition using ω and ϕ scansh = 3434
Absorption correction: analytical
(Clark & Reid, 1995)
k = 2222
Tmin = 0.965, Tmax = 0.988l = 88
60218 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0552P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max = 0.001
3791 reflectionsΔρmax = 0.12 e Å3
311 parametersΔρmin = 0.11 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0058 (10)
Crystal data top
C14H17NO2V = 2460.33 (6) Å3
Mr = 231.29Z = 8
Orthorhombic, P21212Mo Kα radiation
a = 25.3592 (4) ŵ = 0.08 mm1
b = 16.1467 (2) ÅT = 298 K
c = 6.0086 (1) Å0.33 × 0.26 × 0.15 mm
Data collection top
Oxford Diffraction Gemini R CCD
diffractometer
3791 independent reflections
Absorption correction: analytical
(Clark & Reid, 1995)
1856 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.988Rint = 0.035
60218 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 0.98Δρmax = 0.12 e Å3
3791 reflectionsΔρmin = 0.11 e Å3
311 parameters
Special details top

Experimental. face-indexed (Oxford Diffraction, 2006)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.70322 (7)0.68436 (12)0.1107 (4)0.0598 (5)
C30.74476 (8)0.61874 (15)0.0828 (4)0.0771 (6)
H3A0.72860.56570.05040.093*
H3B0.76830.63300.03840.093*
C40.77424 (8)0.61487 (12)0.2968 (4)0.0741 (6)
H4A0.81160.62330.27140.089*
H4B0.76930.56140.36730.089*
C50.75196 (6)0.68383 (11)0.4430 (4)0.0578 (5)
H50.73750.65960.57960.069*
C60.79146 (6)0.75095 (10)0.5042 (4)0.0518 (5)
H60.81100.76710.37040.062*
C70.76420 (7)0.82764 (11)0.6015 (4)0.0574 (5)
H70.74800.81090.74250.069*
C80.72007 (7)0.85684 (11)0.4495 (4)0.0696 (6)
H8A0.73510.87630.31050.083*
H8B0.70200.90310.51890.083*
C90.68041 (7)0.78853 (12)0.4007 (4)0.0741 (6)
H9A0.66220.77280.53610.089*
H9B0.65450.80780.29380.089*
C100.80442 (7)0.89421 (12)0.6548 (4)0.0609 (5)
C110.82924 (9)0.89602 (15)0.8595 (4)0.0796 (6)
H110.82010.85700.96670.096*
C120.86719 (10)0.95414 (18)0.9085 (5)0.0986 (9)
H120.88340.95391.04730.118*
C130.88119 (10)1.01244 (18)0.7536 (6)0.1037 (10)
H130.90691.05160.78670.124*
C140.85711 (10)1.01259 (15)0.5506 (5)0.0936 (8)
H140.86611.05240.44530.112*
C150.81908 (8)0.95311 (13)0.5012 (4)0.0774 (6)
H150.80330.95320.36150.093*
C161.04902 (7)0.19922 (13)1.4431 (4)0.0621 (5)
C171.01297 (9)0.12496 (14)1.4512 (5)0.0835 (7)
H17A1.03210.07621.49990.100*
H17B0.98390.13471.55280.100*
C180.99320 (11)0.11388 (12)1.2193 (4)0.0875 (7)
H18A0.95520.10741.21890.105*
H18B1.00890.06511.15200.105*
C191.00905 (7)0.19155 (10)1.0914 (4)0.0585 (5)
H191.02650.17580.95210.070*
C200.96386 (6)0.25054 (10)1.0421 (3)0.0528 (5)
H200.94300.25921.17750.063*
C210.98457 (6)0.33341 (10)0.9582 (3)0.0489 (4)
H211.00360.32270.81930.059*
C221.02418 (7)0.36991 (10)1.1231 (4)0.0573 (5)
H22A1.03860.42071.06230.069*
H22B1.00610.38351.26070.069*
C231.06905 (7)0.30999 (11)1.1726 (4)0.0644 (5)
H23A1.09080.30291.04110.077*
H23B1.09100.33191.29090.077*
C240.94118 (7)0.39470 (10)0.9057 (3)0.0503 (5)
C250.94124 (8)0.43858 (12)0.7092 (4)0.0663 (6)
H250.96760.42850.60510.080*
C260.90288 (10)0.49765 (13)0.6625 (4)0.0772 (6)
H260.90390.52670.52900.093*
C270.86400 (9)0.51280 (13)0.8116 (4)0.0760 (7)
H270.83840.55250.78150.091*
C280.86265 (8)0.46921 (12)1.0066 (4)0.0744 (6)
H280.83580.47901.10890.089*
C290.90086 (7)0.41091 (11)1.0524 (4)0.0645 (5)
H290.89930.38181.18580.077*
N10.70898 (6)0.71810 (10)0.3111 (3)0.0613 (4)
N21.04696 (6)0.23118 (9)1.2390 (3)0.0593 (4)
O10.66974 (6)0.70369 (10)0.0274 (2)0.0818 (4)
O20.82639 (5)0.71371 (8)0.6555 (2)0.0659 (4)
H20.85620.73220.63610.099*
O31.07527 (5)0.22642 (11)1.5987 (3)0.0834 (5)
O40.93197 (5)0.21245 (8)0.8770 (3)0.0692 (4)
H40.90110.21260.91770.104*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0443 (10)0.0671 (12)0.0678 (13)0.0000 (9)0.0060 (11)0.0075 (12)
C30.0637 (13)0.0894 (15)0.0783 (16)0.0137 (12)0.0105 (13)0.0048 (13)
C40.0652 (12)0.0542 (11)0.1030 (18)0.0066 (10)0.0122 (13)0.0077 (13)
C50.0479 (10)0.0502 (10)0.0753 (13)0.0015 (8)0.0063 (11)0.0043 (10)
C60.0429 (9)0.0494 (10)0.0631 (11)0.0036 (8)0.0035 (9)0.0078 (9)
C70.0499 (10)0.0588 (11)0.0634 (12)0.0020 (9)0.0018 (10)0.0035 (10)
C80.0584 (11)0.0573 (11)0.0930 (16)0.0153 (10)0.0111 (12)0.0116 (12)
C90.0505 (10)0.0715 (13)0.1002 (16)0.0164 (10)0.0136 (12)0.0146 (13)
C100.0544 (11)0.0565 (11)0.0718 (14)0.0025 (9)0.0045 (11)0.0122 (12)
C110.0749 (14)0.0838 (14)0.0801 (16)0.0052 (13)0.0035 (14)0.0180 (14)
C120.0767 (16)0.116 (2)0.103 (2)0.0077 (16)0.0070 (16)0.044 (2)
C130.0757 (17)0.0922 (19)0.143 (3)0.0177 (15)0.013 (2)0.055 (2)
C140.0886 (17)0.0698 (15)0.122 (2)0.0135 (13)0.0244 (18)0.0141 (16)
C150.0773 (14)0.0700 (13)0.0849 (16)0.0060 (12)0.0042 (13)0.0062 (13)
C160.0419 (10)0.0744 (13)0.0702 (14)0.0068 (10)0.0016 (11)0.0008 (12)
C170.0671 (13)0.0843 (15)0.0992 (18)0.0090 (12)0.0081 (14)0.0254 (15)
C180.1003 (16)0.0486 (12)0.113 (2)0.0054 (12)0.0228 (17)0.0072 (13)
C190.0606 (11)0.0459 (10)0.0689 (12)0.0007 (9)0.0091 (11)0.0050 (10)
C200.0477 (9)0.0468 (9)0.0640 (12)0.0049 (8)0.0023 (10)0.0097 (9)
C210.0482 (9)0.0446 (9)0.0539 (10)0.0040 (8)0.0039 (9)0.0045 (9)
C220.0554 (10)0.0480 (10)0.0686 (13)0.0098 (9)0.0035 (10)0.0005 (10)
C230.0546 (11)0.0628 (12)0.0757 (13)0.0126 (10)0.0113 (11)0.0001 (11)
C240.0508 (10)0.0432 (9)0.0570 (12)0.0029 (8)0.0003 (10)0.0059 (9)
C250.0712 (12)0.0676 (12)0.0600 (13)0.0037 (11)0.0034 (11)0.0009 (11)
C260.0881 (15)0.0690 (13)0.0744 (15)0.0075 (13)0.0120 (15)0.0116 (12)
C270.0701 (14)0.0567 (12)0.1011 (18)0.0137 (11)0.0146 (15)0.0048 (14)
C280.0708 (13)0.0628 (12)0.0896 (16)0.0149 (11)0.0144 (12)0.0013 (13)
C290.0669 (12)0.0564 (11)0.0702 (13)0.0104 (10)0.0101 (12)0.0050 (11)
N10.0462 (8)0.0581 (9)0.0796 (12)0.0064 (7)0.0119 (9)0.0075 (9)
N20.0567 (9)0.0544 (9)0.0668 (11)0.0036 (8)0.0117 (9)0.0039 (9)
O10.0653 (8)0.1100 (11)0.0702 (9)0.0164 (8)0.0082 (8)0.0074 (9)
O20.0508 (6)0.0617 (8)0.0853 (9)0.0013 (6)0.0141 (8)0.0166 (8)
O30.0571 (8)0.1266 (13)0.0666 (9)0.0098 (9)0.0081 (8)0.0056 (10)
O40.0554 (7)0.0635 (8)0.0887 (10)0.0042 (7)0.0151 (8)0.0175 (8)
Geometric parameters (Å, º) top
C2—O11.228 (2)C16—N21.332 (3)
C2—N11.330 (3)C16—C171.509 (3)
C2—C31.504 (3)C17—C181.492 (3)
C3—C41.488 (3)C17—H17A0.9700
C3—H3A0.9700C17—H17B0.9700
C3—H3B0.9700C18—C191.525 (3)
C4—C51.527 (3)C18—H18A0.9700
C4—H4A0.9700C18—H18B0.9700
C4—H4B0.9700C19—N21.456 (2)
C5—N11.457 (2)C19—C201.519 (2)
C5—C61.521 (2)C19—H190.9800
C5—H50.9800C20—O41.420 (2)
C6—O21.405 (2)C20—C211.523 (2)
C6—C71.534 (2)C20—H200.9800
C6—H60.9800C21—C241.513 (2)
C7—C101.516 (3)C21—C221.529 (2)
C7—C81.519 (3)C21—H210.9800
C7—H70.9800C22—C231.523 (2)
C8—C91.521 (3)C22—H22A0.9700
C8—H8A0.9700C22—H22B0.9700
C8—H8B0.9700C23—N21.447 (2)
C9—N11.452 (2)C23—H23A0.9700
C9—H9A0.9700C23—H23B0.9700
C9—H9B0.9700C24—C291.375 (2)
C10—C151.376 (3)C24—C251.377 (3)
C10—C111.382 (3)C25—C261.391 (3)
C11—C121.376 (3)C25—H250.9300
C11—H110.9300C26—C271.354 (3)
C12—C131.371 (4)C26—H260.9300
C12—H120.9300C27—C281.367 (3)
C13—C141.364 (4)C27—H270.9300
C13—H130.9300C28—C291.379 (3)
C14—C151.393 (3)C28—H280.9300
C14—H140.9300C29—H290.9300
C15—H150.9300O2—H20.8200
C16—O31.229 (2)O4—H40.8200
O1—C2—N1125.73 (19)C18—C17—H17A110.6
O1—C2—C3126.0 (2)C16—C17—H17A110.6
N1—C2—C3108.22 (18)C18—C17—H17B110.6
C4—C3—C2106.58 (18)C16—C17—H17B110.6
C4—C3—H3A110.4H17A—C17—H17B108.8
C2—C3—H3A110.4C17—C18—C19106.47 (18)
C4—C3—H3B110.4C17—C18—H18A110.4
C2—C3—H3B110.4C19—C18—H18A110.4
H3A—C3—H3B108.6C17—C18—H18B110.4
C3—C4—C5106.30 (16)C19—C18—H18B110.4
C3—C4—H4A110.5H18A—C18—H18B108.6
C5—C4—H4A110.5N2—C19—C20109.95 (14)
C3—C4—H4B110.5N2—C19—C18103.20 (16)
C5—C4—H4B110.5C20—C19—C18114.52 (17)
H4A—C4—H4B108.7N2—C19—H19109.7
N1—C5—C6110.71 (14)C20—C19—H19109.7
N1—C5—C4103.92 (17)C18—C19—H19109.7
C6—C5—C4114.52 (15)O4—C20—C19107.11 (14)
N1—C5—H5109.2O4—C20—C21110.21 (16)
C6—C5—H5109.2C19—C20—C21110.79 (13)
C4—C5—H5109.2O4—C20—H20109.6
O2—C6—C5105.47 (13)C19—C20—H20109.6
O2—C6—C7112.52 (16)C21—C20—H20109.6
C5—C6—C7111.74 (13)C24—C21—C20113.13 (13)
O2—C6—H6109.0C24—C21—C22111.15 (13)
C5—C6—H6109.0C20—C21—C22110.54 (15)
C7—C6—H6109.0C24—C21—H21107.2
C10—C7—C8113.73 (16)C20—C21—H21107.2
C10—C7—C6110.46 (13)C22—C21—H21107.2
C8—C7—C6110.69 (16)C23—C22—C21111.86 (15)
C10—C7—H7107.2C23—C22—H22A109.2
C8—C7—H7107.2C21—C22—H22A109.2
C6—C7—H7107.2C23—C22—H22B109.2
C7—C8—C9112.20 (16)C21—C22—H22B109.2
C7—C8—H8A109.2H22A—C22—H22B107.9
C9—C8—H8A109.2N2—C23—C22108.88 (14)
C7—C8—H8B109.2N2—C23—H23A109.9
C9—C8—H8B109.2C22—C23—H23A109.9
H8A—C8—H8B107.9N2—C23—H23B109.9
N1—C9—C8108.03 (14)C22—C23—H23B109.9
N1—C9—H9A110.1H23A—C23—H23B108.3
C8—C9—H9A110.1C29—C24—C25116.89 (17)
N1—C9—H9B110.1C29—C24—C21122.11 (17)
C8—C9—H9B110.1C25—C24—C21120.98 (17)
H9A—C9—H9B108.4C24—C25—C26121.7 (2)
C15—C10—C11117.3 (2)C24—C25—H25119.2
C15—C10—C7122.0 (2)C26—C25—H25119.2
C11—C10—C7120.6 (2)C27—C26—C25120.0 (2)
C12—C11—C10121.6 (3)C27—C26—H26120.0
C12—C11—H11119.2C25—C26—H26120.0
C10—C11—H11119.2C26—C27—C28119.5 (2)
C13—C12—C11120.3 (3)C26—C27—H27120.3
C13—C12—H12119.9C28—C27—H27120.3
C11—C12—H12119.9C27—C28—C29120.3 (2)
C14—C13—C12119.5 (3)C27—C28—H28119.8
C14—C13—H13120.2C29—C28—H28119.8
C12—C13—H13120.2C24—C29—C28121.7 (2)
C13—C14—C15120.0 (3)C24—C29—H29119.2
C13—C14—H14120.0C28—C29—H29119.2
C15—C14—H14120.0C2—N1—C9127.00 (18)
C10—C15—C14121.3 (2)C2—N1—C5114.79 (16)
C10—C15—H15119.3C9—N1—C5117.98 (17)
C14—C15—H15119.3C16—N2—C23125.44 (17)
O3—C16—N2125.70 (19)C16—N2—C19114.63 (16)
O3—C16—C17126.0 (2)C23—N2—C19118.29 (16)
N2—C16—C17108.29 (19)C6—O2—H2109.5
C18—C17—C16105.60 (19)C20—O4—H4109.5
O1—C2—C3—C4177.3 (2)C19—C20—C21—C24179.82 (15)
N1—C2—C3—C42.8 (2)O4—C20—C21—C22173.17 (13)
C2—C3—C4—C54.3 (2)C19—C20—C21—C2254.8 (2)
C3—C4—C5—N14.1 (2)C24—C21—C22—C23178.28 (16)
C3—C4—C5—C6116.75 (18)C20—C21—C22—C2355.2 (2)
N1—C5—C6—O2171.79 (16)C21—C22—C23—N252.5 (2)
C4—C5—C6—O271.1 (2)C20—C21—C24—C2949.1 (2)
N1—C5—C6—C749.2 (2)C22—C21—C24—C2975.9 (2)
C4—C5—C6—C7166.31 (17)C20—C21—C24—C25132.62 (18)
O2—C6—C7—C1063.1 (2)C22—C21—C24—C25102.3 (2)
C5—C6—C7—C10178.45 (17)C29—C24—C25—C261.1 (3)
O2—C6—C7—C8170.01 (15)C21—C24—C25—C26177.25 (17)
C5—C6—C7—C851.6 (2)C24—C25—C26—C270.5 (3)
C10—C7—C8—C9179.74 (18)C25—C26—C27—C280.5 (3)
C6—C7—C8—C955.2 (2)C26—C27—C28—C290.7 (3)
C7—C8—C9—N155.0 (3)C25—C24—C29—C280.9 (3)
C8—C7—C10—C1535.5 (3)C21—C24—C29—C28177.43 (18)
C6—C7—C10—C1589.6 (2)C27—C28—C29—C240.0 (3)
C8—C7—C10—C11146.7 (2)O1—C2—N1—C95.6 (3)
C6—C7—C10—C1188.1 (2)C3—C2—N1—C9174.26 (18)
C15—C10—C11—C120.1 (3)O1—C2—N1—C5179.96 (18)
C7—C10—C11—C12177.7 (2)C3—C2—N1—C50.1 (2)
C10—C11—C12—C130.3 (3)C8—C9—N1—C2118.1 (2)
C11—C12—C13—C140.2 (4)C8—C9—N1—C556.0 (2)
C12—C13—C14—C150.8 (4)C6—C5—N1—C2120.80 (18)
C11—C10—C15—C140.5 (3)C4—C5—N1—C22.6 (2)
C7—C10—C15—C14178.30 (18)C6—C5—N1—C954.1 (2)
C13—C14—C15—C101.0 (3)C4—C5—N1—C9177.47 (16)
O3—C16—C17—C18176.3 (2)O3—C16—N2—C239.5 (3)
N2—C16—C17—C184.6 (2)C17—C16—N2—C23169.56 (17)
C16—C17—C18—C1911.2 (2)O3—C16—N2—C19174.60 (17)
C17—C18—C19—N213.4 (2)C17—C16—N2—C194.5 (2)
C17—C18—C19—C20106.1 (2)C22—C23—N2—C16110.3 (2)
N2—C19—C20—O4172.89 (15)C22—C23—N2—C1954.3 (2)
C18—C19—C20—O471.5 (2)C20—C19—N2—C16111.25 (18)
N2—C19—C20—C2152.6 (2)C18—C19—N2—C1611.3 (2)
C18—C19—C20—C21168.28 (16)C20—C19—N2—C2355.0 (2)
O4—C20—C21—C2461.46 (19)C18—C19—N2—C23177.57 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O1i0.821.922.7366 (19)175
O2—H2···O3ii0.821.882.6963 (18)179
Symmetry codes: (i) x+3/2, y1/2, z+1; (ii) x+2, y+1, z1.

Experimental details

Crystal data
Chemical formulaC14H17NO2
Mr231.29
Crystal system, space groupOrthorhombic, P21212
Temperature (K)298
a, b, c (Å)25.3592 (4), 16.1467 (2), 6.0086 (1)
V3)2460.33 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.33 × 0.26 × 0.15
Data collection
DiffractometerOxford Diffraction Gemini R CCD
diffractometer
Absorption correctionAnalytical
(Clark & Reid, 1995)
Tmin, Tmax0.965, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
60218, 3791, 1856
Rint0.035
(sin θ/λ)max1)0.695
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.097, 0.98
No. of reflections3791
No. of parameters311
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.12, 0.11

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2001), enCIFer (Allen et al., 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O1i0.821.922.7366 (19)175
O2—H2···O3ii0.821.882.6963 (18)179
Symmetry codes: (i) x+3/2, y1/2, z+1; (ii) x+2, y+1, z1.
 

Acknowledgements

The authors thank the Grant Agency of the Slovak Republic (grant Nos. 1/0161/08 and 1/0817/08) and the Structural Funds, Interreg IIIA for financial support in purchasing the diffractometer and the Development Agency under contract No. APVV-0210–07.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrown, C. J. & Corbridge, D. E. C. (1954). Acta Cryst. 7, 711–715.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationButters, T. D. (2002). Chem. Biol. 9, 1266–1268.  Web of Science CrossRef PubMed CAS Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCompain, P. & Martin, O. R. (2001). Bioorg. Med. Chem. 9, 3077–3092.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCouture, A., Deniau, E., Grandclaudon, P., Leburn, S., Leonce, S., Renard, P. & Pfeiffer, B. (2000). Bioorg. Med. Chem. 8, 2113–2125.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFoster, C., Ritchie, M., Selwood, D. I. & Snowden, W. (1995). Antivir. Chem. Chemother. 6, 289–297.  CAS Google Scholar
First citationFujita, T., Nagasawa, H., Uto, Y., Hashimoto, T., Asakawa, Y. & Hori, H. (2004). Org. Lett. 6, 827–830.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGerber-Lemaire, S. & Juillerat-Jeanneret, L. (2006). Mini Rev. Med. Chem. 6, 1043–1052.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGundersen, L. L., Negussie, A. H., Rise, F. & Ostby, O. B. (2003). Arch. Pharm. (Weinheim), 336, 191–195.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJorgensen, A. S., Jacobsen, P., Chirstiansen, L. B., Bury, P. S., Kanstrup, A., Thorp, S. M., Bain, S., Naerum, L. & Wassermann, K. (2000). Bioorg. Med. Chem. Lett. 10, 399–402.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLillelund, V. H., Jensen, H. H., Liang, X. F. & Bols, M. (2002). Chem. Rev. 102, 515–554.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMelo, E. B., Gomes, A. D. & Carvalho, I. (2006). Tetrahedron, 62, 10277–10302.  Google Scholar
First citationMichael, J. P. (2003). Nat. Prod. Rep. 20, 458–475.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationPedersen, B. F. (1967). Acta Chem. Scand. 21, 1415–1424.  CrossRef CAS Web of Science Google Scholar
First citationŠafář, P., Žúžiová, J., Marchalín, Š., Tóthová, E., Prónayová, N., Švorc, Ľ., Vrábel, V. & Daich, A. (2009). Tetrahedron Asymmetry. In the press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, G.-F., Li, J.-Q., Jiang, X.-P. & Cheng, Y. (2008). Tetrahedron, 64, 5005–5012.  Web of Science CSD CrossRef CAS Google Scholar
First citationŠvorc, Ľ., Vrábel, V., Kožíšek, J., Marchalín, Š. & Šafář, P. (2008). Acta Cryst. E64, o1164–o1165.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTeklu, S., Gundersen, L. L., Larsen, T., Malterud, K. E. & Rise, F. (2005). Bioorg. Med. Chem. 13, 3127–3139.  Web of Science CrossRef PubMed CAS Google Scholar
First citationVrábel, V., Kožíšek, J., Langer, V. & Marchalín, Š. (2004). Acta Cryst. E60, o932–o933.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages o895-o896
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds