Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The cis isomer of the square-planar title complex has been crystallized as the chloro­form solvate, [PtCl2(C15H18NP)2]·CHCl3. Comparison of the Pt—P and Pt—Cl bond lengths and the Cl—Pt—Cl and P—Pt—P angles with the known compounds cis-{Ph2PN(H)R′}2PtCl2 reveals that the R′ substituents have negligible effects on these structural parameters. Intra­molecular N—H...Cl and inter­molecular Pt—Cl...H—CCl3 hydrogen bonds are evident in the title structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807028206/fj2039sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807028206/fj2039Isup2.hkl
Contains datablock I

CCDC reference: 654758

Key indicators

  • Single-crystal X-ray study
  • T = 150 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.022
  • wR factor = 0.043
  • Data-to-parameter ratio = 22.0

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.61 Ratio PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for C31 PLAT420_ALERT_2_C D-H Without Acceptor N2 - H2 ... ?
Alert level G PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 2
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check
checkCIF publication errors
Alert level A PUBL024_ALERT_1_A The number of authors is greater than 5. Please specify the role of each of the co-authors for your paper.
Author Response: ... Smith: synthetic chemistry supervisor Elsegood: crystallographic supervisor Sanchez-Ballester: Wrote most of the paper in cif Evans: MChem student learning how to write in cif and synthesised the complex Brown: made the ligand Blann: Industrial supervisor
PUBL022_ALERT_1_A There is a mismatched ~ on line 272
              Slawin <i>et al.</i>, 1999). For <i>trans</i>-{R~2~PN(H)R'}~2~MCl~2
              If you require a ~ then it should be escaped
              with a \, i.e. \~
              Otherwise there must be a matching closing ~, e.g. C~2~H~4~
PUBL022_ALERT_1_A There is a mismatched ~ on line 273
              ~complexes
              If you require a ~ then it should be escaped
              with a \, i.e. \~
              Otherwise there must be a matching closing ~, e.g. C~2~H~4~

3 ALERT level A = Data missing that is essential or data in wrong format 0 ALERT level G = General alerts. Data that may be required is missing

Comment top

Secondary aminophosphines are useful ligands in coordination and organometallic chemistry (Gaw et al., 1999). Depending on the R' group these phosphorus(III) ligands may either be P-monodentate, R2PN(H)R', (Clarke et al., 2003; Slawin et al., 2005; Slawin et al., 1999) or P/P'-didentate, R2PN(H)R'N(H)PR2, (Bergamini et al., 2004; Lindner et al., 2000; Ly et al., 1997). For many of these ligands the Ph2P group has been widely employed whereas R' has been various substituents e.g. CH2CH?CH2 (II), CH(CH3)C(O)OCH3 (III), Ph (Priya et al., 2003; Slawin et al., 1999, 2005). These ligands coordinate readily to d8 square-planar metal centres including palladium(II) and platinum(II). Both cis-and trans- geometric isomers of {R2PN(H)R'}2MCl2 have previously been structurally characterized (Browning & Farrar, 1995; Burrows et al., 2000; Priya et al., 2003; Slawin et al., 2005; Slawin et al., 1999). For trans-{R2PN(H)R'}2MCl2 complexes two intramolecular H-bonds between both NH moieties and terminal chlorides are observed. Some of these ligands e.g. Ph2PN(H)R (R = Ph, tBu) complex also with Group 6 metals to give cis- and/or trans-{Ph2PN(H)R}2M(CO)4 (M = Cr, Mo, W) but with the more sterically hindered aminophosphine (2,4,6-Me3C6H2)2PN(H)Ph no coordination was observed (Kühl et al., 2001; Priya et al., 2003).

The structure of (I) (Fig. 1 and Table 2) exhibits an essentially square-planar, cis- geometry comprising two chloride and two Ph2PN(H)iPr ligands around the platinum(II) metal centre. In (I) the Pt—P and Pt—Cl bond lengths are typical and compare favourably with those reported for the related complexes (II) and (III) (Table 2). The angles around the platinum coordination sphere in (I) vary from 84.75 (2)° [Cl—Pt—Cl] to 96.03 (2)° [P—Pt—P]. The P—N bond distances for (I) are similar to those in (II) and (III) and are shorter than those expected for a single P—N bond. This suggests some delocalization of electron density. Complex (I) displays an intramolecular H-bond between the secondary amine and a terminal bound chloride ligand. This leads to disparity between the Pt(1)—P(1)—N(1) and Pt(1)—P(2)—N(2) bond angles [109.00 (8)° versus. 116.04 (8)° respectively]. The chloroform hydrogen forms a bifurcated H-bond to the two Pt-coordinated chlorides.

In summary, we have shown that the aminophosphine Ph2PN(H)iPr complexes to platinum(II) to afford the cis-isomer {Ph2PN(H)iPr}2PtCl2 with typical Pt—P/Pt—Cl/P—N bond lengths and Cl—Pt—Cl/P—Pt—P bond angles.

Related literature top

Functionalized tertiary phosphines with secondary amine groups have been used in coordination and organometallic chemistry (see Gaw et al., 1999; Kühl et al., 2001). For structures of square-planar dichloroplatinum(II) complexes with similar ligands see also Slawin et al. (2005) and Priya et al. (2003).

For related literature, see: Bergamini et al. (2004); Browning & Farrar (1995); Burrows et al. (2000); Clarke et al. (2003); Lindner et al. (2000); Ly et al. (1997); Slawin et al. (1999).

Experimental top

Preparation of (I). To a CH2Cl2 (10 ml) solution of PtCl2(cod) (0.046 g, 0.123 mmol) was added Ph2PN(H)iPr (0.066 g, 0.244 mmol). The solution was stirred for 1 h and the volume reduced to ca 2 ml under reduced pressure. Addition of petroleum ether (b.p. 60–80 °C, 20 ml) gave (I) which was collected by suction filtration and dried in vacuo. Yield: 0.045 g, 49%. Selected data: 31P{1H}/(CDCl3): 30.4 p.p.m.., 1J(PtP) 3952 Hz. 1H/(CDCl3): 7.61–7.27 (m, arom. H), 3.89 [t, 2J(PH) 21 Hz, NH], 2.65 (m, CH), 0.69 [d, 3J(HH) 6.4 Hz, CH3] p.p.m.. FT—IR/(KBr pellet): νNH 3363, 3262, νPtCl 310, 284 cm-1. Found: C, 44.41; H, 4.24; N, 3.26. C30H36Cl2N2P2Pt.CH2Cl2 requires C, 44.51; H, 4.58; N, 3.35%. Colourless block crystals of (I) were obtained by slow diffusion of petroleum ether (b.p. 60–80 °C) into a CHCl3 solution.

Refinement top

Aromatic H atoms were placed in geometric positions (C—H distance = 0.95 Å for aryl H; 0.98 Å for methyl H; and 1.00 Å for methine H) using a riding model. NH coordinates were freely refined. Uiso values were set to 1.2Ueq (1.5Ueq for methyl H and NH).

Structure description top

Secondary aminophosphines are useful ligands in coordination and organometallic chemistry (Gaw et al., 1999). Depending on the R' group these phosphorus(III) ligands may either be P-monodentate, R2PN(H)R', (Clarke et al., 2003; Slawin et al., 2005; Slawin et al., 1999) or P/P'-didentate, R2PN(H)R'N(H)PR2, (Bergamini et al., 2004; Lindner et al., 2000; Ly et al., 1997). For many of these ligands the Ph2P group has been widely employed whereas R' has been various substituents e.g. CH2CH?CH2 (II), CH(CH3)C(O)OCH3 (III), Ph (Priya et al., 2003; Slawin et al., 1999, 2005). These ligands coordinate readily to d8 square-planar metal centres including palladium(II) and platinum(II). Both cis-and trans- geometric isomers of {R2PN(H)R'}2MCl2 have previously been structurally characterized (Browning & Farrar, 1995; Burrows et al., 2000; Priya et al., 2003; Slawin et al., 2005; Slawin et al., 1999). For trans-{R2PN(H)R'}2MCl2 complexes two intramolecular H-bonds between both NH moieties and terminal chlorides are observed. Some of these ligands e.g. Ph2PN(H)R (R = Ph, tBu) complex also with Group 6 metals to give cis- and/or trans-{Ph2PN(H)R}2M(CO)4 (M = Cr, Mo, W) but with the more sterically hindered aminophosphine (2,4,6-Me3C6H2)2PN(H)Ph no coordination was observed (Kühl et al., 2001; Priya et al., 2003).

The structure of (I) (Fig. 1 and Table 2) exhibits an essentially square-planar, cis- geometry comprising two chloride and two Ph2PN(H)iPr ligands around the platinum(II) metal centre. In (I) the Pt—P and Pt—Cl bond lengths are typical and compare favourably with those reported for the related complexes (II) and (III) (Table 2). The angles around the platinum coordination sphere in (I) vary from 84.75 (2)° [Cl—Pt—Cl] to 96.03 (2)° [P—Pt—P]. The P—N bond distances for (I) are similar to those in (II) and (III) and are shorter than those expected for a single P—N bond. This suggests some delocalization of electron density. Complex (I) displays an intramolecular H-bond between the secondary amine and a terminal bound chloride ligand. This leads to disparity between the Pt(1)—P(1)—N(1) and Pt(1)—P(2)—N(2) bond angles [109.00 (8)° versus. 116.04 (8)° respectively]. The chloroform hydrogen forms a bifurcated H-bond to the two Pt-coordinated chlorides.

In summary, we have shown that the aminophosphine Ph2PN(H)iPr complexes to platinum(II) to afford the cis-isomer {Ph2PN(H)iPr}2PtCl2 with typical Pt—P/Pt—Cl/P—N bond lengths and Cl—Pt—Cl/P—Pt—P bond angles.

Functionalized tertiary phosphines with secondary amine groups have been used in coordination and organometallic chemistry (see Gaw et al., 1999; Kühl et al., 2001). For structures of square-planar dichloroplatinum(II) complexes with similar ligands see also Slawin et al. (2005) and Priya et al. (2003).

For related literature, see: Bergamini et al. (2004); Browning & Farrar (1995); Burrows et al. (2000); Clarke et al. (2003); Lindner et al. (2000); Ly et al. (1997); Slawin et al. (1999).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Figures top
[Figure 1] Fig. 1. A perspective view of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. The schematic structures of some cis-{Ph2PN(H)R'}2PtCl2 compounds.
Dichloridobis[N-(diphenylphosphino)isopropylamine-κP]platinum(II) chloroform solvate top
Crystal data top
[PtCl2(C15H18NP)2]·CHCl3F(000) = 1720
Mr = 871.91Dx = 1.657 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 13577 reflections
a = 11.5142 (4) Åθ = 2.3–28.9°
b = 14.5440 (5) ŵ = 4.51 mm1
c = 21.5825 (8) ÅT = 150 K
β = 104.795 (2)°Block, colourless
V = 3494.4 (2) Å30.34 × 0.24 × 0.14 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD
diffractometer
8350 independent reflections
Radiation source: sealed tube6863 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω rotation with narrow frames scansθmax = 29.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1415
Tmin = 0.287, Tmax = 0.531k = 1817
26733 measured reflectionsl = 2729
Refinement top
Refinement on F2Primary atom site location: heavy-atom method
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: geom except NH coords freely refined
wR(F2) = 0.044H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0136P)2 + 2.3257P]
where P = (Fo2 + 2Fc2)/3
8350 reflections(Δ/σ)max = 0.002
380 parametersΔρmax = 1.14 e Å3
2 restraintsΔρmin = 0.75 e Å3
Crystal data top
[PtCl2(C15H18NP)2]·CHCl3V = 3494.4 (2) Å3
Mr = 871.91Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.5142 (4) ŵ = 4.51 mm1
b = 14.5440 (5) ÅT = 150 K
c = 21.5825 (8) Å0.34 × 0.24 × 0.14 mm
β = 104.795 (2)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
8350 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
6863 reflections with I > 2σ(I)
Tmin = 0.287, Tmax = 0.531Rint = 0.027
26733 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0222 restraints
wR(F2) = 0.044H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 1.14 e Å3
8350 reflectionsΔρmin = 0.75 e Å3
380 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.610678 (8)0.266739 (7)0.607682 (4)0.01569 (3)
Cl10.40601 (5)0.23034 (5)0.59963 (3)0.02215 (13)
Cl20.62839 (6)0.27216 (5)0.71855 (3)0.02706 (14)
P10.58363 (5)0.25957 (4)0.50050 (3)0.01643 (13)
P20.81064 (6)0.28418 (4)0.63150 (3)0.01808 (14)
N10.4412 (2)0.23747 (16)0.46669 (10)0.0239 (5)
H10.397 (2)0.237 (2)0.4910 (12)0.036*
C10.3803 (2)0.23277 (19)0.39797 (12)0.0249 (6)
H1A0.44300.22930.37340.030*
C20.3042 (3)0.1459 (2)0.38439 (14)0.0401 (8)
H2A0.35520.09200.39860.060*
H2B0.26700.14120.33830.060*
H2C0.24140.14850.40760.060*
C30.3063 (3)0.3187 (2)0.37732 (13)0.0373 (7)
H3A0.24670.32480.40240.056*
H3B0.26520.31430.33170.056*
H3C0.35920.37260.38460.056*
C40.6650 (2)0.16705 (17)0.47293 (11)0.0191 (5)
C50.7616 (2)0.17847 (19)0.44604 (12)0.0236 (6)
H50.79010.23850.44090.028*
C60.8167 (3)0.1026 (2)0.42654 (13)0.0300 (7)
H60.88200.11110.40760.036*
C70.7766 (3)0.0151 (2)0.43462 (14)0.0345 (7)
H70.81410.03660.42100.041*
C80.6825 (3)0.0023 (2)0.46236 (14)0.0350 (7)
H80.65590.05810.46840.042*
C90.6266 (3)0.07774 (19)0.48150 (13)0.0280 (6)
H90.56170.06870.50060.034*
C100.6209 (2)0.36412 (17)0.46285 (11)0.0180 (5)
C110.6288 (2)0.44695 (18)0.49622 (12)0.0220 (6)
H110.62390.44710.53950.026*
C120.6440 (2)0.52958 (19)0.46646 (14)0.0275 (6)
H120.64910.58570.48950.033*
C130.6516 (3)0.53001 (19)0.40386 (14)0.0296 (7)
H130.66150.58650.38370.036*
C140.6449 (2)0.44817 (19)0.37024 (13)0.0278 (6)
H140.65130.44860.32720.033*
C150.6288 (2)0.36561 (19)0.39924 (12)0.0237 (6)
H150.62320.30980.37580.028*
N20.86725 (19)0.31830 (16)0.57158 (10)0.0215 (5)
H20.822 (2)0.3539 (17)0.5452 (12)0.032*
C160.9961 (2)0.3428 (2)0.58081 (13)0.0298 (6)
H161.04370.31060.62010.036*
C171.0398 (3)0.3090 (3)0.52374 (16)0.0471 (9)
H17A1.02780.24230.51910.071*
H17B1.12540.32310.53070.071*
H17C0.99420.33970.48470.071*
C181.0154 (3)0.4455 (2)0.59066 (16)0.0452 (9)
H18A0.96640.47840.55350.068*
H18B1.10040.46000.59550.068*
H18C0.99200.46440.62930.068*
C190.8767 (2)0.17142 (18)0.65314 (12)0.0220 (6)
C200.9065 (2)0.11735 (19)0.60665 (14)0.0285 (6)
H200.90260.14240.56550.034*
C210.9421 (3)0.0269 (2)0.61997 (16)0.0379 (8)
H210.96210.00980.58780.046*
C220.9486 (3)0.0103 (2)0.67930 (17)0.0394 (8)
H220.97310.07240.68800.047*
C230.9196 (3)0.0426 (2)0.72611 (16)0.0369 (8)
H230.92480.01700.76720.044*
C240.8827 (2)0.1333 (2)0.71358 (14)0.0284 (6)
H240.86160.16930.74580.034*
C250.8729 (2)0.36076 (18)0.69854 (12)0.0205 (5)
C260.9837 (2)0.34360 (19)0.74212 (12)0.0246 (6)
H261.02360.28680.74070.030*
C271.0353 (3)0.4093 (2)0.78732 (13)0.0305 (7)
H271.11020.39710.81690.037*
C280.9783 (3)0.4925 (2)0.78963 (13)0.0301 (6)
H281.01380.53730.82080.036*
C290.8696 (3)0.5102 (2)0.74632 (13)0.0306 (7)
H290.83120.56780.74730.037*
C300.8164 (2)0.44455 (19)0.70155 (13)0.0257 (6)
H300.74070.45690.67270.031*
C310.3502 (3)0.2155 (2)0.74824 (13)0.0354 (7)
H310.41020.21010.72210.042*
Cl30.42136 (9)0.18738 (8)0.82838 (4)0.0609 (3)
Cl40.23036 (8)0.13999 (7)0.71669 (4)0.0556 (2)
Cl50.29746 (8)0.32944 (6)0.74342 (4)0.0493 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.01498 (5)0.01740 (5)0.01464 (5)0.00012 (4)0.00371 (3)0.00047 (4)
Cl10.0184 (3)0.0288 (3)0.0201 (3)0.0045 (3)0.0065 (2)0.0015 (3)
Cl20.0228 (3)0.0432 (4)0.0154 (3)0.0049 (3)0.0052 (2)0.0001 (3)
P10.0161 (3)0.0173 (3)0.0157 (3)0.0000 (2)0.0036 (2)0.0004 (3)
P20.0161 (3)0.0212 (4)0.0169 (3)0.0001 (3)0.0042 (2)0.0006 (3)
N10.0203 (11)0.0353 (13)0.0162 (10)0.0040 (10)0.0050 (9)0.0020 (10)
C10.0213 (13)0.0349 (15)0.0166 (12)0.0032 (12)0.0012 (10)0.0002 (12)
C20.0420 (19)0.044 (2)0.0284 (16)0.0153 (15)0.0019 (14)0.0034 (14)
C30.0355 (17)0.048 (2)0.0226 (14)0.0060 (14)0.0025 (13)0.0002 (14)
C40.0219 (13)0.0183 (13)0.0162 (12)0.0028 (10)0.0033 (10)0.0008 (10)
C50.0250 (14)0.0233 (15)0.0217 (13)0.0029 (11)0.0044 (11)0.0015 (11)
C60.0291 (15)0.0351 (18)0.0270 (15)0.0092 (13)0.0092 (12)0.0015 (13)
C70.0412 (18)0.0295 (17)0.0299 (16)0.0142 (14)0.0039 (14)0.0067 (13)
C80.0440 (19)0.0194 (16)0.0387 (17)0.0017 (13)0.0051 (14)0.0034 (13)
C90.0312 (16)0.0236 (16)0.0296 (15)0.0017 (12)0.0087 (12)0.0014 (12)
C100.0157 (12)0.0196 (14)0.0181 (12)0.0001 (10)0.0033 (10)0.0018 (10)
C110.0210 (13)0.0253 (15)0.0202 (13)0.0009 (11)0.0062 (11)0.0011 (11)
C120.0313 (16)0.0177 (15)0.0353 (16)0.0023 (12)0.0117 (13)0.0001 (12)
C130.0330 (16)0.0224 (15)0.0370 (16)0.0038 (12)0.0153 (13)0.0098 (13)
C140.0319 (16)0.0326 (17)0.0204 (13)0.0026 (12)0.0095 (12)0.0056 (12)
C150.0269 (14)0.0241 (15)0.0210 (13)0.0000 (11)0.0075 (11)0.0005 (11)
N20.0176 (11)0.0263 (13)0.0206 (11)0.0017 (9)0.0047 (9)0.0021 (9)
C160.0205 (14)0.0417 (18)0.0282 (15)0.0060 (12)0.0082 (12)0.0008 (13)
C170.0329 (18)0.069 (2)0.046 (2)0.0164 (17)0.0225 (15)0.0153 (18)
C180.0405 (19)0.049 (2)0.052 (2)0.0213 (16)0.0220 (16)0.0053 (17)
C190.0156 (12)0.0220 (14)0.0270 (14)0.0005 (10)0.0030 (11)0.0003 (11)
C200.0224 (14)0.0292 (16)0.0316 (15)0.0082 (12)0.0028 (12)0.0002 (12)
C210.0268 (16)0.0337 (18)0.048 (2)0.0099 (13)0.0002 (14)0.0082 (15)
C220.0229 (15)0.0242 (16)0.065 (2)0.0033 (12)0.0002 (15)0.0080 (16)
C230.0244 (15)0.0379 (19)0.0449 (19)0.0013 (13)0.0024 (14)0.0177 (15)
C240.0232 (14)0.0304 (17)0.0316 (15)0.0022 (12)0.0071 (12)0.0043 (13)
C250.0198 (13)0.0232 (14)0.0187 (12)0.0004 (11)0.0053 (10)0.0007 (11)
C260.0228 (14)0.0248 (15)0.0254 (14)0.0009 (11)0.0047 (11)0.0010 (11)
C270.0229 (14)0.0396 (18)0.0254 (14)0.0025 (12)0.0006 (12)0.0023 (13)
C280.0323 (16)0.0312 (17)0.0257 (14)0.0085 (13)0.0050 (12)0.0082 (13)
C290.0343 (17)0.0245 (16)0.0335 (16)0.0019 (12)0.0096 (13)0.0043 (13)
C300.0220 (14)0.0287 (16)0.0251 (14)0.0024 (11)0.0034 (11)0.0005 (12)
C310.0321 (16)0.051 (2)0.0259 (15)0.0043 (14)0.0136 (13)0.0023 (14)
Cl30.0603 (6)0.0896 (8)0.0323 (4)0.0058 (5)0.0105 (4)0.0095 (5)
Cl40.0532 (5)0.0645 (6)0.0539 (5)0.0265 (5)0.0226 (4)0.0134 (5)
Cl50.0398 (5)0.0538 (6)0.0555 (5)0.0010 (4)0.0145 (4)0.0067 (4)
Geometric parameters (Å, º) top
Pt1—P22.2417 (6)C14—C151.388 (4)
Pt1—P12.2564 (6)C14—H140.9500
Pt1—Cl22.3503 (6)C15—H150.9500
Pt1—Cl12.3780 (6)N2—C161.489 (3)
P1—N11.648 (2)N2—H20.845 (17)
P1—C41.824 (3)C16—C181.517 (4)
P1—C101.826 (3)C16—C171.526 (4)
P2—N21.666 (2)C16—H161.0000
P2—C191.818 (3)C17—H17A0.9800
P2—C251.821 (3)C17—H17B0.9800
N1—C11.471 (3)C17—H17C0.9800
N1—H10.815 (17)C18—H18A0.9800
C1—C31.514 (4)C18—H18B0.9800
C1—C21.523 (4)C18—H18C0.9800
C1—H1A1.0000C19—C201.385 (4)
C2—H2A0.9800C19—C241.403 (4)
C2—H2B0.9800C20—C211.386 (4)
C2—H2C0.9800C20—H200.9500
C3—H3A0.9800C21—C221.374 (4)
C3—H3B0.9800C21—H210.9500
C3—H3C0.9800C22—C231.377 (5)
C4—C51.389 (3)C22—H220.9500
C4—C91.399 (4)C23—C241.392 (4)
C5—C61.391 (4)C23—H230.9500
C5—H50.9500C24—H240.9500
C6—C71.380 (4)C25—C301.391 (4)
C6—H60.9500C25—C261.401 (3)
C7—C81.378 (4)C26—C271.386 (4)
C7—H70.9500C26—H260.9500
C8—C91.387 (4)C27—C281.384 (4)
C8—H80.9500C27—H270.9500
C9—H90.9500C28—C291.381 (4)
C10—C111.395 (4)C28—H280.9500
C10—C151.399 (3)C29—C301.385 (4)
C11—C121.394 (4)C29—H290.9500
C11—H110.9500C30—H300.9500
C12—C131.376 (4)C31—Cl51.758 (3)
C12—H120.9500C31—Cl41.759 (3)
C13—C141.386 (4)C31—Cl31.763 (3)
C13—H130.9500C31—H311.0000
P2—Pt1—P196.03 (2)C13—C14—C15120.2 (3)
P2—Pt1—Cl286.89 (2)C13—C14—H14119.9
P1—Pt1—Cl2177.05 (2)C15—C14—H14119.9
P2—Pt1—Cl1169.29 (2)C14—C15—C10120.4 (2)
P1—Pt1—Cl192.29 (2)C14—C15—H15119.8
Cl2—Pt1—Cl184.75 (2)C10—C15—H15119.8
N1—P1—C4104.36 (12)C16—N2—P2122.79 (18)
N1—P1—C10106.61 (11)C16—N2—H2112 (2)
C4—P1—C10105.69 (11)P2—N2—H2114 (2)
N1—P1—Pt1108.91 (8)N2—C16—C18111.0 (2)
C4—P1—Pt1114.87 (8)N2—C16—C17109.7 (2)
C10—P1—Pt1115.54 (8)C18—C16—C17111.3 (3)
N2—P2—C19104.32 (12)N2—C16—H16108.2
N2—P2—C25106.38 (12)C18—C16—H16108.2
C19—P2—C25107.08 (12)C17—C16—H16108.2
N2—P2—Pt1116.00 (8)C16—C17—H17A109.5
C19—P2—Pt1107.13 (8)C16—C17—H17B109.5
C25—P2—Pt1115.09 (8)H17A—C17—H17B109.5
C1—N1—P1128.26 (17)C16—C17—H17C109.5
C1—N1—H1116 (2)H17A—C17—H17C109.5
P1—N1—H1115 (2)H17B—C17—H17C109.5
N1—C1—C3110.2 (2)C16—C18—H18A109.5
N1—C1—C2109.6 (2)C16—C18—H18B109.5
C3—C1—C2112.0 (2)H18A—C18—H18B109.5
N1—C1—H1A108.3C16—C18—H18C109.5
C3—C1—H1A108.3H18A—C18—H18C109.5
C2—C1—H1A108.3H18B—C18—H18C109.5
C1—C2—H2A109.5C20—C19—C24119.1 (3)
C1—C2—H2B109.5C20—C19—P2119.4 (2)
H2A—C2—H2B109.5C24—C19—P2120.9 (2)
C1—C2—H2C109.5C19—C20—C21120.2 (3)
H2A—C2—H2C109.5C19—C20—H20119.9
H2B—C2—H2C109.5C21—C20—H20119.9
C1—C3—H3A109.5C22—C21—C20120.7 (3)
C1—C3—H3B109.5C22—C21—H21119.7
H3A—C3—H3B109.5C20—C21—H21119.7
C1—C3—H3C109.5C21—C22—C23119.8 (3)
H3A—C3—H3C109.5C21—C22—H22120.1
H3B—C3—H3C109.5C23—C22—H22120.1
C5—C4—C9118.7 (2)C22—C23—C24120.4 (3)
C5—C4—P1125.5 (2)C22—C23—H23119.8
C9—C4—P1115.8 (2)C24—C23—H23119.8
C4—C5—C6120.5 (3)C23—C24—C19119.7 (3)
C4—C5—H5119.7C23—C24—H24120.2
C6—C5—H5119.7C19—C24—H24120.2
C7—C6—C5120.0 (3)C30—C25—C26118.8 (2)
C7—C6—H6120.0C30—C25—P2118.63 (19)
C5—C6—H6120.0C26—C25—P2122.0 (2)
C8—C7—C6120.3 (3)C27—C26—C25120.2 (3)
C8—C7—H7119.8C27—C26—H26119.9
C6—C7—H7119.8C25—C26—H26119.9
C7—C8—C9119.9 (3)C28—C27—C26120.4 (3)
C7—C8—H8120.0C28—C27—H27119.8
C9—C8—H8120.0C26—C27—H27119.8
C8—C9—C4120.6 (3)C29—C28—C27119.6 (3)
C8—C9—H9119.7C29—C28—H28120.2
C4—C9—H9119.7C27—C28—H28120.2
C11—C10—C15118.8 (2)C28—C29—C30120.5 (3)
C11—C10—P1118.78 (19)C28—C29—H29119.8
C15—C10—P1122.08 (19)C30—C29—H29119.8
C12—C11—C10120.4 (2)C29—C30—C25120.5 (3)
C12—C11—H11119.8C29—C30—H30119.7
C10—C11—H11119.8C25—C30—H30119.7
C13—C12—C11120.2 (3)Cl5—C31—Cl4109.92 (17)
C13—C12—H12119.9Cl5—C31—Cl3110.11 (16)
C11—C12—H12119.9Cl4—C31—Cl3110.91 (17)
C12—C13—C14120.1 (3)Cl5—C31—H31108.6
C12—C13—H13120.0Cl4—C31—H31108.6
C14—C13—H13120.0Cl3—C31—H31108.6
P2—Pt1—P1—N1175.27 (9)P1—C10—C11—C12172.9 (2)
Cl1—Pt1—P1—N12.01 (10)C10—C11—C12—C130.2 (4)
P2—Pt1—P1—C458.67 (10)C11—C12—C13—C140.3 (4)
Cl1—Pt1—P1—C4114.59 (9)C12—C13—C14—C150.9 (4)
P2—Pt1—P1—C1064.82 (9)C13—C14—C15—C100.9 (4)
Cl1—Pt1—P1—C10121.92 (9)C11—C10—C15—C140.3 (4)
P1—Pt1—P2—N218.14 (10)P1—C10—C15—C14173.2 (2)
Cl2—Pt1—P2—N2162.27 (10)C19—P2—N2—C1669.1 (2)
Cl1—Pt1—P2—N2159.01 (14)C25—P2—N2—C1643.9 (2)
P1—Pt1—P2—C1997.86 (9)Pt1—P2—N2—C16173.29 (18)
Cl2—Pt1—P2—C1981.73 (9)P2—N2—C16—C1894.6 (3)
Cl1—Pt1—P2—C1943.02 (16)P2—N2—C16—C17141.9 (2)
P1—Pt1—P2—C25143.22 (10)N2—P2—C19—C2029.7 (2)
Cl2—Pt1—P2—C2537.19 (10)C25—P2—C19—C20142.2 (2)
Cl1—Pt1—P2—C2575.90 (16)Pt1—P2—C19—C2093.8 (2)
C4—P1—N1—C161.4 (3)N2—P2—C19—C24159.1 (2)
C10—P1—N1—C150.2 (3)C25—P2—C19—C2446.6 (2)
Pt1—P1—N1—C1175.5 (2)Pt1—P2—C19—C2477.4 (2)
P1—N1—C1—C3103.9 (3)C24—C19—C20—C210.2 (4)
P1—N1—C1—C2132.4 (2)P2—C19—C20—C21171.5 (2)
N1—P1—C4—C5130.0 (2)C19—C20—C21—C220.2 (4)
C10—P1—C4—C517.7 (3)C20—C21—C22—C230.0 (5)
Pt1—P1—C4—C5110.9 (2)C21—C22—C23—C240.5 (5)
N1—P1—C4—C951.5 (2)C22—C23—C24—C190.9 (4)
C10—P1—C4—C9163.73 (19)C20—C19—C24—C230.7 (4)
Pt1—P1—C4—C967.7 (2)P2—C19—C24—C23172.0 (2)
C9—C4—C5—C61.7 (4)N2—P2—C25—C3084.6 (2)
P1—C4—C5—C6179.8 (2)C19—P2—C25—C30164.3 (2)
C4—C5—C6—C70.9 (4)Pt1—P2—C25—C3045.4 (2)
C5—C6—C7—C80.4 (4)N2—P2—C25—C2686.8 (2)
C6—C7—C8—C90.9 (4)C19—P2—C25—C2624.3 (2)
C7—C8—C9—C40.0 (4)Pt1—P2—C25—C26143.23 (19)
C5—C4—C9—C81.2 (4)C30—C25—C26—C270.1 (4)
P1—C4—C9—C8179.9 (2)P2—C25—C26—C27171.5 (2)
N1—P1—C10—C11102.8 (2)C25—C26—C27—C280.4 (4)
C4—P1—C10—C11146.55 (19)C26—C27—C28—C290.3 (4)
Pt1—P1—C10—C1118.4 (2)C27—C28—C29—C301.3 (4)
N1—P1—C10—C1570.1 (2)C28—C29—C30—C251.5 (4)
C4—P1—C10—C1540.5 (2)C26—C25—C30—C290.8 (4)
Pt1—P1—C10—C15168.73 (18)P2—C25—C30—C29170.9 (2)
C15—C10—C11—C120.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl10.82 (2)2.32 (2)3.000 (2)141 (3)
C31—H31···Cl11.002.653.435 (3)136
C31—H31···Cl21.002.693.521 (3)141

Experimental details

Crystal data
Chemical formula[PtCl2(C15H18NP)2]·CHCl3
Mr871.91
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)11.5142 (4), 14.5440 (5), 21.5825 (8)
β (°) 104.795 (2)
V3)3494.4 (2)
Z4
Radiation typeMo Kα
µ (mm1)4.51
Crystal size (mm)0.34 × 0.24 × 0.14
Data collection
DiffractometerBruker SMART 1000 CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.287, 0.531
No. of measured, independent and
observed [I > 2σ(I)] reflections
26733, 8350, 6863
Rint0.027
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.044, 1.04
No. of reflections8350
No. of parameters380
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.14, 0.75

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SAINT, SHELXTL (Bruker, 2000), SHELXTL and local programs.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl10.815 (17)2.32 (2)3.000 (2)141 (3)
C31—H31···Cl11.002.653.435 (3)136
C31—H31···Cl21.002.693.521 (3)141
Selected geometric parameters (Å, °) for (I) and a comparison with (II) and (III) top
(I)(II)(III)
Pt—P2.2565 (6), 2.2416 (6)2.2625 (10), 2.251 (9)2.221 (2) [2.253 (2)]
2.254 (2) [2.239 (2)]
Pt—Cl2.3779 (6), 2.3503 (6)2.3644 (10), 2.3649 (12)2.348 (2) [2.254 (2)]
2.362 (2) [2.353 (2)]
P—N1.647 (2), 1.665 (2)1.663 (3), 1.660 (4)1.667 (8) [1.634 (8)]
1.686 (9) [1.669 (8)]
P—Pt—P96.03 (2)98.81 (4)102.3 (1) [95.4 (1)]
Cl—Pt—Cl84.75 (2)84.53 (4)86.6 (1) [86.6 (1)]
Notes: (I) this work (R = iPr); (II) Slawin et al. (2005) (R = CH2CHCH2); (III) Priya et al. (2003), two molecules present in the asymmetric unit (R = Ph).
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds