metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hexa­carbonyl­technetium(I) perchlorate

aSt Petersburg State University, Universitetskaya nab. 7/9, 199034 St Petersburg, Russian Federation, and bKhlopin Radium Institute, Research and Production Association, 2-nd Murinskii pr. 28, 194021 St Petersburg, Russian Federation
*Correspondence e-mail: vladgeo17@mail.ru

(Received 22 June 2008; accepted 5 August 2008; online 9 August 2008)

The title compound, [Tc(CO)6]ClO4, was synthesized by the reaction of [TcCl(CO)5] with AgClO4, followed by acidification with HClO4 under a CO atmosphere. The [Tc(CO)6]+ cation has close to idealized octa­hedral geometry, with the bond angles between cis-CO groups close to 90° and the Tc—C bond lengths in the range 2.025 (3)–2.029 (3)Å. The perchlorate anion is disordered over two crystallographically equivalent half-occupied positions. The Tc atom in the [Tc(CO)6]+ cation is located on an inversion centre.

Related literature

For the first report on the [Tc(CO)6]+ cation, see: Hieber et al. (1965[Hieber, W., Lux, F. & Herget, C. Z. (1965). Naturforsch. Teil B, 20, 1159-1165.]). For related literature, see: Aebischer et al. (2000[Aebischer, N., Schibli, R., Alberto, R. & Merbach, A. E. (2000). Angew. Chem. Int. Ed. 39, 254-256.]); Alberto et al. (1996[Alberto, R., Schibli, R., Schubiger, P. A., Abram, U. & Kaden, T. A. (1996). Polyhedron, 15, 1079-1089.], 1998[Alberto, R., Schibli, R., Egli, A., Abram, U., Abram, S., Kaden, T. A. & Schubiger, P. A. (1998). Polyhedron, 17, 1133-1140.]); Baturin et al. (1994a[Baturin, N. A., Grigor'ev, M. S., Kryuchkov, S. V., Miroslavov, A. E., Sidorenko, G. V. & Suglobov, D. N. (1994a). Radiochemistry, 36, 199-201.],b[Baturin, N. A., Grigor'ev, M. S., Kryuchkov, S. V., Miroslavov, A. E., Sidorenko, G. V. & Suglobov, D. N. (1994b). Radiochemistry, 36, 202-204.]); Grigor'ev et al. (1997a[Grigor'ev, M. S., Miroslavov, A. E., Sidorenko, G. V. & Suglobov, D. N. (1997a). Radiochemistry, 39, 204-206.],b[Grigor'ev, M. S., Miroslavov, A. E., Sidorenko, G. V. & Suglobov, D. N. (1997b). Radiochemistry, 39, 207-209.]); Miroslavov et al. (2008a[Miroslavov, A. E., Levitskaya, E. M., Sidorenko, G. V., Lumpov, A. A., Suglobov, D. N., Gurzhiy, V. V. & Krivovichev, S. V. (2008a). Radiochemistry, 50. In the press.],b[Miroslavov, A. E., Lumpov, A. A., Sidorenko, G. V., Levitskaya, E. M., Gorshkov, N. I., Suglobov, D. N., Alberto, R., Braband, H., Gurzhiy, V. V., Krivovichev, S. V. & Tananaev, I. G. (2008b). J. Organomet. Chem. 693, 4-10.]); Schwochau (2000[Schwochau, K. (2000). Technetium, Chemistry and Radiopharmaceutical Applications. New York: Wiley-VCH.]).

[Scheme 1]

Experimental

Crystal data
  • [Tc(CO)6]ClO4

  • Mr = 366.42

  • Monoclinic, C 2/c

  • a = 13.227 (4) Å

  • b = 6.8002 (18) Å

  • c = 13.616 (3) Å

  • β = 112.56 (2)°

  • V = 1131.0 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.55 mm−1

  • T = 293 (2) K

  • 0.20 × 0.18 × 0.10 mm

Data collection
  • Stoe IPDS-2 diffractometer

  • Absorption correction: integration (X-RED and X-SHAPE; Stoe & Cie, 2005[Stoe & Cie (2005). X-RED and X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany.]) Tmin = 0.620, Tmax = 0.723

  • 4935 measured reflections

  • 1508 independent reflections

  • 1224 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.067

  • S = 1.06

  • 1508 reflections

  • 99 parameters

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.44 e Å−3

Data collection: X-AREA (Stoe & Cie, 2007[Stoe & Cie (2007). X-AREA. Stoe & Cie GmbH, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2005[Stoe & Cie (2005). X-RED and X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ATOMS (Dowty, 2000[Dowty, E. (2000). ATOMS. Shape Software, Kingsport, Tennessee, USA.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

Among technetium(I) carbonyl complexes, the highest carbonyl, [Tc(CO)6]+ cation, is the least studied compared to penta-, tetra-, and especially tricarbonyl complexes (Schwochau, 2000). No data on the crystal structure of its salts are available. More detailed study of this cation is significant for the development of the coordination chemistry of technetium (and d block as a whole). The first report on the [Tc(CO)6]+ cation is dated by Hieber et al., 1965 prepared this species in the form of the solid compound [Tc(CO)6][AlCl4] by the solid-phase reaction of [TcCl(CO)5] with AlCl3 under high CO pressure (300 atm) at 363 K (Heiber et al., 1965). The product was characterized by chemical analysis, and the cation appeared to be stable in solutions. Relatively recently (Aebischer et al., 2000) observed successive formation of higher technetium carbonyls [Tc(CO)n(H2O)6–n]+ (n = 4–6) in aqueous solution (2 M HClO4) from the complex [Tc(CO)3(H2O)3]+ at room temperature and moderately high CO pressure (about 50 atm), after removal of chloride ions. The reaction progress was monitored by the 99Tc and 13C NMR. The relative content of the [Tc(CO)6]+ cation in the mixture of technetium carbonyl species was low, and no solid salt of this cation was isolated. Here we report on the synthesis and crystal structure of hexacarbonyltechnetium(I) perchlorate, [Tc(CO)6]ClO4.

Related literature top

For the first report on the [Tc(CO)6]+ cation, see: Hieber et al. (1965). For related literature, see: Aebischer et al. (2000); Alberto et al. (1996, 1998); Baturin et al. (1994a,b); Grigor'ev et al. (1997a,b); Miroslavov et al. (2008a,b); Schwochau (2000).

Experimental top

Pentacarbonyltechnetium chloride [TcCl(CO)5] (SU Inventor's Certificate 1512003) was dissolved in boiled water, and a stoichiometric amount of AgClO4 was added after cooling to remove chloride ions interfering with the synthesis (Miroslavov et al., 2008a). The resulting solution was acidified with HClO4 to a concentration of 2 M and treated with CO in a pressure vessel (443 K, 150 atm, 1 h). After completing the reaction and removing the excess of CO, the reaction system consisted of an aqueous solution and a colorless crystalline precipitate. The precipitate was separated, washed with water and methylene chloride (to remove an impurity of [TcCl(CO)5] (Miroslavov et al., 2008a)), and dried in air. The product was identified as [Tc(CO)6]ClO4. Some of the crystals appeared to be suitable for an X-ray diffraction analysis. 99Tc NMR(CH3OH): -1924 p.p.m.. IR (CH3CN): nCO 2095 cm-1. Found Tc, %: 27.12. C6ClO10Tc. Calculated Tc, %: 27.01. The IR spectrum was recorded on a Shimadzu FTIR 8700 spectrophotometer. The 99Tc NMR spectrum was taken on a Bruker WP-200 spectrometer.

Refinement top

The crystal structure of [Tc(CO)6]ClO4 contains one symmetrically independent Tc+ cation octahedrally coordinated by six carbon atoms (Figs. 1, 2). The Tc—C=O fragments are linear to within 3°. The coordination polyhedron of technetium in the [Tc(CO)6]+ cation is close to an ideal octahedron, with the bond angles between cis-CO groups equal to 90° (within ±1.5°) and the Tc–C bond lengths in the range of 2.025–2.029 Å. These distances are significantly (by 0.1–0.15 Å) longer than the Tc–C distances in trans-OC–Tc–σ donor fragments, e.g.: [TcI(CO)5](Tc–Ctrans-I) 1.938 (Grigor'ev et al., 1997a), [TcI(CO)4]2 (Tc–Ctrans-I) 1.89–1.92 (Grigor'ev et al., 1997b), [TcCl(CO)3]4 1.903 (Baturin et al., 1994a), [TcBr(CO)3(en)] 1.882–1.889 (Baturin et al., 1994b), [Tc(OH)(CO)3]4 1.886–1.905 Å (Alberto et al., 1998). At the same time, they are only slightly longer than the Tc–C distances in trans-OC–Tc–π acceptor fragments of other structurally examined complexes (π acceptor is another CO group, PPh3, or ButNC): [Tc(CO)5(ButNC)]ClO4 1.999–2.022 (Miroslavov et al., 2008b), [Tc(CO)5(PPh3)]CF3SO3 1.985–2.019 (Alberto et al., 1998) (in these two compounds, the lengths of the equatorial and axial Tc–CO bonds are similar), [fac-Tc(CO)3(ButNC)3]NO3 1.963–1.975 (Alberto et al., 1996) [TcI(CO)5] (Tc–C~trans-CO~) 2.015 (Grigor'ev et al., 1997a), [TcI(CO)4]2 (Tc–Ctrans-CO) 1.98–2.01 Å (Grigor'ev et al., 1997b). The large difference between the Tc–CO bond lengths in cases when the transposition to the CO group is occupied by a π acceptor or a σ donor can be attributed to the trans effect (competition between the π acceptors arranged trans to each other for the same occupied d orbital of the metal ion). A certain cis effect, however, also takes place, because the Tc–CO bonds in the [Tc(CO)6]+ cation are somewhat longer than the Tc–CO bonds in trans-OC–Tc–CO fragments of complexes containing in cis positions ligands that are σ donors or π acceptors weaker than CO.

The Cl atom in the structure of [Tc(CO)6]ClO4 is tetrahedrally coordinated by four O atoms (mean Cl–O distance is 1.403 Å). The perchlorate anion is disordered over two crystallographically equivalent half-occupied positions (Fig. 2) with the total site-occupation factor (s.o.f.) equal to 1.0. The central atoms of [Tc(CO)6]+ octahedra and [ClO4]- tetrahedra (Tc and Cl respectively) form a distorted NaCl-type lattice oriented along aNaCl [110], bNaCl [10–1], cNaCl [-110] (Fig. 3).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2007); cell refinement: X-AREA (Stoe & Cie, 2007); data reduction: X-RED (Stoe & Cie, 2005); program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ATOMS (Dowty, 2000); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. View of the [Tc(CO)6]+cation (a) and one component of the disordered perchlorate anion (b) in the structure of [Tc(CO)6]ClO4. Thermal ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal structure of [Tc(CO)6]ClO4. Tc atoms are dark-grey, O atoms are grey, Cl atoms are light-grey, and C atoms are white circles.
[Figure 3] Fig. 3. Relationship of title structure to NaCl structure.
Hexacarbonyltechnetium(I) perchlorate top
Crystal data top
[Tc(CO)6]ClO4F(000) = 704
Mr = 366.42Dx = 2.152 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5446 reflections
a = 13.227 (4) Åθ = 2.0–29.6°
b = 6.8002 (18) ŵ = 1.55 mm1
c = 13.616 (3) ÅT = 293 K
β = 112.56 (2)°Prism, colorless
V = 1131.0 (5) Å30.20 × 0.18 × 0.10 mm
Z = 4
Data collection top
Stoe IPDS-2
diffractometer
1508 independent reflections
Radiation source: fine-focus sealed tube1224 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 6.67 pixels mm-1θmax = 29.2°, θmin = 3.2°
rotation method scansh = 1818
Absorption correction: integration
(X-RED and X-SHAPE; Stoe & Cie, 2005)
k = 98
Tmin = 0.620, Tmax = 0.723l = 1818
4935 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031 w = 1/[σ2(Fo2) + (0.0289P)2 + 1.543P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.067(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.32 e Å3
1508 reflectionsΔρmin = 0.44 e Å3
99 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0043 (12)
Crystal data top
[Tc(CO)6]ClO4V = 1131.0 (5) Å3
Mr = 366.42Z = 4
Monoclinic, C2/cMo Kα radiation
a = 13.227 (4) ŵ = 1.55 mm1
b = 6.8002 (18) ÅT = 293 K
c = 13.616 (3) Å0.20 × 0.18 × 0.10 mm
β = 112.56 (2)°
Data collection top
Stoe IPDS-2
diffractometer
1508 independent reflections
Absorption correction: integration
(X-RED and X-SHAPE; Stoe & Cie, 2005)
1224 reflections with I > 2σ(I)
Tmin = 0.620, Tmax = 0.723Rint = 0.035
4935 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03199 parameters
wR(F2) = 0.0670 restraints
S = 1.06Δρmax = 0.32 e Å3
1508 reflectionsΔρmin = 0.44 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Tc10.25000.25000.00000.03673 (14)
C10.2509 (2)0.1350 (5)0.1375 (2)0.0484 (7)
C20.3021 (2)0.0119 (5)0.0345 (2)0.0446 (6)
C30.4088 (2)0.3328 (5)0.0721 (3)0.0501 (7)
O10.3312 (2)0.1557 (4)0.0529 (2)0.0632 (6)
O20.49658 (19)0.3762 (4)0.1078 (3)0.0774 (8)
O30.2481 (2)0.0685 (5)0.2111 (2)0.0778 (8)
O40.0932 (2)0.2268 (5)0.1933 (3)0.0814 (9)
O50.503 (3)0.0179 (9)0.2724 (16)0.109 (7)0.50
O60.5401 (5)0.1423 (12)0.1398 (5)0.0856 (18)0.50
Cl10.50996 (15)0.1697 (2)0.22853 (14)0.0480 (4)0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Tc10.03421 (17)0.04318 (19)0.03316 (17)0.00255 (14)0.01331 (11)0.00340 (15)
C10.0481 (15)0.0592 (18)0.0423 (16)0.0126 (13)0.0222 (12)0.0041 (13)
C20.0403 (13)0.0519 (15)0.0404 (14)0.0037 (12)0.0141 (11)0.0028 (12)
C30.0418 (14)0.0527 (15)0.0545 (18)0.0005 (13)0.0172 (13)0.0074 (14)
O10.0693 (15)0.0567 (14)0.0658 (16)0.0148 (12)0.0284 (12)0.0076 (12)
O20.0433 (12)0.0782 (18)0.105 (2)0.0091 (12)0.0216 (13)0.0225 (16)
O30.0830 (18)0.105 (2)0.0609 (16)0.0297 (16)0.0444 (14)0.0249 (16)
O40.0566 (14)0.096 (2)0.087 (2)0.0202 (14)0.0229 (14)0.0261 (16)
O50.077 (4)0.074 (3)0.155 (19)0.002 (8)0.021 (12)0.052 (8)
O60.072 (3)0.120 (5)0.061 (3)0.019 (3)0.021 (3)0.019 (4)
Cl10.0366 (7)0.0512 (6)0.0497 (12)0.0023 (6)0.0094 (6)0.0015 (6)
Geometric parameters (Å, º) top
Tc1—C1i2.025 (3)O5—O5iv0.59 (4)
Tc1—C12.025 (3)O5—Cl1iv1.286 (8)
Tc1—C3i2.027 (3)O5—Cl11.428 (11)
Tc1—C32.027 (3)O6—Cl11.422 (6)
Tc1—C2i2.029 (3)O6—Cl1iv2.144 (6)
Tc1—C22.029 (3)Cl1—Cl1iv0.728 (3)
C1—O31.113 (4)Cl1—O5iv1.286 (8)
C2—O11.114 (4)Cl1—O4v1.393 (3)
C3—O21.113 (4)Cl1—O4iii1.444 (3)
O4—Cl1ii1.393 (3)Cl1—O6iv2.144 (6)
O4—Cl1iii1.444 (3)
C1i—Tc1—C1180.0 (2)O1—C2—Tc1179.6 (3)
C1i—Tc1—C3i91.27 (14)O2—C3—Tc1177.0 (3)
C1—Tc1—C3i88.73 (14)O5iv—Cl1—O4v124.7 (11)
C1i—Tc1—C388.73 (14)O4v—Cl1—O5107.0 (10)
C1—Tc1—C391.27 (14)O5iv—Cl1—O686.5 (11)
C3i—Tc1—C3180.0 (3)O4v—Cl1—O6108.6 (3)
C1i—Tc1—C2i89.61 (12)O5—Cl1—O6108.9 (9)
C1—Tc1—C2i90.39 (12)O5iv—Cl1—O4iii112.3 (14)
C3i—Tc1—C2i88.56 (12)O4v—Cl1—O4iii112.1 (3)
C3—Tc1—C2i91.44 (12)O5—Cl1—O4iii111.5 (13)
C1i—Tc1—C290.39 (12)O6—Cl1—O4iii108.6 (3)
C1—Tc1—C289.61 (12)O5iv—Cl1—O6iv80.9 (11)
C3i—Tc1—C291.44 (12)O4v—Cl1—O6iv79.2 (2)
C3—Tc1—C288.56 (12)O5—Cl1—O6iv58.6 (10)
C2i—Tc1—C2180.00 (17)O6—Cl1—O6iv167.4 (6)
O3—C1—Tc1177.6 (3)O4iii—Cl1—O6iv76.4 (2)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x1/2, y1/2, z1/2; (iii) x+1/2, y1/2, z; (iv) x+1, y, z+1/2; (v) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Tc(CO)6]ClO4
Mr366.42
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)13.227 (4), 6.8002 (18), 13.616 (3)
β (°) 112.56 (2)
V3)1131.0 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.55
Crystal size (mm)0.20 × 0.18 × 0.10
Data collection
DiffractometerStoe IPDS2
diffractometer
Absorption correctionIntegration
(X-RED and X-SHAPE; Stoe & Cie, 2005)
Tmin, Tmax0.620, 0.723
No. of measured, independent and
observed [I > 2σ(I)] reflections
4935, 1508, 1224
Rint0.035
(sin θ/λ)max1)0.687
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.067, 1.06
No. of reflections1508
No. of parameters99
Δρmax, Δρmin (e Å3)0.32, 0.44

Computer programs: X-AREA (Stoe & Cie, 2007), X-RED (Stoe & Cie, 2005), SHELXL97 (Sheldrick, 2008), ATOMS (Dowty, 2000), publCIF (Westrip, 2008).

 

Acknowledgements

The study was financially supported in part by the Russian Foundation for Basic Research (project No. 07–03-00089 - a) and the Russian Federation Ministry of Science and Education (project No. RNP 2.1.1.3077).

References

First citationAebischer, N., Schibli, R., Alberto, R. & Merbach, A. E. (2000). Angew. Chem. Int. Ed. 39, 254–256.  CrossRef CAS Google Scholar
First citationAlberto, R., Schibli, R., Egli, A., Abram, U., Abram, S., Kaden, T. A. & Schubiger, P. A. (1998). Polyhedron, 17, 1133–1140.  Web of Science CSD CrossRef CAS Google Scholar
First citationAlberto, R., Schibli, R., Schubiger, P. A., Abram, U. & Kaden, T. A. (1996). Polyhedron, 15, 1079–1089.  CSD CrossRef CAS Web of Science Google Scholar
First citationBaturin, N. A., Grigor'ev, M. S., Kryuchkov, S. V., Miroslavov, A. E., Sidorenko, G. V. & Suglobov, D. N. (1994a). Radiochemistry, 36, 199–201.  CAS Google Scholar
First citationBaturin, N. A., Grigor'ev, M. S., Kryuchkov, S. V., Miroslavov, A. E., Sidorenko, G. V. & Suglobov, D. N. (1994b). Radiochemistry, 36, 202–204.  CAS Google Scholar
First citationDowty, E. (2000). ATOMS. Shape Software, Kingsport, Tennessee, USA.  Google Scholar
First citationGrigor'ev, M. S., Miroslavov, A. E., Sidorenko, G. V. & Suglobov, D. N. (1997a). Radiochemistry, 39, 204–206.  Google Scholar
First citationGrigor'ev, M. S., Miroslavov, A. E., Sidorenko, G. V. & Suglobov, D. N. (1997b). Radiochemistry, 39, 207–209.  Google Scholar
First citationHieber, W., Lux, F. & Herget, C. Z. (1965). Naturforsch. Teil B, 20, 1159–1165.  CAS Google Scholar
First citationMiroslavov, A. E., Levitskaya, E. M., Sidorenko, G. V., Lumpov, A. A., Suglobov, D. N., Gurzhiy, V. V. & Krivovichev, S. V. (2008a). Radiochemistry, 50. In the press.  Google Scholar
First citationMiroslavov, A. E., Lumpov, A. A., Sidorenko, G. V., Levitskaya, E. M., Gorshkov, N. I., Suglobov, D. N., Alberto, R., Braband, H., Gurzhiy, V. V., Krivovichev, S. V. & Tananaev, I. G. (2008b). J. Organomet. Chem. 693, 4–10.  CrossRef CAS Google Scholar
First citationSchwochau, K. (2000). Technetium, Chemistry and Radiopharmaceutical Applications. New York: Wiley-VCH.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2005). X-RED and X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationStoe & Cie (2007). X-AREA. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds