organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Solvate-free bis­­(tri­phenylphosphine)iminium chloride

aInstitut für Anorganische und Analytische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104 Freiburg i. Br., Germany
*Correspondence e-mail: carsten.knapp@ac.uni-freiburg.de

(Received 25 October 2010; accepted 9 November 2010; online 17 November 2010)

The title compound, C36H30NP2+·Cl, crystallized in the solvate-free form from a CH3CN/OEt2 solution. The chloride anion and the N atom of the [(Ph3P)2N]+ cation are located on a twofold axis, yielding overall symmetry 2 for the cation. The central P—N—P angle [133.0 (3)°] is at the low end of the range of observed P—N—P angles.

Related literature

Several bis­(triphenyl­phosphine)iminium chloride structures containing solvate mol­ecules have been determined. For [(Ph3P)2N]Cl·B(OH)3, see: Andrews et al. (1983[Andrews, S. J., Robb, D. A. & Welch, A. J. (1983). Acta Cryst. C39, 880-882.]); for [(Ph3P)2N]Cl·CH3C6H5, see: Weller et al. (1993[Weller, F., Nusshär, D. & Dehnicke, K. (1993). Z. Kristallogr. 208, 322-325.]); for [(Ph3P)2N]Cl·CH2Cl2, see: Carroll et al. (1996[Carroll, K. M., Rheingold, A. L. & Allen, M. B. (1996). Private communication (refcode: NAVMEM ). CCDC, Cambridge, England.]); for [(Ph3P)2N]Cl·CH2Cl2·H2O, see: de Arellano (1997[Arellano, M. C. R. de (1997). Private communication (refcode: RAVBUL). CCDC, Cambridge, England.]). Other bis­(triphenyl­phosphine)iminium halide structures have been determined: for [(Ph3P)2N]Br·CH3CN, see: Knapp & Uzun (2010[Knapp, C. & Uzun, R. (2010). Acta Cryst. E66, o3186.]); for [(Ph3P)2N]I, see: Beckett et al. (2010[Beckett, M. A., Horton, P. N., Hursthouse, M. B. & Timmis, J. L. (2010). Acta Cryst. E66, o319.]). For a discussion of the [(Ph3P)2N]+ cation, see: Lewis & Dance (2000[Lewis, G. R. & Dance, I. (2000). J. Chem. Soc. Dalton Trans. pp. 299-306.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For the synthesis, see: Ruff & Schlientz (1974[Ruff, J. K. & Schlientz, W. J. (1974). Inorg. Synth. 15, 84-87.]).

[Scheme 1]

Experimental

Crystal data
  • C36H30NP2+·Cl

  • Mr = 574.00

  • Monoclinic, C 2/c

  • a = 15.094 (3) Å

  • b = 10.499 (2) Å

  • c = 18.615 (4) Å

  • β = 99.06 (3)°

  • V = 2913.0 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 123 K

  • 0.30 × 0.23 × 0.23 mm

Data collection
  • Rigaku R-AXIS Spider diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 2001[Higashi, T. (2001). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.924, Tmax = 0.941

  • 7362 measured reflections

  • 2551 independent reflections

  • 2296 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.135

  • S = 1.24

  • 2551 reflections

  • 183 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Selected geometric parameters (Å, °)

P1—N1 1.5984 (18)
P1—C7 1.795 (3)
P1—C1 1.802 (3)
P1—C13 1.811 (3)
P1—N1—P1i 133.0 (3)
Symmetry code: (i) [-x+1, y, -z+{\script{3\over 2}}].

Data collection: CrystalClear (Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2010[Brandenburg, K. & Putz, H. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound [(Ph3P)2N]Cl ([PNP]Cl) is a very important starting material and numerous crystal structures containing the [(Ph3P)2N]+ cation are known. The Cambridge Structural Database (Allen, 2002) currently contains more than 1200 structures containing the [(Ph3P)2N]+ cation. Usually this cation is partnered by a bulky cation, while crystal structures containing small anions and especially halides are rare. Very recently, the crystal structures of solvate-free [(Ph3P)2N]I (Beckett et al., 2010) and [(Ph3P)2N]Br.CH3CN (Knapp et al., 2010) were published.

Several crystal structures of [(Ph3P)2N]Cl containing solvate molecules have been determined, e.g. [(Ph3P)2N]Cl.B(OH)3 (Andrews et al. (1983)), [(Ph3P)2N]Cl.CH3C6H5, (Weller et al. (1993)), [(Ph3P)2N]Cl.CH2Cl2 (Carroll et al. (1996)), [(Ph3P)2N]Cl.CH2Cl2.H2O (de Arellano (1997)). Surprisingly, the crystal structure of the parent compound [(Ph3P)2N]Cl was still unknown.

[(Ph3P)2N]Cl has been synthesized according to a published method (Ruff et al., 1974) and solvate-free single crystals suitable for X-ray diffraction were obtained by layering a CH3CN solution with diethyl ether. The chlorine anion and the [(Ph3P)2N]+ cation are located on a 2 axis, yielding overall symmetry 2 of the cation. The central P—N—P angle [133.1 (3)°] is on the low end of the range of observed P—N—P angles. The P-N (1.597 (2) Å) and P-C distances (179.3 (4)–180.8 (4) Å) are in the expected range.

Related literature top

Several bis(triphenylphosphine)iminium chloride structures containing solvate molecules have been determined. For [(Ph3P)2N]Cl.B(OH)3, see: Andrews et al. (1983); for [(Ph3P)2N]Cl.CH3C6H5, see: Weller et al. (1993); for [(Ph3P)2N]Cl.CH2Cl2, see: Carroll et al. (1996); for [(Ph3P)2N]Cl.CH2Cl2.H2O, see: de Arellano (1997). Other bis(triphenylphosphine)iminium halide structures have been determined: for [(Ph3P)2N]Br.CH3CN, see: Knapp et al. (2010); for [(Ph3P)2N]I, see: Beckett et al. (2010). For a discussion of the [(Ph3P)2N]+ cation, see: Lewis et al. (2000). For a description of the Cambridge Structural Database, see: Allen (2002). For the synthesis, see: Ruff & Schlientz (1974).

Experimental top

[(Ph3P)2N]Cl has been synthesized according to a published method (Ruff et al., 1974). Single crystals suitable for X-ray diffraction were obtained by layering a CH3CN solution with diethyl ether.

Refinement top

The hydrogen atoms were positioned geometrically and refined using a riding model. The same Uiso value was used for all H atoms, which refined to 0.031 (3) Å2.

Structure description top

The title compound [(Ph3P)2N]Cl ([PNP]Cl) is a very important starting material and numerous crystal structures containing the [(Ph3P)2N]+ cation are known. The Cambridge Structural Database (Allen, 2002) currently contains more than 1200 structures containing the [(Ph3P)2N]+ cation. Usually this cation is partnered by a bulky cation, while crystal structures containing small anions and especially halides are rare. Very recently, the crystal structures of solvate-free [(Ph3P)2N]I (Beckett et al., 2010) and [(Ph3P)2N]Br.CH3CN (Knapp et al., 2010) were published.

Several crystal structures of [(Ph3P)2N]Cl containing solvate molecules have been determined, e.g. [(Ph3P)2N]Cl.B(OH)3 (Andrews et al. (1983)), [(Ph3P)2N]Cl.CH3C6H5, (Weller et al. (1993)), [(Ph3P)2N]Cl.CH2Cl2 (Carroll et al. (1996)), [(Ph3P)2N]Cl.CH2Cl2.H2O (de Arellano (1997)). Surprisingly, the crystal structure of the parent compound [(Ph3P)2N]Cl was still unknown.

[(Ph3P)2N]Cl has been synthesized according to a published method (Ruff et al., 1974) and solvate-free single crystals suitable for X-ray diffraction were obtained by layering a CH3CN solution with diethyl ether. The chlorine anion and the [(Ph3P)2N]+ cation are located on a 2 axis, yielding overall symmetry 2 of the cation. The central P—N—P angle [133.1 (3)°] is on the low end of the range of observed P—N—P angles. The P-N (1.597 (2) Å) and P-C distances (179.3 (4)–180.8 (4) Å) are in the expected range.

Several bis(triphenylphosphine)iminium chloride structures containing solvate molecules have been determined. For [(Ph3P)2N]Cl.B(OH)3, see: Andrews et al. (1983); for [(Ph3P)2N]Cl.CH3C6H5, see: Weller et al. (1993); for [(Ph3P)2N]Cl.CH2Cl2, see: Carroll et al. (1996); for [(Ph3P)2N]Cl.CH2Cl2.H2O, see: de Arellano (1997). Other bis(triphenylphosphine)iminium halide structures have been determined: for [(Ph3P)2N]Br.CH3CN, see: Knapp et al. (2010); for [(Ph3P)2N]I, see: Beckett et al. (2010). For a discussion of the [(Ph3P)2N]+ cation, see: Lewis et al. (2000). For a description of the Cambridge Structural Database, see: Allen (2002). For the synthesis, see: Ruff & Schlientz (1974).

Computing details top

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2010); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the ionic unit of [(Ph3P)2N]Cl. Displacement ellipsoids are shown at the 50% probability level and hydrogen atoms are drawn with arbitrary radii. Symmetry code: (i) 1-x, y, 1.5-z.
[Figure 2] Fig. 2. View of the surrounding of the chloride anion.
Bis(triphenylphosphanylidene)iminium chloride top
Crystal data top
C36H30NP2+·ClF(000) = 1200
Mr = 574.00Dx = 1.309 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1435 reflections
a = 15.094 (3) Åθ = 2.2–27.5°
b = 10.499 (2) ŵ = 0.27 mm1
c = 18.615 (4) ÅT = 123 K
β = 99.06 (3)°Block, colourless
V = 2913.0 (10) Å30.30 × 0.23 × 0.23 mm
Z = 4
Data collection top
Rigaku R-AXIS Spider
diffractometer
2551 independent reflections
Radiation source: sealed tube2296 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
Detector resolution: 10.0000 pixels mm-1θmax = 25.0°, θmin = 2.2°
ω scans and/or φ scansh = 1717
Absorption correction: multi-scan
(ABSCOR; Higashi, 2001)
k = 1211
Tmin = 0.924, Tmax = 0.941l = 2022
7362 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.24 w = 1/[σ2(Fo2) + 10.5312P]
where P = (Fo2 + 2Fc2)/3
2551 reflections(Δ/σ)max < 0.001
183 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
C36H30NP2+·ClV = 2913.0 (10) Å3
Mr = 574.00Z = 4
Monoclinic, C2/cMo Kα radiation
a = 15.094 (3) ŵ = 0.27 mm1
b = 10.499 (2) ÅT = 123 K
c = 18.615 (4) Å0.30 × 0.23 × 0.23 mm
β = 99.06 (3)°
Data collection top
Rigaku R-AXIS Spider
diffractometer
2551 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 2001)
2296 reflections with I > 2σ(I)
Tmin = 0.924, Tmax = 0.941Rint = 0.043
7362 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.24 w = 1/[σ2(Fo2) + 10.5312P]
where P = (Fo2 + 2Fc2)/3
2551 reflectionsΔρmax = 0.41 e Å3
183 parametersΔρmin = 0.42 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.50000.80128 (11)0.75000.0264 (3)
P10.53916 (5)0.32003 (8)0.82724 (4)0.0175 (2)
N10.50000.2594 (4)0.75000.0200 (8)
C10.45695 (19)0.4133 (3)0.86442 (16)0.0177 (6)
C20.4358 (2)0.5349 (3)0.83690 (17)0.0206 (7)
H20.47000.57240.80380.030 (3)*
C30.3645 (2)0.6011 (3)0.85815 (19)0.0262 (8)
H30.35050.68440.83990.030 (3)*
C40.3135 (2)0.5461 (4)0.90596 (19)0.0293 (8)
H40.26390.59080.91930.030 (3)*
C50.3353 (2)0.4258 (3)0.9342 (2)0.0288 (8)
H50.30090.38910.96750.030 (3)*
C60.4070 (2)0.3582 (3)0.91427 (18)0.0258 (7)
H60.42200.27610.93400.030 (3)*
C70.57029 (19)0.1897 (3)0.88839 (17)0.0182 (7)
C80.6079 (2)0.2160 (3)0.96055 (18)0.0247 (7)
H80.61830.30180.97580.030 (3)*
C90.6297 (2)0.1184 (3)1.00954 (18)0.0260 (7)
H90.65480.13651.05850.030 (3)*
C100.6148 (2)0.0064 (3)0.98669 (19)0.0261 (8)
H100.62980.07381.02040.030 (3)*
C110.5784 (2)0.0344 (3)0.91551 (19)0.0242 (7)
H110.56850.12040.90050.030 (3)*
C120.5563 (2)0.0643 (3)0.86618 (18)0.0224 (7)
H120.53160.04570.81710.030 (3)*
C130.6391 (2)0.4148 (3)0.82560 (17)0.0216 (7)
C140.6520 (2)0.5357 (3)0.85535 (18)0.0232 (7)
H140.60810.57260.88040.030 (3)*
C150.7303 (2)0.6030 (3)0.8482 (2)0.0299 (8)
H150.73850.68680.86740.030 (3)*
C160.7957 (2)0.5487 (4)0.8137 (2)0.0314 (9)
H160.84880.59500.80980.030 (3)*
C170.7839 (2)0.4266 (3)0.78468 (19)0.0275 (8)
H170.82920.38880.76160.030 (3)*
C180.7054 (2)0.3602 (3)0.78966 (18)0.0249 (7)
H180.69640.27770.76880.030 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0250 (6)0.0205 (6)0.0352 (7)0.0000.0095 (5)0.000
P10.0157 (4)0.0178 (4)0.0194 (4)0.0007 (3)0.0037 (3)0.0004 (3)
N10.0140 (17)0.026 (2)0.0199 (19)0.0000.0030 (14)0.000
C10.0184 (15)0.0189 (16)0.0147 (14)0.0012 (12)0.0006 (12)0.0041 (13)
C20.0217 (16)0.0205 (17)0.0194 (16)0.0022 (13)0.0028 (13)0.0014 (14)
C30.0228 (16)0.0240 (18)0.0309 (18)0.0045 (14)0.0014 (14)0.0018 (15)
C40.0186 (16)0.036 (2)0.033 (2)0.0056 (14)0.0048 (14)0.0104 (17)
C50.0274 (18)0.0265 (18)0.036 (2)0.0023 (15)0.0161 (15)0.0018 (17)
C60.0232 (17)0.0279 (18)0.0270 (18)0.0008 (14)0.0057 (14)0.0038 (15)
C70.0161 (15)0.0199 (16)0.0192 (16)0.0005 (12)0.0044 (12)0.0004 (13)
C80.0263 (17)0.0210 (17)0.0272 (18)0.0010 (14)0.0055 (14)0.0006 (15)
C90.0280 (18)0.0304 (19)0.0188 (16)0.0008 (14)0.0012 (13)0.0025 (15)
C100.0230 (17)0.0273 (18)0.0287 (19)0.0028 (14)0.0062 (14)0.0135 (15)
C110.0252 (17)0.0151 (16)0.0330 (19)0.0000 (13)0.0072 (14)0.0033 (14)
C120.0177 (15)0.0261 (18)0.0236 (17)0.0016 (13)0.0036 (13)0.0018 (15)
C130.0163 (15)0.0246 (17)0.0238 (17)0.0001 (13)0.0026 (12)0.0033 (14)
C140.0235 (17)0.0186 (16)0.0276 (18)0.0014 (13)0.0040 (13)0.0024 (14)
C150.0240 (17)0.0280 (19)0.036 (2)0.0052 (15)0.0003 (15)0.0018 (16)
C160.0163 (16)0.043 (2)0.033 (2)0.0046 (15)0.0021 (14)0.0123 (17)
C170.0205 (16)0.032 (2)0.0305 (19)0.0033 (14)0.0050 (14)0.0089 (16)
C180.0195 (16)0.0311 (19)0.0237 (17)0.0026 (14)0.0020 (13)0.0027 (15)
Geometric parameters (Å, º) top
P1—N11.5984 (18)C8—H80.9500
P1—C71.795 (3)C9—C101.385 (5)
P1—C11.802 (3)C9—H90.9500
P1—C131.811 (3)C10—C111.384 (5)
N1—P1i1.5984 (18)C10—H100.9500
C1—C21.394 (4)C11—C121.390 (5)
C1—C61.409 (5)C11—H110.9500
C2—C31.390 (5)C12—H120.9500
C2—H20.9500C13—C141.386 (5)
C3—C41.390 (5)C13—C181.410 (4)
C3—H30.9500C14—C151.401 (5)
C4—C51.387 (5)C14—H140.9500
C4—H40.9500C15—C161.383 (5)
C5—C61.392 (5)C15—H150.9500
C5—H50.9500C16—C171.392 (5)
C6—H60.9500C16—H160.9500
C7—C121.386 (4)C17—C181.391 (5)
C7—C81.401 (4)C17—H170.9500
C8—C91.377 (5)C18—H180.9500
N1—P1—C7106.82 (17)C8—C9—C10119.3 (3)
N1—P1—C1112.50 (12)C8—C9—H9120.3
C7—P1—C1107.33 (15)C10—C9—H9120.3
N1—P1—C13113.24 (13)C11—C10—C9121.1 (3)
C7—P1—C13107.11 (14)C11—C10—H10119.5
C1—P1—C13109.49 (15)C9—C10—H10119.5
P1—N1—P1i133.0 (3)C10—C11—C12119.5 (3)
C2—C1—C6120.2 (3)C10—C11—H11120.3
C2—C1—P1119.2 (2)C12—C11—H11120.3
C6—C1—P1120.2 (2)C7—C12—C11120.1 (3)
C3—C2—C1119.7 (3)C7—C12—H12119.9
C3—C2—H2120.1C11—C12—H12119.9
C1—C2—H2120.1C14—C13—C18119.7 (3)
C4—C3—C2120.4 (3)C14—C13—P1124.1 (2)
C4—C3—H3119.8C18—C13—P1116.1 (3)
C2—C3—H3119.8C13—C14—C15119.5 (3)
C5—C4—C3119.9 (3)C13—C14—H14120.3
C5—C4—H4120.0C15—C14—H14120.3
C3—C4—H4120.0C16—C15—C14120.7 (3)
C4—C5—C6120.7 (3)C16—C15—H15119.6
C4—C5—H5119.6C14—C15—H15119.6
C6—C5—H5119.6C15—C16—C17120.2 (3)
C5—C6—C1119.0 (3)C15—C16—H16119.9
C5—C6—H6120.5C17—C16—H16119.9
C1—C6—H6120.5C18—C17—C16119.6 (3)
C12—C7—C8119.5 (3)C18—C17—H17120.2
C12—C7—P1121.5 (2)C16—C17—H17120.2
C8—C7—P1118.9 (2)C17—C18—C13120.3 (3)
C9—C8—C7120.5 (3)C17—C18—H18119.9
C9—C8—H8119.8C13—C18—H18119.9
C7—C8—H8119.8
C7—P1—N1—P1i179.94 (11)C12—C7—C8—C90.9 (5)
C1—P1—N1—P1i62.54 (12)P1—C7—C8—C9177.8 (2)
C13—P1—N1—P1i62.27 (13)C7—C8—C9—C100.4 (5)
N1—P1—C1—C276.9 (3)C8—C9—C10—C110.1 (5)
C7—P1—C1—C2165.9 (2)C9—C10—C11—C120.1 (5)
C13—P1—C1—C250.0 (3)C8—C7—C12—C110.9 (5)
N1—P1—C1—C695.5 (3)P1—C7—C12—C11177.8 (2)
C7—P1—C1—C621.7 (3)C10—C11—C12—C70.4 (5)
C13—P1—C1—C6137.7 (3)N1—P1—C13—C14132.3 (3)
C6—C1—C2—C30.8 (5)C7—P1—C13—C14110.2 (3)
P1—C1—C2—C3171.6 (2)C1—P1—C13—C145.9 (3)
C1—C2—C3—C40.8 (5)N1—P1—C13—C1846.0 (3)
C2—C3—C4—C51.7 (5)C7—P1—C13—C1871.5 (3)
C3—C4—C5—C61.0 (5)C1—P1—C13—C18172.5 (2)
C4—C5—C6—C10.5 (5)C18—C13—C14—C151.1 (5)
C2—C1—C6—C51.4 (5)P1—C13—C14—C15177.2 (3)
P1—C1—C6—C5170.9 (3)C13—C14—C15—C161.8 (5)
N1—P1—C7—C122.0 (3)C14—C15—C16—C170.8 (5)
C1—P1—C7—C12118.9 (3)C15—C16—C17—C181.0 (5)
C13—P1—C7—C12123.6 (3)C16—C17—C18—C131.7 (5)
N1—P1—C7—C8179.3 (2)C14—C13—C18—C170.7 (5)
C1—P1—C7—C859.8 (3)P1—C13—C18—C17179.1 (3)
C13—P1—C7—C857.7 (3)
Symmetry code: (i) x+1, y, z+3/2.

Experimental details

Crystal data
Chemical formulaC36H30NP2+·Cl
Mr574.00
Crystal system, space groupMonoclinic, C2/c
Temperature (K)123
a, b, c (Å)15.094 (3), 10.499 (2), 18.615 (4)
β (°) 99.06 (3)
V3)2913.0 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.30 × 0.23 × 0.23
Data collection
DiffractometerRigaku R-AXIS Spider
Absorption correctionMulti-scan
(ABSCOR; Higashi, 2001)
Tmin, Tmax0.924, 0.941
No. of measured, independent and
observed [I > 2σ(I)] reflections
7362, 2551, 2296
Rint0.043
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.135, 1.24
No. of reflections2551
No. of parameters183
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + 10.5312P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.41, 0.42

Computer programs: CrystalClear (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2010).

Selected geometric parameters (Å, º) top
P1—N11.5984 (18)P1—C11.802 (3)
P1—C71.795 (3)P1—C131.811 (3)
P1—N1—P1i133.0 (3)
Symmetry code: (i) x+1, y, z+3/2.
 

Acknowledgements

Financial support by the Deutsche Forschungsgemeinschaft (DFG) and the Universität Freiburg is gratefully acknowledged.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAndrews, S. J., Robb, D. A. & Welch, A. J. (1983). Acta Cryst. C39, 880–882.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationArellano, M. C. R. de (1997). Private communication (refcode: RAVBUL). CCDC, Cambridge, England.  Google Scholar
First citationBeckett, M. A., Horton, P. N., Hursthouse, M. B. & Timmis, J. L. (2010). Acta Cryst. E66, o319.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCarroll, K. M., Rheingold, A. L. & Allen, M. B. (1996). Private communication (refcode: NAVMEM ). CCDC, Cambridge, England.  Google Scholar
First citationHigashi, T. (2001). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKnapp, C. & Uzun, R. (2010). Acta Cryst. E66, o3186.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLewis, G. R. & Dance, I. (2000). J. Chem. Soc. Dalton Trans. pp. 299–306.  Web of Science CrossRef Google Scholar
First citationRigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRuff, J. K. & Schlientz, W. J. (1974). Inorg. Synth. 15, 84–87.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWeller, F., Nusshär, D. & Dehnicke, K. (1993). Z. Kristallogr. 208, 322–325.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds