metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{μ-1,5-Bis[(E)-1-(2-pyrid­yl)ethyl­­idene]carbonohydrazidato(1−)}bis­­[chlorido­methano­lcopper(II)] perchlorate

aAnhui Key Laboratory of Functional Coordination Compounds, School of Chemistry and Chemical Engineering, Anqing Teachers College, Anqing, 246011 Anhui, People's Republic of China
*Correspondence e-mail: whuang_nju@yahoo.cn

(Received 16 July 2009; accepted 5 October 2009; online 10 October 2009)

The title dinuclear copper complex, [Cu2(C15H15N6O)Cl2(CH3OH)2]ClO4, was prepared by the reaction of copper(II) chloride with bis­[1-(2-pyrid­yl)ethyl­idene]carbonohydrazide in the presence of sodium perchlorate in a methanol solution. It features a mono-deprotonated bis-tridentate ligand, which coordinates to two independent CuII ions, one of which is coordinated by pyridyl N, hydrazyl N and carbonyl O atoms. The second CuII ion is coordinated by the pyridyl N and two hydrazyl N atoms from different hydrazyl groups. The coordination environments of both CuII ions are completed by a chloride ion and a methanol mol­ecule. The dihedral angle between the pyridyl groups is 27.46 (10)°. The crystal packing is stabilized by O—H⋯O(perchlorate), O—H⋯Cl and N—H⋯Cl hydrogen bonding.

Related literature

For the definition of the distortion parameter, see: Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C15H15N6O)Cl2(CH4O)2]ClO4

  • Mr = 656.84

  • Orthorhombic, P b c a

  • a = 8.0319 (3) Å

  • b = 16.6784 (6) Å

  • c = 37.3492 (13) Å

  • V = 5003.3 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.07 mm−1

  • T = 298 K

  • 0.18 × 0.16 × 0.12 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SHELXTL; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Tmin = 0.675, Tmax = 0.783

  • 30236 measured reflections

  • 5692 independent reflections

  • 4016 reflections with I > 2σ(I)

  • Rint = 0.064

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.142

  • S = 1.04

  • 5692 reflections

  • 318 parameters

  • H-atom parameters constrained

  • Δρmax = 0.90 e Å−3

  • Δρmin = −0.67 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3B⋯Cl2i 0.86 2.91 3.766 (4) 176
O1W—H1W⋯Cl1ii 1.01 2.31 3.205 (4) 147
O2W—H2W⋯O7iii 1.00 1.90 2.855 (6) 159
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (iii) x+1, y, z.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to refine structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recent research has witnessed considerable interest in the development of new multidentate ligands. Polyamine tripod ligands containing appropriate binding sites and shape may be designed to form special topological structures. The molecular topology of the host molecule can be synthetically modulated to bind many different chemical species from transition metals to lanthanide ions. To this purpose, the title compound was synthesized and structurally characterized. It features a dinuclear copper(II) complex assembled from one mono-deprotonated, bis-tridentate ligand and two distinct copper(II) ions. The coordination of Cu1 is achieved by pyridyl-N, hydrazine-N (deprotonated hydrazine group) and carbonyl-O, Cu2 is coordinated by the second pyridyl-N, hydrazine-N and the second hydrazine-N of the first hydrazine group (Fig. 1 ).The coordination environments of both CuII ions are completed by one chloride ion and one methaol molecule. Both of the copper atoms adopt similar distorted 4 + 1 coordinated square-pyramid geometries with a distortion parameter 0.197 for Cu1 and 0.101 for Cu2 (Addison et al., 1984). The crystal packing is stabilised by O-H···O(perchlorate), O-H···Cl and N-H···Cl hydrogen bonding (Fig. 2) The dihedral angle between the pyridyl groups is 27.46 (10)°.

Related literature top

For the definition of distortion parameter, see: Addison et al. (1984).

Experimental top

A methanolic solution (15 ml) containing the ligand (0.1 mmol, 0.03 g) was added dropwise to a methanolic solution (10 ml) containing CuCl2.2H2O (0.1 mmol, 0.034 g). After stirring for 2 h, the solution was filtered. Dark-green block-shaped crystals suitable for single-crystal X-ray diffraction were obtained by evaporating the resulting filtration in air for several days (yield: 65.6% based on the ligand). Anal calc (%). for C17H23Cl3Cu2N6O7: H 3.53 C 31.09 N 12.79 Found: H 3.42, C 31.21, N 12.86.

Refinement top

C-bound H atoms were placed geometrically and allowed to ride during refinement with C—H = 0.93–0.96 Å with Uiso(H) = 1.2 Ueq(C). O-bound H atoms were located in a difference Fourier map and refined as riding with the parent atom with an isotropic thermal parameter 1.5 times that of the parent atom.

Structure description top

Recent research has witnessed considerable interest in the development of new multidentate ligands. Polyamine tripod ligands containing appropriate binding sites and shape may be designed to form special topological structures. The molecular topology of the host molecule can be synthetically modulated to bind many different chemical species from transition metals to lanthanide ions. To this purpose, the title compound was synthesized and structurally characterized. It features a dinuclear copper(II) complex assembled from one mono-deprotonated, bis-tridentate ligand and two distinct copper(II) ions. The coordination of Cu1 is achieved by pyridyl-N, hydrazine-N (deprotonated hydrazine group) and carbonyl-O, Cu2 is coordinated by the second pyridyl-N, hydrazine-N and the second hydrazine-N of the first hydrazine group (Fig. 1 ).The coordination environments of both CuII ions are completed by one chloride ion and one methaol molecule. Both of the copper atoms adopt similar distorted 4 + 1 coordinated square-pyramid geometries with a distortion parameter 0.197 for Cu1 and 0.101 for Cu2 (Addison et al., 1984). The crystal packing is stabilised by O-H···O(perchlorate), O-H···Cl and N-H···Cl hydrogen bonding (Fig. 2) The dihedral angle between the pyridyl groups is 27.46 (10)°.

For the definition of distortion parameter, see: Addison et al. (1984).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The dinuclear cation and the perchlorate anion in the structure of the title compound. Thermal ellipsoids are drawn at the 50% level.
[Figure 2] Fig. 2. The hydrogen bonding pattern in the title compound.
{µ-1,5-Bis[(E)-1-(2- pyridyl)ethylidene]carbonohydrazidato(1-)}bis[chloridomethanolcopper(II)] perchlorate top
Crystal data top
[Cu2(C15H15N6O)Cl2(CH4O)2]ClO4F(000) = 2656
Mr = 656.84Dx = 1.744 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 15443 reflections
a = 8.0319 (3) Åθ = 2.3–27.0°
b = 16.6784 (6) ŵ = 2.07 mm1
c = 37.3492 (13) ÅT = 298 K
V = 5003.3 (3) Å3Block, dark-green
Z = 80.18 × 0.16 × 0.12 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5692 independent reflections
Radiation source: fine-focus sealed tube4016 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
φ and ω scansθmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan
(SHELXTL; Sheldrick, 2008)
h = 1010
Tmin = 0.675, Tmax = 0.783k = 2121
30236 measured reflectionsl = 4839
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0713P)2 + 3.3159P]
where P = (Fo2 + 2Fc2)/3
5692 reflections(Δ/σ)max = 0.001
318 parametersΔρmax = 0.90 e Å3
0 restraintsΔρmin = 0.67 e Å3
Crystal data top
[Cu2(C15H15N6O)Cl2(CH4O)2]ClO4V = 5003.3 (3) Å3
Mr = 656.84Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 8.0319 (3) ŵ = 2.07 mm1
b = 16.6784 (6) ÅT = 298 K
c = 37.3492 (13) Å0.18 × 0.16 × 0.12 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5692 independent reflections
Absorption correction: multi-scan
(SHELXTL; Sheldrick, 2008)
4016 reflections with I > 2σ(I)
Tmin = 0.675, Tmax = 0.783Rint = 0.064
30236 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.142H-atom parameters constrained
S = 1.04Δρmax = 0.90 e Å3
5692 reflectionsΔρmin = 0.67 e Å3
318 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.62011 (6)0.28060 (3)0.033586 (13)0.03826 (15)
Cu20.81104 (6)0.39647 (3)0.143708 (12)0.03630 (15)
C10.8701 (6)0.4718 (3)0.21601 (12)0.0538 (11)
H1A0.84640.52050.20500.065*
C1W0.3072 (9)0.2671 (5)0.08697 (17)0.112 (3)
H1WA0.19390.28220.09160.167*
H1WB0.37610.28400.10660.167*
H1WC0.31430.21000.08440.167*
C20.9166 (7)0.4715 (3)0.25190 (13)0.0610 (13)
H2A0.92480.51910.26470.073*
C2W1.2080 (7)0.4315 (5)0.1542 (2)0.098 (2)
H2WA1.30270.46070.14550.147*
H2WB1.22500.37520.15040.147*
H2WC1.19410.44170.17940.147*
C30.9502 (6)0.3989 (3)0.26802 (12)0.0569 (12)
H3A0.98020.39700.29210.068*
C40.9391 (5)0.3293 (3)0.24833 (11)0.0486 (10)
H4A0.96230.27990.25880.058*
C50.8929 (5)0.3338 (3)0.21264 (11)0.0411 (9)
C60.8894 (7)0.1789 (3)0.20249 (13)0.0591 (12)
H6A0.87490.14240.18290.089*
H6B0.80480.16940.22010.089*
H6C0.99710.17080.21300.089*
C70.8762 (5)0.2626 (3)0.18923 (11)0.0398 (9)
C80.7643 (5)0.2622 (2)0.09818 (10)0.0368 (8)
C90.8716 (5)0.4960 (3)0.06034 (12)0.0481 (10)
H9A0.90330.48350.08450.072*
H9B0.81180.54590.06000.072*
H9C0.96950.50060.04570.072*
C100.7642 (4)0.4315 (2)0.04617 (10)0.0346 (8)
C110.6971 (5)0.4355 (2)0.00899 (10)0.0364 (8)
C120.7161 (5)0.5001 (3)0.01319 (11)0.0447 (10)
H12A0.77040.54590.00510.054*
C130.6538 (6)0.4967 (3)0.04776 (13)0.0543 (12)
H13A0.66840.53980.06330.065*
C140.5709 (6)0.4299 (3)0.05879 (12)0.0579 (12)
H14A0.52660.42700.08180.069*
C150.5539 (6)0.3668 (3)0.03538 (11)0.0491 (10)
H15A0.49690.32130.04290.059*
N10.8586 (4)0.4049 (2)0.19707 (9)0.0411 (8)
N20.8459 (4)0.28245 (19)0.15635 (9)0.0387 (7)
N30.8162 (5)0.2289 (2)0.12969 (9)0.0424 (8)
H3B0.82910.17810.13240.051*
N40.7825 (4)0.34270 (19)0.09563 (8)0.0359 (7)
N50.7277 (4)0.36484 (18)0.06188 (8)0.0340 (7)
N60.6157 (4)0.3682 (2)0.00234 (9)0.0392 (7)
O10.7099 (4)0.21631 (15)0.07431 (7)0.0447 (7)
O1W0.3611 (4)0.3035 (2)0.05585 (9)0.0620 (9)
O2W1.0641 (4)0.45651 (19)0.13568 (8)0.0540 (8)
O40.2605 (8)0.6862 (8)0.1635 (3)0.276 (6)
O50.1217 (13)0.6334 (4)0.20860 (15)0.189 (4)
O60.0314 (10)0.7448 (4)0.17370 (16)0.159 (3)
O70.0200 (11)0.6230 (3)0.15081 (16)0.167 (3)
Cl10.54972 (14)0.18014 (6)0.00266 (3)0.0493 (3)
Cl20.64899 (14)0.50485 (7)0.13951 (3)0.0529 (3)
Cl30.1126 (2)0.66852 (9)0.17526 (4)0.0740 (4)
H1W0.28790.29040.03470.089*
H2W1.01970.51180.13980.089*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0495 (3)0.0282 (3)0.0371 (3)0.0014 (2)0.0063 (2)0.00165 (19)
Cu20.0432 (3)0.0324 (3)0.0332 (3)0.0015 (2)0.00304 (19)0.00154 (19)
C10.063 (3)0.047 (3)0.051 (3)0.004 (2)0.004 (2)0.006 (2)
C1W0.101 (5)0.180 (8)0.055 (4)0.031 (5)0.007 (4)0.014 (4)
C20.075 (3)0.060 (3)0.048 (3)0.006 (3)0.007 (2)0.013 (2)
C2W0.051 (3)0.128 (6)0.115 (5)0.007 (4)0.011 (3)0.010 (5)
C30.062 (3)0.072 (4)0.037 (2)0.005 (3)0.005 (2)0.004 (2)
C40.054 (2)0.057 (3)0.034 (2)0.004 (2)0.0024 (19)0.0016 (19)
C50.038 (2)0.048 (3)0.037 (2)0.0022 (17)0.0008 (16)0.0019 (19)
C60.082 (3)0.045 (3)0.050 (3)0.006 (2)0.002 (2)0.007 (2)
C70.042 (2)0.040 (2)0.038 (2)0.0016 (17)0.0020 (17)0.0037 (17)
C80.047 (2)0.032 (2)0.0311 (19)0.0011 (16)0.0009 (16)0.0001 (16)
C90.055 (2)0.040 (2)0.050 (3)0.0123 (19)0.0035 (19)0.0011 (19)
C100.0360 (19)0.030 (2)0.038 (2)0.0001 (15)0.0023 (16)0.0010 (16)
C110.0362 (19)0.033 (2)0.040 (2)0.0052 (16)0.0035 (16)0.0015 (16)
C120.051 (2)0.037 (2)0.046 (2)0.0006 (18)0.0006 (19)0.0029 (18)
C130.067 (3)0.049 (3)0.047 (3)0.013 (2)0.002 (2)0.015 (2)
C140.076 (3)0.057 (3)0.041 (2)0.011 (3)0.013 (2)0.002 (2)
C150.060 (3)0.042 (2)0.045 (2)0.003 (2)0.015 (2)0.0004 (19)
N10.0473 (19)0.037 (2)0.0389 (18)0.0001 (14)0.0046 (15)0.0018 (15)
N20.0471 (19)0.0336 (18)0.0355 (17)0.0011 (14)0.0040 (14)0.0013 (14)
N30.065 (2)0.0291 (18)0.0333 (17)0.0030 (15)0.0065 (15)0.0006 (14)
N40.0467 (18)0.0319 (18)0.0289 (16)0.0031 (14)0.0004 (13)0.0008 (13)
N50.0393 (17)0.0304 (17)0.0322 (16)0.0006 (13)0.0007 (13)0.0013 (13)
N60.0456 (18)0.0320 (18)0.0399 (18)0.0011 (14)0.0058 (14)0.0006 (14)
O10.0696 (19)0.0259 (14)0.0386 (15)0.0030 (13)0.0103 (13)0.0012 (12)
O1W0.060 (2)0.069 (2)0.057 (2)0.0002 (16)0.0050 (16)0.0026 (17)
O2W0.0486 (17)0.055 (2)0.0578 (19)0.0072 (15)0.0076 (14)0.0021 (15)
O40.077 (4)0.488 (17)0.263 (9)0.028 (7)0.029 (5)0.232 (11)
O50.361 (11)0.138 (5)0.068 (3)0.100 (6)0.028 (5)0.020 (3)
O60.242 (8)0.129 (5)0.108 (4)0.047 (6)0.015 (5)0.033 (4)
O70.295 (9)0.073 (3)0.131 (5)0.026 (4)0.096 (5)0.015 (3)
Cl10.0617 (7)0.0353 (6)0.0509 (6)0.0058 (5)0.0110 (5)0.0075 (4)
Cl20.0561 (6)0.0500 (7)0.0526 (6)0.0180 (5)0.0067 (5)0.0051 (5)
Cl30.0885 (10)0.0661 (9)0.0673 (9)0.0155 (7)0.0015 (7)0.0110 (7)
Geometric parameters (Å, º) top
Cu1—N51.959 (3)C6—H6B0.9600
Cu1—N61.985 (3)C6—H6C0.9600
Cu1—O11.996 (3)C7—N21.294 (5)
Cu1—Cl12.2270 (11)C8—O11.253 (4)
Cu1—O1W2.273 (3)C8—N41.354 (5)
Cu2—N21.979 (3)C8—N31.367 (5)
Cu2—N42.020 (3)C9—C101.477 (5)
Cu2—N12.034 (3)C9—H9A0.9600
Cu2—Cl22.2330 (11)C9—H9B0.9600
Cu2—O2W2.285 (3)C9—H9C0.9600
C1—N11.324 (6)C10—N51.292 (5)
C1—C21.392 (6)C10—C111.491 (5)
C1—H1A0.9300C11—N61.366 (5)
C1W—O1W1.380 (7)C11—C121.367 (6)
C1W—H1WA0.9600C12—C131.386 (6)
C1W—H1WB0.9600C12—H12A0.9300
C1W—H1WC0.9600C13—C141.362 (7)
C2—C31.378 (7)C13—H13A0.9300
C2—H2A0.9300C14—C151.375 (6)
C2W—O2W1.411 (6)C14—H14A0.9300
C2W—H2WA0.9600C15—N61.330 (5)
C2W—H2WB0.9600C15—H15A0.9300
C2W—H2WC0.9600N2—N31.358 (5)
C3—C41.378 (6)N3—H3B0.8600
C3—H3A0.9300N4—N51.386 (4)
C4—C51.386 (6)O1W—H1W1.0086
C4—H4A0.9300O2W—H2W1.0003
C5—N11.349 (5)O4—Cl31.301 (7)
C5—C71.481 (6)O5—Cl31.378 (6)
C6—C71.486 (6)O6—Cl31.430 (7)
C6—H6A0.9600O7—Cl31.401 (5)
N5—Cu1—N681.04 (13)O1—C8—N3118.1 (4)
N5—Cu1—O179.33 (12)N4—C8—N3115.5 (3)
N6—Cu1—O1156.56 (13)C10—C9—H9A109.5
N5—Cu1—Cl1168.39 (10)C10—C9—H9B109.5
N6—Cu1—Cl197.97 (10)H9A—C9—H9B109.5
O1—Cu1—Cl198.68 (8)C10—C9—H9C109.5
N5—Cu1—O1W94.93 (13)H9A—C9—H9C109.5
N6—Cu1—O1W96.16 (13)H9B—C9—H9C109.5
O1—Cu1—O1W98.17 (13)N5—C10—C9126.7 (4)
Cl1—Cu1—O1W96.68 (10)N5—C10—C11112.3 (3)
N2—Cu2—N478.56 (13)C9—C10—C11120.8 (3)
N2—Cu2—N178.81 (14)N6—C11—C12120.8 (4)
N4—Cu2—N1157.34 (13)N6—C11—C10115.2 (3)
N2—Cu2—Cl2151.28 (11)C12—C11—C10124.0 (4)
N4—Cu2—Cl2103.35 (10)C11—C12—C13119.5 (4)
N1—Cu2—Cl297.03 (10)C11—C12—H12A120.2
N2—Cu2—O2W109.06 (13)C13—C12—H12A120.2
N4—Cu2—O2W100.30 (12)C14—C13—C12119.4 (4)
N1—Cu2—O2W86.07 (13)C14—C13—H13A120.3
Cl2—Cu2—O2W98.88 (9)C12—C13—H13A120.3
N1—C1—C2122.0 (5)C13—C14—C15118.9 (4)
N1—C1—H1A119.0C13—C14—H14A120.6
C2—C1—H1A119.0C15—C14—H14A120.6
O1W—C1W—H1WA109.5N6—C15—C14122.6 (4)
O1W—C1W—H1WB109.5N6—C15—H15A118.7
H1WA—C1W—H1WB109.5C14—C15—H15A118.7
O1W—C1W—H1WC109.5C1—N1—C5119.7 (4)
H1WA—C1W—H1WC109.5C1—N1—Cu2126.5 (3)
H1WB—C1W—H1WC109.5C5—N1—Cu2113.6 (3)
C3—C2—C1118.5 (5)C7—N2—N3124.1 (3)
C3—C2—H2A120.8C7—N2—Cu2119.9 (3)
C1—C2—H2A120.8N3—N2—Cu2115.6 (2)
O2W—C2W—H2WA109.5N2—N3—C8114.7 (3)
O2W—C2W—H2WB109.5N2—N3—H3B122.6
H2WA—C2W—H2WB109.5C8—N3—H3B122.6
O2W—C2W—H2WC109.5C8—N4—N5107.1 (3)
H2WA—C2W—H2WC109.5C8—N4—Cu2113.0 (2)
H2WB—C2W—H2WC109.5N5—N4—Cu2136.6 (2)
C4—C3—C2119.6 (4)C10—N5—N4124.8 (3)
C4—C3—H3A120.2C10—N5—Cu1118.2 (3)
C2—C3—H3A120.2N4—N5—Cu1116.1 (2)
C3—C4—C5119.0 (4)C15—N6—C11118.7 (4)
C3—C4—H4A120.5C15—N6—Cu1128.4 (3)
C5—C4—H4A120.5C11—N6—Cu1112.8 (2)
N1—C5—C4121.2 (4)C8—O1—Cu1109.9 (2)
N1—C5—C7115.5 (3)C1W—O1W—Cu1121.4 (4)
C4—C5—C7123.3 (4)C1W—O1W—H1W112.5
C7—C6—H6A109.5Cu1—O1W—H1W102.2
C7—C6—H6B109.5C2W—O2W—Cu2122.3 (4)
H6A—C6—H6B109.5C2W—O2W—H2W119.3
C7—C6—H6C109.5Cu2—O2W—H2W93.8
H6A—C6—H6C109.5O4—Cl3—O5110.7 (5)
H6B—C6—H6C109.5O4—Cl3—O7112.7 (7)
N2—C7—C5111.9 (4)O5—Cl3—O7112.7 (4)
N2—C7—C6124.7 (4)O4—Cl3—O6101.6 (6)
C5—C7—C6123.4 (4)O5—Cl3—O6116.0 (5)
O1—C8—N4126.4 (3)O7—Cl3—O6102.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···Cl2i0.862.913.766 (4)176
O1W—H1W···Cl1ii1.012.313.205 (4)147
O2W—H2W···O7iii1.001.902.855 (6)159
Symmetry codes: (i) x+3/2, y1/2, z; (ii) x1/2, y+1/2, z; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Cu2(C15H15N6O)Cl2(CH4O)2]ClO4
Mr656.84
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)298
a, b, c (Å)8.0319 (3), 16.6784 (6), 37.3492 (13)
V3)5003.3 (3)
Z8
Radiation typeMo Kα
µ (mm1)2.07
Crystal size (mm)0.18 × 0.16 × 0.12
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SHELXTL; Sheldrick, 2008)
Tmin, Tmax0.675, 0.783
No. of measured, independent and
observed [I > 2σ(I)] reflections
30236, 5692, 4016
Rint0.064
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.142, 1.04
No. of reflections5692
No. of parameters318
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.90, 0.67

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···Cl2i0.862.913.766 (4)176.2
O1W—H1W···Cl1ii1.012.313.205 (4)147.4
O2W—H2W···O7iii1.001.902.855 (6)158.8
Symmetry codes: (i) x+3/2, y1/2, z; (ii) x1/2, y+1/2, z; (iii) x+1, y, z.
 

Acknowledgements

The author acknowledges financial support from Anqing Teachers' College.

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds