Download citation
Download citation
link to html
A theoretical analysis of the X-ray absorption near-edge structure spectra at the Cu K-edge in several divalent copper [Cu(II)] compounds showing a distorted nearest-neighborhood around copper is presented. The experimental spectra of CuO and KCuF3 have been compared with computations performed in the framework of the multiple-scattering theory. The results show that ab initio single-channel multiple-scattering calculations are not able to reproduce the experimental spectra. On the contrary, the experimental spectra can be accounted for by using two excitation channels and the sudden limit of the multichannel multiple-scattering theory. The comparison between experimental data and computations indicates that both 3d9 and 3d10\underline{L} electronic configurations are needed to account for the absorption process in these systems, suggesting that this is the general case for the K-edge XANES of divalent copper compounds.

Follow J. Synchrotron Rad.
Sign up for e-alerts
Follow J. Synchrotron Rad. on Twitter
Follow us on facebook
Sign up for RSS feeds