Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The centrosymmetric title compound, [Zn2(C22H22N4O2)(C4H7O4)2], is a dinuclear zinc(II) complex. Each ZnII atom has a square-pyramidal geometry with N2O3 donors, being coordinated by two N atoms and two O atoms from the 10,21-dimethyl-3,6,14,17-tetra­azatricyclo­[17.3.18,12]tetra­cosa-1(23),8,10,12(24),19,21-hexa­ene-23,24-diolate ligand and one O atom from a maleate anion. The two penta­coordinated ZnII atoms are linked by two phenolate O atoms. This leads to the formation of a four-membered Zn2O2 ring. The mol­ecule exhibits a strong intra­molecular O—H...O hydrogen bond, with an O...O distance of 2.480 (2) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807060461/fj2073sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807060461/fj2073Isup2.hkl
Contains datablock I

CCDC reference: 672762

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.029
  • wR factor = 0.085
  • Data-to-parameter ratio = 16.7

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density .... 2.83 PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for O2 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C12 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C15 PLAT380_ALERT_4_C Check Incorrectly? Oriented X(sp2)-Methyl Moiety C7 PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 2 PLAT764_ALERT_4_C Overcomplete CIF Bond List Detected (Rep/Expd) . 1.11 Ratio
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT793_ALERT_1_G Check the Absolute Configuration of N1 ..... S PLAT793_ALERT_1_G Check the Absolute Configuration of N2 ..... S
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 7 ALERT level C = Check and explain 4 ALERT level G = General alerts; check 4 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 4 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Dinuclear zinc(II) cores have attracted much interest as a result of their siganificance in biological systems (Dealwis et al., 1995; Burley et al., 1990; Roderick & Mathews, 1993). In addition, some synthetic dinuclear zinc(II) compounds are found to have functions in dephosphorylation (Bazzicalupi et al., 1997). To further widen the scope of application of zinc compounds, there is a need to prepare new series of dinuclear zinc compounds. In this work, a new dinuclear zinc(II) compound has been synthesized and its structure (I) is reported here.

As shown in Fig. 1, [Zn2L(C4H7O4)2] is a centrosymmetric dinuclear zinc compound. The coordination environment around zinc is a square-pyramid with two N atoms and two O atoms from L ligand occupying the basal positions and one O atom from maleic acid anion occupying the apical position. In the crystal structure the two O atoms from L ligand act as bridging atoms, coordinating two zinc atoms to generate a four-numbered Zn2O2 ring. The Zn—O and Zn—N distances and angles are nomal (Dutta et al., 2005).

The molecule exhibits a strong intramolecular O4—H20···O2 hydrogen bond with an O4··· O2 distance of 2.480 (2) Å.

Related literature top

For related literature, see: Dealwis et al. (1995); Burley et al. (1990); Roderick & Mathews (1993); Dutta et al. (2005); Mandal & Nag (1986); Bazzicalupi et al. (1997).

Experimental top

The ligand C22H32N4O2 (H2L) was prepared by the reported procedure (Mandal & Nag, 1986). A mixture of H2L (0.05 g, 0.13 mmol), Zn(OH)2 (0.026 g, 0.26 mmol) and maleic acid (0.03 g,0.26 mmol) in methanol (20 ml) was stirred for 10 min. The resulting solution was filtered. Colorless single crystals were obtained by slow evaporation of the filtrate at room temperature (yield 60%).

Refinement top

All H-atoms bound to carbon were refined using a riding model with d(C—H) = 0.93–0.97 Å, Uiso = 1.2Ueq (C) for aromatic and CH2 atoms, Uiso = 1.5Ueq (C) for CH3 atoms. The imino and hydroxy H atoms were located in a difference Fourier map and refined isotropically with Uiso(H) = 1.5 Ueq(N, O).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Sheldrick, 1990); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I). Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.
[µ-10,21-Dimethyl-3,6,14,17-tetraazatricyclo[17.3.1.18,12]tetracosa- 1(23),8,10,12 (24),19,21-hexaene-23,24-diolato- κ4N3,N6,O23,O24:κ4N14, N17,O23,O24]bis(maleato-κO)zinc(II) top
Crystal data top
[Zn2(C22H22N4O2)(C4H7O4)2]F(000) = 768
Mr = 743.37Dx = 1.593 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3166 reflections
a = 9.4233 (7) Åθ = 2.3–28.3°
b = 11.2691 (8) ŵ = 1.61 mm1
c = 14.6870 (11) ÅT = 293 K
β = 96.3816 (8)°Block, colourless
V = 1550.0 (2) Å30.35 × 0.30 × 0.25 mm
Z = 2
Data collection top
Bruker APEX CCD area-detector
diffractometer
3614 independent reflections
Radiation source: fine-focus sealed tube3166 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
ω scansθmax = 28.3°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1210
Tmin = 0.548, Tmax = 0.667k = 1114
9199 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0484P)2 + 0.5671P]
where P = (Fo2 + 2Fc2)/3
3614 reflections(Δ/σ)max = 0.002
217 parametersΔρmax = 0.86 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
[Zn2(C22H22N4O2)(C4H7O4)2]V = 1550.0 (2) Å3
Mr = 743.37Z = 2
Monoclinic, P21/nMo Kα radiation
a = 9.4233 (7) ŵ = 1.61 mm1
b = 11.2691 (8) ÅT = 293 K
c = 14.6870 (11) Å0.35 × 0.30 × 0.25 mm
β = 96.3816 (8)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
3614 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3166 reflections with I > 2σ(I)
Tmin = 0.548, Tmax = 0.667Rint = 0.015
9199 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.86 e Å3
3614 reflectionsΔρmin = 0.30 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.07989 (2)1.036471 (19)0.413650 (13)0.03090 (9)
C10.0822 (2)0.78759 (17)0.48550 (13)0.0347 (4)
C20.1329 (2)0.72414 (18)0.56441 (14)0.0367 (4)
C30.1730 (2)0.6061 (2)0.55428 (16)0.0441 (5)
H30.20510.56250.60630.053*
C40.1665 (2)0.55165 (19)0.46898 (18)0.0440 (5)
C50.1158 (2)0.61675 (19)0.39189 (16)0.0409 (4)
H50.11000.58100.33450.049*
C60.07315 (19)0.73491 (18)0.39866 (14)0.0356 (4)
C70.2131 (3)0.4238 (2)0.4611 (2)0.0575 (6)
H7A0.20150.40030.39790.086*
H7B0.15570.37380.49520.086*
H7C0.31160.41620.48520.086*
C80.0124 (2)0.80583 (19)0.31613 (14)0.0398 (4)
H8A0.01260.75710.26170.048*
H8B0.08590.82630.32270.048*
C90.0453 (3)0.9876 (2)0.22116 (15)0.0509 (6)
H9A0.01220.93430.17140.061*
H9B0.12501.03270.20270.061*
C100.0730 (3)0.9287 (2)0.76219 (15)0.0495 (5)
H10A0.15640.97370.74960.059*
H10B0.09880.88130.81660.059*
C110.1554 (2)0.7870 (2)0.65532 (15)0.0432 (5)
H11A0.18740.72930.70220.052*
H11B0.23140.84460.65310.052*
C120.3516 (2)1.14644 (19)0.42009 (14)0.0392 (4)
C130.4910 (2)1.1892 (2)0.46576 (17)0.0485 (5)
H130.54741.22760.42680.058*
C140.5497 (2)1.1825 (2)0.55234 (17)0.0505 (6)
H140.63991.21670.56230.061*
C150.4994 (2)1.1313 (2)0.63603 (16)0.0484 (5)
N10.09452 (19)0.91689 (17)0.30383 (11)0.0379 (4)
N20.0277 (2)0.84905 (16)0.68315 (11)0.0378 (4)
O10.04349 (18)0.90058 (12)0.49375 (10)0.0441 (4)
O20.27011 (17)1.09045 (18)0.46986 (11)0.0550 (4)
O30.3184 (2)1.1678 (2)0.33987 (12)0.0682 (6)
O40.3731 (2)1.0827 (2)0.63265 (13)0.0737 (6)
O50.5765 (2)1.1369 (2)0.70789 (12)0.0677 (5)
H2O0.318 (4)1.079 (4)0.578 (3)0.102*
HN10.181 (4)0.898 (4)0.296 (3)0.102*
HN20.035 (4)0.803 (3)0.698 (3)0.102*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.03147 (13)0.03791 (14)0.02267 (12)0.00489 (8)0.00010 (8)0.00140 (8)
C10.0344 (9)0.0329 (9)0.0379 (10)0.0010 (7)0.0089 (8)0.0004 (8)
C20.0323 (9)0.0385 (10)0.0392 (10)0.0019 (8)0.0038 (8)0.0028 (8)
C30.0371 (10)0.0409 (11)0.0539 (12)0.0038 (9)0.0038 (9)0.0081 (10)
C40.0349 (11)0.0368 (11)0.0613 (14)0.0011 (8)0.0100 (10)0.0013 (9)
C50.0344 (10)0.0402 (11)0.0494 (11)0.0014 (8)0.0104 (9)0.0088 (9)
C60.0294 (9)0.0375 (10)0.0408 (10)0.0009 (7)0.0076 (7)0.0019 (8)
C70.0555 (14)0.0392 (12)0.0793 (18)0.0096 (11)0.0141 (13)0.0002 (12)
C80.0355 (10)0.0463 (11)0.0367 (10)0.0021 (8)0.0003 (8)0.0082 (8)
C90.0672 (16)0.0579 (14)0.0270 (10)0.0052 (12)0.0027 (10)0.0011 (9)
C100.0617 (14)0.0528 (12)0.0307 (10)0.0034 (11)0.0089 (9)0.0002 (9)
C110.0390 (10)0.0478 (12)0.0406 (11)0.0009 (9)0.0055 (8)0.0026 (9)
C120.0336 (10)0.0443 (11)0.0394 (11)0.0002 (8)0.0031 (8)0.0005 (8)
C130.0304 (10)0.0602 (14)0.0553 (13)0.0073 (9)0.0073 (9)0.0080 (11)
C140.0290 (10)0.0620 (14)0.0587 (14)0.0079 (10)0.0033 (9)0.0027 (11)
C150.0411 (11)0.0588 (14)0.0438 (12)0.0037 (10)0.0021 (9)0.0147 (10)
N10.0401 (9)0.0457 (9)0.0277 (8)0.0045 (8)0.0030 (7)0.0015 (7)
N20.0471 (10)0.0396 (9)0.0257 (8)0.0017 (7)0.0010 (7)0.0001 (6)
O10.0686 (10)0.0315 (7)0.0355 (7)0.0069 (6)0.0215 (7)0.0050 (6)
O20.0401 (8)0.0801 (12)0.0419 (8)0.0243 (8)0.0085 (7)0.0132 (8)
O30.0540 (10)0.1097 (16)0.0403 (9)0.0140 (10)0.0023 (8)0.0091 (10)
O40.0521 (11)0.1292 (19)0.0382 (9)0.0245 (12)0.0023 (8)0.0104 (11)
O50.0567 (11)0.0953 (15)0.0468 (10)0.0056 (10)0.0138 (8)0.0173 (10)
Geometric parameters (Å, º) top
Zn1—O21.9838 (15)C9—C10i1.501 (4)
Zn1—O11.9840 (14)C9—H9A0.9700
Zn1—O1i2.0140 (14)C9—H9B0.9700
Zn1—N2i2.0960 (17)C10—N21.492 (3)
Zn1—N12.1181 (18)C10—C9i1.501 (4)
C1—O11.334 (2)C10—H10A0.9700
C1—C21.400 (3)C10—H10B0.9700
C1—C61.401 (3)C11—N21.488 (3)
C2—C31.395 (3)C11—H11A0.9700
C2—C111.505 (3)C11—H11B0.9700
C3—C41.390 (3)C12—O31.209 (3)
C3—H30.9300C12—O21.283 (3)
C4—C51.389 (3)C12—C131.488 (3)
C4—C71.514 (3)C13—C141.331 (3)
C5—C61.397 (3)C13—H130.9300
C5—H50.9300C14—C151.482 (4)
C6—C81.510 (3)C14—H140.9300
C7—H7A0.9600C15—O51.214 (3)
C7—H7B0.9600C15—O41.306 (3)
C7—H7C0.9600N1—HN10.86 (4)
C8—N11.493 (3)N2—Zn1i2.0960 (17)
C8—H8A0.9700N2—HN20.83 (4)
C8—H8B0.9700O1—Zn1i2.0140 (14)
C9—N11.483 (3)O4—H2O0.91 (4)
O2—Zn1—O1101.40 (7)C10i—C9—H9B109.2
O2—Zn1—O1i100.00 (7)H9A—C9—H9B107.9
O1—Zn1—O1i73.78 (6)N2—C10—C9i110.56 (19)
O2—Zn1—N2i116.11 (7)N2—C10—H10A109.5
O1—Zn1—N2i140.78 (7)C9i—C10—H10A109.5
O1i—Zn1—N2i88.23 (6)N2—C10—H10B109.5
O2—Zn1—N1112.32 (8)C9i—C10—H10B109.5
O1—Zn1—N189.46 (6)H10A—C10—H10B108.1
O1i—Zn1—N1146.07 (7)N2—C11—C2115.23 (16)
N2i—Zn1—N186.71 (7)N2—C11—H11A108.5
O1—C1—C2118.95 (18)C2—C11—H11A108.5
O1—C1—C6119.84 (18)N2—C11—H11B108.5
C2—C1—C6121.20 (18)C2—C11—H11B108.5
C3—C2—C1118.04 (19)H11A—C11—H11B107.5
C3—C2—C11121.99 (19)O3—C12—O2123.2 (2)
C1—C2—C11119.71 (18)O3—C12—C13119.6 (2)
C4—C3—C2122.1 (2)O2—C12—C13117.19 (18)
C4—C3—H3118.9C14—C13—C12131.6 (2)
C2—C3—H3118.9C14—C13—H13114.2
C5—C4—C3118.56 (19)C12—C13—H13114.2
C5—C4—C7121.1 (2)C13—C14—C15132.6 (2)
C3—C4—C7120.3 (2)C13—C14—H14113.7
C4—C5—C6121.4 (2)C15—C14—H14113.7
C4—C5—H5119.3O5—C15—O4120.6 (2)
C6—C5—H5119.3O5—C15—C14119.0 (2)
C5—C6—C1118.66 (19)O4—C15—C14120.4 (2)
C5—C6—C8122.23 (19)C9—N1—C8115.51 (18)
C1—C6—C8119.06 (18)C9—N1—Zn1103.92 (13)
C4—C7—H7A109.5C8—N1—Zn1111.27 (12)
C4—C7—H7B109.5C9—N1—HN1104 (3)
H7A—C7—H7B109.5C8—N1—HN1109 (3)
C4—C7—H7C109.5Zn1—N1—HN1114 (3)
H7A—C7—H7C109.5C11—N2—C10109.06 (17)
H7B—C7—H7C109.5C11—N2—Zn1i116.63 (13)
N1—C8—C6112.68 (16)C10—N2—Zn1i103.46 (13)
N1—C8—H8A109.1C11—N2—HN2114 (3)
C6—C8—H8A109.1C10—N2—HN2109 (3)
N1—C8—H8B109.1Zn1i—N2—HN2105 (3)
C6—C8—H8B109.1C1—O1—Zn1128.02 (12)
H8A—C8—H8B107.8C1—O1—Zn1i125.58 (12)
N1—C9—C10i112.01 (18)Zn1—O1—Zn1i106.22 (6)
N1—C9—H9A109.2C12—O2—Zn1118.93 (13)
C10i—C9—H9A109.2C15—O4—H2O119 (3)
N1—C9—H9B109.2
O1—C1—C2—C3179.92 (18)O1—Zn1—N1—C9150.36 (15)
C6—C1—C2—C30.6 (3)O1i—Zn1—N1—C991.32 (17)
O1—C1—C2—C115.6 (3)N2i—Zn1—N1—C99.41 (15)
C6—C1—C2—C11173.73 (18)O2—Zn1—N1—C8127.55 (13)
C1—C2—C3—C41.2 (3)O1—Zn1—N1—C825.43 (13)
C11—C2—C3—C4173.0 (2)O1i—Zn1—N1—C833.61 (19)
C2—C3—C4—C51.3 (3)N2i—Zn1—N1—C8115.52 (14)
C2—C3—C4—C7179.1 (2)C2—C11—N2—C10167.27 (18)
C3—C4—C5—C60.7 (3)C2—C11—N2—Zn1i50.6 (2)
C7—C4—C5—C6179.7 (2)C9i—C10—N2—C11167.38 (19)
C4—C5—C6—C10.1 (3)C9i—C10—N2—Zn1i42.6 (2)
C4—C5—C6—C8177.62 (19)C2—C1—O1—Zn1139.17 (16)
O1—C1—C6—C5179.37 (18)C6—C1—O1—Zn140.2 (3)
C2—C1—C6—C50.1 (3)C2—C1—O1—Zn1i46.3 (2)
O1—C1—C6—C83.0 (3)C6—C1—O1—Zn1i134.36 (16)
C2—C1—C6—C8177.67 (18)O2—Zn1—O1—C187.41 (18)
C5—C6—C8—N1123.2 (2)O1i—Zn1—O1—C1175.4 (2)
C1—C6—C8—N159.3 (2)N2i—Zn1—O1—C1109.40 (18)
C3—C2—C11—N2129.6 (2)N1—Zn1—O1—C125.27 (18)
C1—C2—C11—N256.3 (3)O2—Zn1—O1—Zn1i97.23 (9)
O3—C12—C13—C14176.7 (3)O1i—Zn1—O1—Zn1i0.0
O2—C12—C13—C141.5 (4)N2i—Zn1—O1—Zn1i65.96 (12)
C12—C13—C14—C150.5 (5)N1—Zn1—O1—Zn1i150.10 (8)
C13—C14—C15—O5179.6 (3)O3—C12—O2—Zn10.3 (3)
C13—C14—C15—O41.5 (5)C13—C12—O2—Zn1177.79 (16)
C10i—C9—N1—C886.0 (2)O1—Zn1—O2—C12154.68 (18)
C10i—C9—N1—Zn136.2 (2)O1i—Zn1—O2—C12130.03 (18)
C6—C8—N1—C9176.86 (17)N2i—Zn1—O2—C1237.1 (2)
C6—C8—N1—Zn165.00 (18)N1—Zn1—O2—C1260.5 (2)
O2—Zn1—N1—C9107.52 (15)
Symmetry code: (i) x, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H2O···O20.91 (4)1.60 (4)2.480 (2)161 (4)

Experimental details

Crystal data
Chemical formula[Zn2(C22H22N4O2)(C4H7O4)2]
Mr743.37
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)9.4233 (7), 11.2691 (8), 14.6870 (11)
β (°) 96.3816 (8)
V3)1550.0 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.61
Crystal size (mm)0.35 × 0.30 × 0.25
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.548, 0.667
No. of measured, independent and
observed [I > 2σ(I)] reflections
9199, 3614, 3166
Rint0.015
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.085, 1.06
No. of reflections3614
No. of parameters217
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.86, 0.30

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL-Plus (Sheldrick, 1990).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H2O···O20.91 (4)1.60 (4)2.480 (2)161 (4)
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds