metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages m1065-m1066

catena-Poly[[di­aqua­bis­­(3-methyl­pyridine-κN)cobalt(II)]-μ-sulfato-κ2O:O′]

aDepartment of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan, bDepartment of Chemistry, Youngstown State University, 1 University Plaza, Youngstown, Ohio 44555, USA, and cDepartment of Chemistry, Faculty of Science, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: zainudin@um.edu.my

(Received 27 April 2011; accepted 30 June 2011; online 9 July 2011)

The environment of the CoII ion in the title compound, [Co(SO4)(C6H7N)2(H2O)2]n, exhibits an octa­hedral configuration with the two 3-methyl­pyridine ligands lying in cis positions with respect to each other and trans to the two coordinated water mol­ecules. The axial positions are occupied by O atoms of the sulfate ions. Co and S atoms occupy special positions (twofold axis, Wyckoff position 4c). Neighboring CoII ions are covalently connected with each other through the sulfate ions, thus creating infinite polymeric chains that run along the c axis. The water mol­ecules are connected with neighboring sulfate ions through strong O—H⋯O hydrogen bonds. Intra­molecular hydrogen bonds parallel to the propagation direction of the chains stabilize the polymeric chains, and inter­molecular hydrogen bonds between chains connect neighboring chains with each other, thus leading to polymeric double chains.

Related literature

For the complexation of cobalt ions by sulfate, see: Das et al. (2009[Das, B. K., Bora, S. J., Bhattacharyya, M. K. & Barman, R. K. (2009). Acta Cryst. B65, 467-473.]); Majumder et al. (2005[Majumder, A., Choudhury, C.R., Mitra, S., Marschner, C. & Baumgartner, J. (2005). Z. Naturforsch. Teil B, 60, 99-105.]); Masuhara et al. (2007[Masuhara, N., Hayami, S., Motokawa, N., Shuto, A., Inoue, K. & Maeda, Y. (2007). Chem. Lett. 36, 90-91.]); Zhong et al. (2006[Zhong, K.-L., Zhu, Y.-M. & Lu, W.-J. (2006). Acta Cryst. E62, m631-m633.]); Zhong et al. (2011[Zhong, K.-L., Pan, X.-X., Cao, G.-Q. & Chen, L. (2011). Acta Cryst. E67, m43.]); Dietz et al. (2009[Dietz, C., Seidel, R. W. & Oppel, I. M. (2009). Z. Kristallogr. New Cryst. Struct. 224, 509-511.]); Wu et al. (2008[Wu, B.-L., Zhang, P., Niu, Y.-Y., Zhang, H.-Y., Li, Z.-J. & Hou, H.-W. (2008). Inorg. Chim. Acta, 361, 2203-2209.]); Carlucci et al. (2003[Carlucci, L., Ciani, G., Proserpio, D. M. & Rizzato, S. (2003). CrystEngComm, 5, 190-199.]); Ali et al. (2005[Ali, H. M., Puvaneswary, S. & Ng, S. W. (2005). Acta Cryst. E61, m474-m475.]); Vreshch et al. (2003[Vreshch, V. D., Chernega, A. N., Howard, J. A. K., Sieler, J. & Domasevitch, K. V. (2003). Dalton Trans. pp. 1707-1711.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(SO4)(C6H7N)2(H2O)2]

  • Mr = 377.27

  • Orthorhombic, P b c n

  • a = 15.132 (2) Å

  • b = 16.687 (2) Å

  • c = 6.4503 (9) Å

  • V = 1628.7 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.21 mm−1

  • T = 100 K

  • 0.60 × 0.12 × 0.12 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.786, Tmax = 0.865

  • 15656 measured reflections

  • 2028 independent reflections

  • 1892 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.075

  • S = 1.08

  • 2028 reflections

  • 108 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1B⋯O3i 0.82 (2) 1.86 (2) 2.6652 (15) 166 (2)
O1—H1A⋯O3ii 0.84 (2) 1.92 (2) 2.7331 (14) 165 (2)
Symmetry codes: (i) [-x+1, y, -z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2003[Bruker (2003). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Sulfate coordination to cobalt ions may be divided into three commonly reported modes: monodentate (Das et al.,2009, Majumder et al., 2005), bidentate (Masuhara et al.., 2007, Zhong et al.,2006, 2011) or bidentate-bridged metal to metal coordination (Dietz et al., 2009, Wu et al., 2008, Carlucci et al., 2003, Ali et al., 2005, Vreshch et al., 2003). The last mode of coordination is particularly common where the sulfate ion acts as a bridge that links two cobalt ions to form an extended polymeric structure. Further evidence for the different modes of sulfate coordination is reflected in the infra-red absorption spectrum due to the reduction in symmetry in sulfate coordination.

In the title compound, the cobalt(II) complex exhibits octahedral symmetry with the two 3-methylpyridine ligands lying in cis position with respect to each other, and trans to the two coordinated water molecules. The axial positions are occupied by oxygen atoms of the sulfate ions. Both Co and S occupy special positions (two-fold axis, Wyckoff position 4c). Neighboring cobalt ions are covalently connected with each other through the sulfate ions thus creating infinite polymeric chains that stretch parallel to the c axis direction. The water molecules are connected with neighboring sulfate ions through strong O—H···O hydrogen bonds. Intramolecular hydrogen bonds parallel to the propagation direction of the chains stabilize the polymeric chains, and intermolecular hydrogen bonds between chains connect neighboring strains with each other, thus leading to polymeric double chains.

Related literature top

For the complexation of cobalt ions by sulfate, see: Das et al. (2009); Majumder et al. (2005); Masuhara et al. (2007); Zhong et al. (2006); Zhong et al. (2011); Dietz et al. (2009); Wu et al. (2008); Carlucci et al. (2003); Ali et al. (2005); Vreshch et al. (2003).

Experimental top

Potassium O-n-butyl xanthate (1.00 g, 0.53 mmol) was dissolved in acetone (20 mL) and placed in a three-necked round bottom flask fitted with a reflux condenser, a magnetic stirrer and a vacuum line. Co(NO3)2.6H2O (0.78 g, 2.70 mmol) was added directly into the reaction flask. The contents were stirred to dissolve the salt completely. About 30 ml of 3-methylpyridine was added and stirring was continued for another hour. Any insoluble matter was removed by filtration, and slow evaporation of the reaction mixture at room temperature yielded 60% of red needles of the title compound as the unexpected product. m.p. = 373 K. Elemental analysis: Found (Calc.) for C12H18N2CoO6S: C 38.64 (38.20); H 4.66 (4.80); N 7.51 (7.42).

Refinement top

Water hydrogen atoms were located in the difference density Fourier map and their position were refined with an O–H distance restraint of 0.84 Å within a standard deviation of 0.02 Å. All other hydrogen atoms were placed in calculated positions and all H atoms were refined riding on the respective carrier atom with an isotropic displacement parameter 1.5 (methyl, hydroxyl) or 1.2 times (aromatic) that of the adjacent carbon or oxygen atom.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid representation of the title compound with atom numbering scheme. Displacement elliposoids are at the 50% level, hydrogen atoms are shown as spheres of arbitrari radii. Symmetry operators: (i) -x + 1, y, -z + 1/2; (ii) -x + 1, y, -z + 3/2.
[Figure 2] Fig. 2. One of the infinite double chains formed by the title compound. View down the b-axis. O—H···O hydrogen bonds are symbolized as blue dashed lines.
[Figure 3] Fig. 3. Packing arrangement of the title compound. H atoms have been omitted for clarity.
catena-Poly[[diaquabis(3-methylpyridine-κN)cobalt(II)]- µ-sulfato-κ2O:O'] top
Crystal data top
[Co(SO4)(C6H7N)2(H2O)2]Dx = 1.539 Mg m3
Mr = 377.27Melting point: 373 K
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 5623 reflections
a = 15.132 (2) Åθ = 2.4–30.5°
b = 16.687 (2) ŵ = 1.21 mm1
c = 6.4503 (9) ÅT = 100 K
V = 1628.7 (4) Å3Needle, red
Z = 40.60 × 0.12 × 0.12 mm
F(000) = 780
Data collection top
Bruker SMART APEX CCD
diffractometer
2028 independent reflections
Radiation source: fine-focus sealed tube1892 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω scansθmax = 28.3°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS in SAINT-Plus; Bruker, 2003)
h = 2019
Tmin = 0.786, Tmax = 0.865k = 2222
15656 measured reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0404P)2 + 0.7529P]
where P = (Fo2 + 2Fc2)/3
2028 reflections(Δ/σ)max = 0.001
108 parametersΔρmax = 0.57 e Å3
2 restraintsΔρmin = 0.32 e Å3
Crystal data top
[Co(SO4)(C6H7N)2(H2O)2]V = 1628.7 (4) Å3
Mr = 377.27Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 15.132 (2) ŵ = 1.21 mm1
b = 16.687 (2) ÅT = 100 K
c = 6.4503 (9) Å0.60 × 0.12 × 0.12 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
2028 independent reflections
Absorption correction: multi-scan
(SADABS in SAINT-Plus; Bruker, 2003)
1892 reflections with I > 2σ(I)
Tmin = 0.786, Tmax = 0.865Rint = 0.034
15656 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0272 restraints
wR(F2) = 0.075H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.57 e Å3
2028 reflectionsΔρmin = 0.32 e Å3
108 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.59471 (10)0.18494 (8)0.0429 (2)0.0210 (3)
H10.54660.18950.05090.025*
C20.65854 (10)0.12686 (8)0.0035 (2)0.0236 (3)
C30.72901 (10)0.12145 (9)0.1412 (3)0.0250 (3)
H30.77450.08320.11930.030*
C40.73227 (10)0.17218 (9)0.3100 (3)0.0268 (3)
H40.78000.16910.40540.032*
C50.66527 (9)0.22760 (9)0.3387 (2)0.0224 (3)
H50.66750.26170.45640.027*
C60.65160 (13)0.07315 (11)0.1835 (3)0.0384 (4)
H6A0.63250.01960.13990.058*
H6B0.70940.06940.25130.058*
H6C0.60840.09550.28080.058*
Co10.50000.325574 (15)0.25000.01344 (10)
N10.59730 (8)0.23485 (7)0.20607 (18)0.0175 (2)
O10.59964 (7)0.41307 (6)0.21413 (16)0.0177 (2)
H1A0.5893 (14)0.4584 (10)0.263 (3)0.027*
H1B0.6013 (12)0.4199 (11)0.088 (2)0.027*
O20.52369 (7)0.32565 (5)0.57274 (15)0.0183 (2)
O30.42370 (6)0.42849 (6)0.69346 (15)0.0181 (2)
S10.50000.37749 (3)0.75000.01309 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0248 (7)0.0188 (6)0.0192 (6)0.0005 (5)0.0001 (5)0.0020 (5)
C20.0287 (7)0.0185 (6)0.0234 (7)0.0004 (5)0.0057 (6)0.0018 (5)
C30.0221 (7)0.0199 (7)0.0329 (8)0.0042 (5)0.0066 (6)0.0021 (6)
C40.0212 (7)0.0271 (8)0.0320 (8)0.0017 (6)0.0033 (6)0.0009 (6)
C50.0222 (7)0.0236 (7)0.0215 (7)0.0002 (5)0.0025 (5)0.0027 (5)
C60.0487 (10)0.0320 (9)0.0346 (9)0.0125 (8)0.0008 (8)0.0145 (8)
Co10.01657 (15)0.01387 (15)0.00988 (14)0.0000.00000 (8)0.000
N10.0185 (6)0.0168 (5)0.0173 (5)0.0001 (4)0.0008 (4)0.0007 (4)
O10.0224 (5)0.0159 (5)0.0148 (5)0.0010 (4)0.0002 (4)0.0017 (4)
O20.0258 (5)0.0187 (5)0.0105 (5)0.0047 (4)0.0004 (4)0.0012 (3)
O30.0200 (5)0.0184 (5)0.0159 (4)0.0032 (4)0.0009 (4)0.0012 (4)
S10.0168 (2)0.0135 (2)0.0090 (2)0.0000.00065 (14)0.000
Geometric parameters (Å, º) top
C1—N11.3427 (18)C6—H6C0.9800
C1—C21.392 (2)Co1—O12.1115 (10)
C1—H10.9500Co1—O1i2.1115 (10)
C2—C31.391 (2)Co1—O2i2.1124 (10)
C2—C61.506 (2)Co1—O22.1124 (10)
C3—C41.380 (2)Co1—N12.1308 (12)
C3—H30.9500Co1—N1i2.1308 (12)
C4—C51.385 (2)O1—H1A0.835 (15)
C4—H40.9500O1—H1B0.820 (15)
C5—N11.3431 (19)O2—S11.4779 (10)
C5—H50.9500O3—S11.4799 (10)
C6—H6A0.9800S1—O2ii1.4779 (10)
C6—H6B0.9800S1—O3ii1.4799 (10)
N1—C1—C2123.71 (14)O1i—Co1—O290.73 (4)
N1—C1—H1118.1O2i—Co1—O2179.93 (5)
C2—C1—H1118.1O1—Co1—N189.05 (5)
C3—C2—C1117.41 (13)O1i—Co1—N1177.82 (4)
C3—C2—C6121.76 (14)O2i—Co1—N189.23 (4)
C1—C2—C6120.82 (14)O2—Co1—N190.82 (4)
C4—C3—C2119.45 (13)O1—Co1—N1i177.82 (4)
C4—C3—H3120.3O1i—Co1—N1i89.05 (5)
C2—C3—H3120.3O2i—Co1—N1i90.82 (4)
C3—C4—C5119.27 (15)O2—Co1—N1i89.23 (4)
C3—C4—H4120.4N1—Co1—N1i89.44 (6)
C5—C4—H4120.4C1—N1—C5117.75 (12)
N1—C5—C4122.40 (14)C1—N1—Co1121.65 (10)
N1—C5—H5118.8C5—N1—Co1120.56 (9)
C4—C5—H5118.8Co1—O1—H1A116.7 (15)
C2—C6—H6A109.5Co1—O1—H1B103.1 (13)
C2—C6—H6B109.5H1A—O1—H1B104.9 (17)
H6A—C6—H6B109.5S1—O2—Co1136.19 (6)
C2—C6—H6C109.5O2—S1—O2ii108.35 (8)
H6A—C6—H6C109.5O2—S1—O3ii109.76 (6)
H6B—C6—H6C109.5O2ii—S1—O3ii109.58 (5)
O1—Co1—O1i92.51 (6)O2—S1—O3109.58 (5)
O1—Co1—O2i90.73 (4)O2ii—S1—O3109.76 (6)
O1i—Co1—O2i89.22 (4)O3ii—S1—O3109.79 (8)
O1—Co1—O289.22 (4)
N1—C1—C2—C30.6 (2)N1i—Co1—N1—C165.61 (10)
N1—C1—C2—C6179.69 (15)O1—Co1—N1—C561.84 (11)
C1—C2—C3—C40.8 (2)O2i—Co1—N1—C5152.59 (11)
C6—C2—C3—C4179.90 (15)O2—Co1—N1—C527.36 (11)
C2—C3—C4—C50.1 (2)N1i—Co1—N1—C5116.59 (12)
C3—C4—C5—N11.0 (2)O1—Co1—O2—S178.59 (9)
C2—C1—N1—C50.4 (2)O1i—Co1—O2—S113.91 (9)
C2—C1—N1—Co1177.45 (11)N1—Co1—O2—S1167.62 (9)
C4—C5—N1—C11.2 (2)N1i—Co1—O2—S1102.95 (10)
C4—C5—N1—Co1176.65 (11)Co1—O2—S1—O2ii138.72 (11)
O1—Co1—N1—C1115.96 (11)Co1—O2—S1—O3ii101.66 (9)
O2i—Co1—N1—C125.22 (11)Co1—O2—S1—O318.98 (11)
O2—Co1—N1—C1154.83 (11)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···O3i0.82 (2)1.86 (2)2.6652 (15)166 (2)
O1—H1A···O3iii0.84 (2)1.92 (2)2.7331 (14)165 (2)
Symmetry codes: (i) x+1, y, z+1/2; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Co(SO4)(C6H7N)2(H2O)2]
Mr377.27
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)100
a, b, c (Å)15.132 (2), 16.687 (2), 6.4503 (9)
V3)1628.7 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.21
Crystal size (mm)0.60 × 0.12 × 0.12
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS in SAINT-Plus; Bruker, 2003)
Tmin, Tmax0.786, 0.865
No. of measured, independent and
observed [I > 2σ(I)] reflections
15656, 2028, 1892
Rint0.034
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.075, 1.08
No. of reflections2028
No. of parameters108
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.57, 0.32

Computer programs: SMART (Bruker, 2002), SAINT-Plus (Bruker, 2003), SHELXTL (Sheldrick, 2008), Mercury (Macrae et al., 2008), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···O3i0.820 (15)1.862 (15)2.6652 (15)166.0 (18)
O1—H1A···O3ii0.835 (15)1.918 (16)2.7331 (14)164.8 (18)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1, y+1, z+1.
 

Acknowledgements

This project was financed by the University of Malaya, UMRG grant: RG097/10AET. The X-ray diffractometer was funded by NSF Grant 0087210, Ohio Board of Regents Grant CAP-491, and Youngstown State University.

References

First citationAli, H. M., Puvaneswary, S. & Ng, S. W. (2005). Acta Cryst. E61, m474–m475.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2002). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarlucci, L., Ciani, G., Proserpio, D. M. & Rizzato, S. (2003). CrystEngComm, 5, 190–199.  Web of Science CSD CrossRef CAS Google Scholar
First citationDas, B. K., Bora, S. J., Bhattacharyya, M. K. & Barman, R. K. (2009). Acta Cryst. B65, 467–473.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDietz, C., Seidel, R. W. & Oppel, I. M. (2009). Z. Kristallogr. New Cryst. Struct. 224, 509–511.  CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMajumder, A., Choudhury, C.R., Mitra, S., Marschner, C. & Baumgartner, J. (2005). Z. Naturforsch. Teil B, 60, 99–105.  CAS Google Scholar
First citationMasuhara, N., Hayami, S., Motokawa, N., Shuto, A., Inoue, K. & Maeda, Y. (2007). Chem. Lett. 36, 90–91.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVreshch, V. D., Chernega, A. N., Howard, J. A. K., Sieler, J. & Domasevitch, K. V. (2003). Dalton Trans. pp. 1707–1711.  Web of Science CSD CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, B.-L., Zhang, P., Niu, Y.-Y., Zhang, H.-Y., Li, Z.-J. & Hou, H.-W. (2008). Inorg. Chim. Acta, 361, 2203–2209.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhong, K.-L., Pan, X.-X., Cao, G.-Q. & Chen, L. (2011). Acta Cryst. E67, m43.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhong, K.-L., Zhu, Y.-M. & Lu, W.-J. (2006). Acta Cryst. E62, m631–m633.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages m1065-m1066
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds