metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 10| October 2008| Pages m1293-m1294

Tetra­aquabis­(2-sulfamoylbenzoato)manganese(II)

aDepartment of Chemistry, University of Sargodha, Sargodha, Pakistan, bDepartment of Physics, University of Sargodha, Sargodha, Pakistan, and cInstitute of Chemistry, University of the Punjab, Lahore, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 12 September 2008; accepted 14 September 2008; online 20 September 2008)

In the title compound, [Mn(C7H6NO4S)2(H2O)4], the Mn atom, lying on an inversion center, exhibits a distorted octa­hedral coordination by six O atoms, two from carboxyl­ate groups and four from water mol­ecules. The SO2NH2 group is involved in a three dimensional polymeric hydrogen bonding network along with the water mol­ecules. π-Stacking inter­actions parallel to the c axis lead to a separation of 4.0050 (12) Å between the centroids of the benzene rings.

Related literature

For related literature, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]); Aurengzeb et al. (1994[Aurengzeb, N., Hulme, C. E., McAuliff, C. A., Pritchard, R. G., Watkinson, M., Garcia-Deibe, A., Bermejo, M. R. & Sousa, A. (1994). J. Chem. Soc. Chem. Commun. pp. 2193-2195.]); Eltayeb et al. (2008[Eltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Adnan, R. (2008). Acta Cryst. E64, m124-m125.]); Hulme et al. (1997[Hulme, C. E., Watkinson, M., Haynes, M., Pritchard, R. G., McAuliff, C. A., Jaiboon, N., Beagley, B., Sousa, A., Bermejo, M. R. & Fondo, M. (1997). J. Chem. Soc. Dalton Trans. pp. 1805-1814.]); Siddiqui et al. (2007[Siddiqui, W. A., Ahmad, S., Siddiqui, H. L., Tariq, M. I. & Parvez, M. (2007). Acta Cryst. E63, o4117.], 2008[Siddiqui, W. A., Ahmad, S., Siddiqui, H. L. & Parvez, M. (2008). Acta Cryst. C64, o367-o371.]); Tahir et al. (1997[Tahir, M. N., Ülkü, D., Movsumov, E. M. & Hökelek, T. (1997). Acta Cryst. C53, 176-179.]); Zhang & Janiak (2001[Zhang, C. & Janiak, C. (2001). Acta Cryst. C57, 719-720.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C7H6NO4S)2(H2O)4]

  • Mr = 527.38

  • Monoclinic, P 21 /c

  • a = 15.2442 (4) Å

  • b = 8.2835 (2) Å

  • c = 7.9188 (2) Å

  • β = 99.971 (1)°

  • V = 984.85 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.95 mm−1

  • T = 296 (2) K

  • 0.20 × 0.15 × 0.12 mm

Data collection
  • Bruker KAPPA APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]) Tmin = 0.840, Tmax = 0.895

  • 10903 measured reflections

  • 2445 independent reflections

  • 2174 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.106

  • S = 1.05

  • 2445 reflections

  • 148 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Selected geometric parameters (Å, °)

Mn1—O1 2.1194 (13)
Mn1—O5 2.2582 (14)
Mn1—O6 2.1628 (14)
Mn1—O1i 2.1194 (13)
Mn1—O5i 2.2582 (14)
Mn1—O6i 2.1628 (14)
S1—O3 1.4313 (15)
S1—O4 1.4352 (16)
S1—N1 1.6223 (17)
O1—Mn1—O5 93.95 (5)
O1—Mn1—O6 84.64 (5)
O1—Mn1—O5i 86.05 (5)
O1—Mn1—O6i 95.36 (5)
O5—Mn1—O6 84.27 (5)
Mn1—O1—C7 128.58 (11)
Symmetry code: (i) -x, -y+2, -z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O3ii 0.86 2.02 2.869 (2) 167
O5—H5B⋯O2iii 0.97 1.83 2.775 (2) 164
O6—H6A⋯O5iii 0.94 1.85 2.765 (2) 164
O6—H6B⋯N1iv 0.86 2.25 3.008 (2) 148
N1—H11⋯O2 0.77 (3) 2.19 (3) 2.799 (2) 137 (2)
N1—H12⋯O4v 0.85 (2) 2.50 (2) 3.300 (2) 157 (2)
C3—H3⋯O4 0.93 2.40 2.834 (3) 108
Symmetry codes: (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) x, y+1, z; (v) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The coordination chemistry of manganese in various oxidation states and in different combinations of donar environments like nitrogen and oxygen has been extensively investigated. The manganese complexes with Schiff base ligands have attracted considerable interest in the past decades and recently, due to their importance and variety of applications in chemistry, biology, physics and advanced materials (Eltayeb et al., 2008). One class of high-valent manganese complexes receiving considerable attention is of those involving carboxylic acid and Schiff base ligands (Aurengzeb et al., 1994; Hulme et al., 1997; Zhang et al., 2001). In continuation to the synthesis of benzene sulfonamide derivatives (Siddiqui et al., 2008), we are also interested in the complexation of these ligands with human friendly transition metals. The title complex (I) is being reported in this context.

The CCDC search (Allen, 2002) showed that no crystal structure has been reported of manganese with sulfamoylbenzoate. The complexation of the Mn(II) with o-sulfamoylbenzoate confirmed that there is no coordination of SO2NH2 group. The Mn(II) is hexa-coordinated (Table 1) through carboxylate group (Fig 1) and four water molecules, whereas SO2NH2 is involved in the three dimensional network of H-bonding (Table 2). The Title compound (I) has shown a typical coordination geometry as is seen in most of the transition metal complexes (Tahir et al., 1997) with monoanionic carboxylate ligands in the aqueous media. There exists a three dimensional polymeric network due to intra as well as intermolecular H-bonding. The molecules are further stabilized due to π-π-interaction at a distance of 4.0050 (12) Å, between the centroids of the benzene ring Cg···Cgi [symmetry code: i = x, 3/2 - y, -1/2 + z].

Related literature top

For related literature, see: Allen (2002); Aurengzeb et al. (1994); Eltayeb et al. (2008); Hulme et al. (1997); Siddiqui et al. (2007, 2008); Tahir et al. (1997); Zhang & Janiak (2001).

Experimental top

A suspension of (1.0 g, 5.0 mmol) o-sulfamoyl benzoic acid (Siddiqui et al., 2007), manganese acetate tetrahydrate (0.6 g, 2.5 mmol) and sodium carbonate (0.3 g, 2.5 mmol) was subjected to reflux in aqueous methanol (50%, 50 ml) for 4 h. The volume of the reaction mixture was reduced to half on rotary evaporator (11 torr) at room temperature and its pH was adjusted to 6 using hydrochloric acid (15%). The reaction mixture was then kept in ice-bath for 2 h. The off-white crystals were filtered, washed with cold distilled water and dried at room temperature. The product was recrystallized at 313 K from aqueous methanol to obtain colorless crystals.

m.p 498–503 K.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of the title compound, C14H20MnN2O12S2, with the atom numbering scheme. The thermal ellipsoids are drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radii. The intramolecular H-bonds are shown by dotted lines.
[Figure 2] Fig. 2. The packing figure (PLATON: Spek, 2003) which shows the three dimensional polymeric network through H-bonding. The H-atoms of benzene ring are not shown for clarity.
Tetraaquabis(2-sulfamoylbenzoato)manganese(II) top
Crystal data top
[Mn(C7H6NO4S)2(H2O)4]F(000) = 542
Mr = 527.38Dx = 1.778 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2445 reflections
a = 15.2442 (4) Åθ = 1.4–28.3°
b = 8.2835 (2) ŵ = 0.95 mm1
c = 7.9188 (2) ÅT = 296 K
β = 99.971 (1)°Prismatic, colourless
V = 984.85 (4) Å30.20 × 0.15 × 0.12 mm
Z = 2
Data collection top
Bruker KAPPA APEXII CCD
diffractometer
2445 independent reflections
Radiation source: fine-focus sealed tube2174 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 7.50 pixels mm-1θmax = 28.3°, θmin = 1.4°
ω scansh = 2020
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
k = 117
Tmin = 0.840, Tmax = 0.895l = 108
10903 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0727P)2 + 0.2877P]
where P = (Fo2 + 2Fc2)/3
2445 reflections(Δ/σ)max < 0.001
148 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
[Mn(C7H6NO4S)2(H2O)4]V = 984.85 (4) Å3
Mr = 527.38Z = 2
Monoclinic, P21/cMo Kα radiation
a = 15.2442 (4) ŵ = 0.95 mm1
b = 8.2835 (2) ÅT = 296 K
c = 7.9188 (2) Å0.20 × 0.15 × 0.12 mm
β = 99.971 (1)°
Data collection top
Bruker KAPPA APEXII CCD
diffractometer
2445 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2174 reflections with I > 2σ(I)
Tmin = 0.840, Tmax = 0.895Rint = 0.027
10903 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.46 e Å3
2445 reflectionsΔρmin = 0.40 e Å3
148 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.000001.000000.000000.0202 (1)
S10.26720 (3)0.44810 (6)0.04336 (6)0.0258 (1)
O10.13332 (8)0.92172 (17)0.01231 (17)0.0292 (4)
O20.13202 (9)0.68245 (19)0.1401 (2)0.0399 (4)
O30.19410 (10)0.46089 (19)0.09625 (18)0.0352 (4)
O40.33501 (10)0.33230 (18)0.0254 (2)0.0415 (5)
O50.00686 (10)0.99300 (17)0.28706 (18)0.0334 (4)
O60.05852 (9)1.23701 (17)0.0481 (2)0.0411 (5)
N10.22897 (12)0.3966 (2)0.2145 (2)0.0324 (5)
C10.26985 (10)0.7841 (2)0.0847 (2)0.0213 (4)
C20.31781 (10)0.6410 (2)0.0774 (2)0.0226 (4)
C30.41025 (11)0.6438 (3)0.0899 (3)0.0330 (5)
C40.45577 (12)0.7888 (3)0.1114 (3)0.0407 (7)
C50.40934 (13)0.9313 (3)0.1195 (3)0.0363 (6)
C60.31757 (12)0.9290 (2)0.1056 (2)0.0275 (5)
C70.16968 (10)0.7939 (2)0.0780 (2)0.0224 (4)
H30.441300.547920.083740.0395*
H40.517410.790500.120510.0488*
H50.439861.028860.134170.0436*
H5A0.060461.016460.334530.0400*
H5B0.034441.075960.310530.0400*
H60.287071.025660.110380.0330*
H6A0.027841.310740.106100.0493*
H6B0.114781.246150.082460.0493*
H110.2043 (19)0.467 (4)0.248 (3)0.0389*
H120.2695 (16)0.353 (3)0.288 (3)0.0389*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0192 (2)0.0176 (2)0.0239 (2)0.0011 (1)0.0040 (1)0.0001 (1)
S10.0248 (2)0.0198 (3)0.0320 (2)0.0007 (2)0.0028 (2)0.0006 (2)
O10.0223 (6)0.0287 (7)0.0359 (7)0.0066 (5)0.0028 (5)0.0026 (5)
O20.0246 (6)0.0393 (8)0.0591 (9)0.0024 (6)0.0169 (6)0.0163 (7)
O30.0339 (7)0.0389 (8)0.0303 (7)0.0078 (6)0.0011 (5)0.0005 (6)
O40.0396 (8)0.0245 (7)0.0612 (10)0.0071 (6)0.0114 (7)0.0040 (7)
O50.0280 (7)0.0441 (9)0.0276 (7)0.0002 (5)0.0035 (5)0.0005 (5)
O60.0301 (7)0.0257 (7)0.0684 (10)0.0049 (6)0.0112 (6)0.0081 (7)
N10.0351 (9)0.0273 (9)0.0343 (8)0.0006 (7)0.0046 (7)0.0067 (7)
C10.0197 (7)0.0219 (8)0.0224 (7)0.0007 (6)0.0037 (5)0.0033 (6)
C20.0185 (7)0.0216 (8)0.0274 (8)0.0005 (6)0.0030 (6)0.0009 (6)
C30.0199 (8)0.0326 (10)0.0461 (10)0.0038 (7)0.0049 (7)0.0028 (8)
C40.0189 (8)0.0454 (13)0.0571 (13)0.0060 (8)0.0050 (8)0.0049 (10)
C50.0304 (9)0.0318 (11)0.0460 (11)0.0121 (8)0.0045 (8)0.0016 (9)
C60.0287 (8)0.0223 (9)0.0313 (9)0.0013 (7)0.0045 (7)0.0011 (7)
C70.0195 (7)0.0248 (8)0.0232 (7)0.0035 (6)0.0042 (5)0.0023 (6)
Geometric parameters (Å, º) top
Mn1—O12.1194 (13)O6—H6B0.8600
Mn1—O52.2582 (14)N1—H110.77 (3)
Mn1—O62.1628 (14)N1—H120.85 (2)
Mn1—O1i2.1194 (13)C1—C71.521 (2)
Mn1—O5i2.2582 (14)C1—C21.399 (2)
Mn1—O6i2.1628 (14)C1—C61.398 (2)
S1—O31.4313 (15)C2—C31.396 (2)
S1—O41.4352 (16)C3—C41.383 (3)
S1—N11.6223 (17)C4—C51.384 (3)
S1—C21.7746 (17)C5—C61.384 (3)
O1—C71.265 (2)C3—H30.9300
O2—C71.234 (2)C4—H40.9300
O5—H5A0.8600C5—H50.9300
O5—H5B0.9700C6—H60.9300
O6—H6A0.9400
S1···O23.0246 (16)O4···H6ii2.7600
S1···H6Bii2.9200O4···H32.4000
O1···O53.202 (2)O4···H4xi2.8900
O1···O62.883 (2)O5···H6Av1.8500
O1···O6i3.1663 (19)O6···H5A2.9100
O1···O5i2.989 (2)O6···H5Aix2.6500
O1···O3iii3.228 (2)O6···H5Bix2.6500
O1···O2iv3.068 (2)N1···O22.799 (2)
O2···O1iii3.068 (2)N1···O6ii3.008 (2)
O2···N12.799 (2)N1···H6Bii2.2500
O2···O6i3.099 (2)C6···O4viii3.420 (2)
O2···S13.0246 (16)C6···O3iii3.389 (2)
O2···O32.895 (2)C7···O3iii3.254 (2)
O2···O5v2.775 (2)C7···O33.135 (2)
O3···C73.135 (2)C3···H5xii3.0300
O3···O5iv2.869 (2)C6···H12iv3.08 (2)
O3···O6ii3.136 (2)C7···H113.03 (3)
O3···C6iv3.389 (2)C7···H5Bv2.9900
O3···O1iv3.228 (2)H3···O42.4000
O3···C7iv3.254 (2)H3···H3xi2.5300
O3···O22.895 (2)H4···O4xi2.8900
O4···C6ii3.420 (2)H5···C3xiii3.0300
O5···O6v2.765 (2)H5A···H6Av2.2700
O5···O1i2.989 (2)H5A···O3iii2.0200
O5···O62.967 (2)H5A···O6vi2.6500
O5···O6vi3.055 (2)H5B···O2vii1.8300
O5···O2vii2.775 (2)H5B···C7vii2.9900
O5···O13.202 (2)H5B···H6Av2.2900
O5···O3iii2.869 (2)H5B···O6vi2.6500
O6···O5vii2.765 (2)H5B···H6Avi2.5500
O6···O3viii3.136 (2)H6···O12.4900
O6···O52.967 (2)H6···O4viii2.7600
O6···O1i3.1663 (19)H6A···O5vii1.8500
O6···O2i3.099 (2)H6A···H5Avii2.2700
O6···N1viii3.008 (2)H6A···H5Bvii2.2900
O6···O5ix3.055 (2)H6A···O2i2.8500
O6···O12.883 (2)H6A···H5Bix2.5500
O1···H62.4900H6B···S1viii2.9200
O1···H6B2.7700H6B···O3viii2.6900
O1···H11iv2.68 (3)H6B···N1viii2.2500
O1···H5Bi2.7300H6B···H11viii2.5100
O2···H112.19 (3)H11···O22.19 (3)
O2···H5Bv1.8300H11···C73.03 (3)
O2···H6Ai2.8500H11···H6Bii2.5100
O3···H6Bii2.6900H11···O1iii2.68 (3)
O3···H5Aiv2.0200H12···O4xiv2.50 (2)
O4···H12x2.50 (2)H12···C6iii3.08 (2)
O1—Mn1—O593.95 (5)Mn1—O6—H6A117.00
O1—Mn1—O684.64 (5)H6A—O6—H6B110.00
O1—Mn1—O1i180.00S1—N1—H12111.1 (16)
O1—Mn1—O5i86.05 (5)S1—N1—H11111 (2)
O1—Mn1—O6i95.36 (5)H11—N1—H12115 (2)
O5—Mn1—O684.27 (5)C2—C1—C6117.85 (15)
O1i—Mn1—O586.05 (5)C2—C1—C7124.92 (14)
O5—Mn1—O5i180.00C6—C1—C7117.19 (15)
O5—Mn1—O6i95.73 (5)S1—C2—C1123.55 (12)
O1i—Mn1—O695.36 (5)S1—C2—C3115.65 (14)
O5i—Mn1—O695.73 (5)C1—C2—C3120.76 (17)
O6—Mn1—O6i180.00C2—C3—C4120.1 (2)
O1i—Mn1—O5i93.95 (5)C3—C4—C5119.80 (18)
O1i—Mn1—O6i84.64 (5)C4—C5—C6120.2 (2)
O5i—Mn1—O6i84.27 (5)C1—C6—C5121.27 (17)
O3—S1—O4116.79 (9)O2—C7—C1118.68 (15)
O3—S1—N1108.69 (9)O1—C7—O2126.13 (15)
O3—S1—C2108.09 (9)O1—C7—C1115.15 (14)
O4—S1—N1106.03 (9)C2—C3—H3120.00
O4—S1—C2108.37 (8)C4—C3—H3120.00
N1—S1—C2108.63 (8)C3—C4—H4120.00
Mn1—O1—C7128.58 (11)C5—C4—H4120.00
H5A—O5—H5B111.00C4—C5—H5120.00
Mn1—O5—H5B105.00C6—C5—H5120.00
Mn1—O5—H5A108.00C1—C6—H6119.00
Mn1—O6—H6B120.00C5—C6—H6119.00
O5—Mn1—O1—C757.48 (15)C7—C1—C2—S14.8 (2)
O6—Mn1—O1—C7141.35 (15)C7—C1—C2—C3177.97 (17)
O5i—Mn1—O1—C7122.52 (15)C2—C1—C6—C50.3 (2)
O6i—Mn1—O1—C738.65 (15)C7—C1—C6—C5177.57 (17)
O3—S1—C2—C146.54 (16)C2—C1—C7—O1150.20 (16)
O3—S1—C2—C3130.87 (15)C2—C1—C7—O232.0 (2)
O4—S1—C2—C1174.00 (14)C6—C1—C7—O132.1 (2)
O4—S1—C2—C33.41 (17)C6—C1—C7—O2145.67 (16)
N1—S1—C2—C171.23 (16)S1—C2—C3—C4178.11 (17)
N1—S1—C2—C3111.36 (16)C1—C2—C3—C40.6 (3)
Mn1—O1—C7—O24.9 (3)C2—C3—C4—C50.4 (3)
Mn1—O1—C7—C1172.72 (10)C3—C4—C5—C60.2 (3)
C6—C1—C2—S1177.56 (12)C4—C5—C6—C10.6 (3)
C6—C1—C2—C30.3 (2)
Symmetry codes: (i) x, y+2, z; (ii) x, y1, z; (iii) x, y+3/2, z+1/2; (iv) x, y+3/2, z1/2; (v) x, y1/2, z+1/2; (vi) x, y+5/2, z+1/2; (vii) x, y+1/2, z+1/2; (viii) x, y+1, z; (ix) x, y+5/2, z1/2; (x) x, y+1/2, z1/2; (xi) x+1, y+1, z; (xii) x+1, y1/2, z+1/2; (xiii) x+1, y+1/2, z+1/2; (xiv) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O3iii0.862.022.869 (2)167
O5—H5B···O2vii0.971.832.775 (2)164
O6—H6A···O5vii0.941.852.765 (2)164
O6—H6B···N1viii0.862.253.008 (2)148
N1—H11···O20.77 (3)2.19 (3)2.799 (2)137 (2)
N1—H12···O4xiv0.85 (2)2.50 (2)3.300 (2)157 (2)
C3—H3···O40.932.402.834 (3)108
Symmetry codes: (iii) x, y+3/2, z+1/2; (vii) x, y+1/2, z+1/2; (viii) x, y+1, z; (xiv) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Mn(C7H6NO4S)2(H2O)4]
Mr527.38
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)15.2442 (4), 8.2835 (2), 7.9188 (2)
β (°) 99.971 (1)
V3)984.85 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.95
Crystal size (mm)0.20 × 0.15 × 0.12
Data collection
DiffractometerBruker KAPPA APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.840, 0.895
No. of measured, independent and
observed [I > 2σ(I)] reflections
10903, 2445, 2174
Rint0.027
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.106, 1.05
No. of reflections2445
No. of parameters148
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.46, 0.40

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003), WinGX publication routines (Farrugia, 1999) and PLATON (Spek, 2003).

Selected geometric parameters (Å, º) top
Mn1—O12.1194 (13)Mn1—O6i2.1628 (14)
Mn1—O52.2582 (14)S1—O31.4313 (15)
Mn1—O62.1628 (14)S1—O41.4352 (16)
Mn1—O1i2.1194 (13)S1—N11.6223 (17)
Mn1—O5i2.2582 (14)
O1—Mn1—O593.95 (5)O1—Mn1—O6i95.36 (5)
O1—Mn1—O684.64 (5)O5—Mn1—O684.27 (5)
O1—Mn1—O5i86.05 (5)Mn1—O1—C7128.58 (11)
Symmetry code: (i) x, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O3ii0.862.022.869 (2)167
O5—H5B···O2iii0.971.832.775 (2)164
O6—H6A···O5iii0.941.852.765 (2)164
O6—H6B···N1iv0.862.253.008 (2)148
N1—H11···O20.77 (3)2.19 (3)2.799 (2)137 (2)
N1—H12···O4v0.85 (2)2.50 (2)3.300 (2)157 (2)
C3—H3···O40.932.402.834 (3)108
Symmetry codes: (ii) x, y+3/2, z+1/2; (iii) x, y+1/2, z+1/2; (iv) x, y+1, z; (v) x, y+1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the Higher Education Commission, Islamabad, Pakistan, for funding the diffractometer at GCU, Lahore.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAurengzeb, N., Hulme, C. E., McAuliff, C. A., Pritchard, R. G., Watkinson, M., Garcia-Deibe, A., Bermejo, M. R. & Sousa, A. (1994). J. Chem. Soc. Chem. Commun. pp. 2193–2195.  Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Adnan, R. (2008). Acta Cryst. E64, m124–m125.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHulme, C. E., Watkinson, M., Haynes, M., Pritchard, R. G., McAuliff, C. A., Jaiboon, N., Beagley, B., Sousa, A., Bermejo, M. R. & Fondo, M. (1997). J. Chem. Soc. Dalton Trans. pp. 1805–1814.  CSD CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddiqui, W. A., Ahmad, S., Siddiqui, H. L. & Parvez, M. (2008). Acta Cryst. C64, o367–o371.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSiddiqui, W. A., Ahmad, S., Siddiqui, H. L., Tariq, M. I. & Parvez, M. (2007). Acta Cryst. E63, o4117.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTahir, M. N., Ülkü, D., Movsumov, E. M. & Hökelek, T. (1997). Acta Cryst. C53, 176–179.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationZhang, C. & Janiak, C. (2001). Acta Cryst. C57, 719–720.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 10| October 2008| Pages m1293-m1294
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds