Download citation
Download citation
link to html
The name `bath salts', for an emerging class of synthetic cathinones, is derived from an attempt to evade prosecution and law enforcement. These are truly illicit drugs that have psychoactive CNS (central nervous system) stimulant effects and they have seen a rise in abuse as recreational drugs in the last few years since first having been seen in Japan in 2006. The ease of synthesis and modification of specific functional groups of the parent cathinone make these drugs particularly difficult to regulate. MDPV (3,4-methyl­ene­dioxy­pyrovalerone) is commonly encountered as its hydro­chloride salt (C16H21NO3·HCl), in either the hydrated or the anhydrous forms. This `bath salt' has various names in the US, e.g. `Super Coke', `Cloud Nine', and `Ivory Wave', to name just a few. We report here the structures of two forms of the HCl salt, one as a mixed bromide/chloride salt, C16H22NO3+·0.343Br-·0.657Cl- [systematic name: 1-(benzo[d][1,3]dioxol-5-yl)-2-(pyrrolidin-1-ium-1-yl)pentan-1-one bromide/chloride (0.343/0.657)], and the other with the H7O3+ cation, as well as the HCl counter-ion [systematic name: hydroxonium 1-(benzo[d][1,3]dioxol-5-yl)-2-(pyrrolidin-1-ium-1-yl)pentan-1-one dichloride, H7O3+·C16H22NO3+·2Cl-]. This is one of a very few structures (11 to be exact) in which we have a new example of a precisely determined hydroxonium cation. During the course of researching the clandestine manufacture of MDPV, we were surprised by the fact that a common precursor of this illicit stimulant is known to be the fragrant species piperonal, which is present in the fragrances of orchids, most particularly in the case of the vanilla orchid. We found that MDPV can be made by a Grignard reaction of this heliotropin. This may also explain the unexpected appearance of the bromide counter-ion in some of the salts we encountered (C16H21NO3·HBr), one of which is presented here [systematic name: 1-(benzo[d][1,3]dioxol-5-yl)-2-(pyrrolidin-1-ium-1-yl)pentan-1-one bro­mide, C16H22NO3+·Br-]. Complexation of MDPV with a forensic crystallizing reagent, HAuCl4, yields the tetra­chlorido­aurate salt of this drug, (C16H22NO3)[AuCl4]. The heavy-metal complexing agent HAuCl4 has been used for over a century to identify common quarternary nitro­gen-containing drugs via microscopic identification. Another street drug, called ethyl­one (3,4-methyl­ene­dioxy­ethyl­cathinone), is regularly sold and abused as its hydro­chloride salt (C12H15NO3·HCl), and its structure is herein described (systematic name: N-{1-[(benzo[d][1,3]dioxol-5-yl)carbon­yl]eth­yl}ethan­aminium chloride, C12H16NO3+·Cl-). Marketed and sold as a `bath salt', `plant feeder', or `cleaning product', this drug is nothing more than a slight chemical modification of the banned drug methyl­one (3,4-methyl­ene­dioxy­methcathinone). As with previously popular synthetic cathinones, the abuse of ethyl­one has seen a recent increase due to regulatory efforts on previous generations of cathinones that are now banned.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229614025637/fg3326sup1.cif
Contains datablocks I, II, III, IV, V, New_Global_Publ_Block, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614025637/fg3326Isup7.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614025637/fg3326IIsup8.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614025637/fg3326IIIsup9.hkl
Contains datablock III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614025637/fg3326IVsup10.hkl
Contains datablock IV

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614025637/fg3326Vsup11.hkl
Contains datablock V

CCDC references: 1035667; 1035666; 1035665; 1035664; 1035663

Introduction top

`Bath salts', in this context, have nothing to do with personal hygiene products (Kyle et al., 2011), but refer to an emerging class of recreational drugs with psychoactive CNS (central nervous system) effects; this name is used mainly in the United States. In various other countries, these same designer drugs are called `plant food' and/or `plant feeders'. Designers of these type of illicit compounds incorporate slight modifications to the parent cathinone skeleton in attempts to circumvent existing drug regulations. These drugs have recently reappeared as illicit drug manufacturers have created synthetic analogs of the banned or controlled substance cathinone, a naturally occurring stimulant found in khat (Catha edulis) (Aarde et al., 2013). The prevalence and availability of these compounds through inter­net retailers has caused a dramatic rise in hospital emergency-room visits (Borek & Holstege, 2012), and deaths.

The X-ray structures of this new class of abused substances (i.e., methyl­one and other cathinones) are just now being elucidated (Nycz et al., 2011; Trzybinski et al., 2013), an example of collaborative efforts betweeen academic institutions and forensic laboratories, in order to combat the growing public health threat.

MDPV [3,4-methyl­ene­dioxy­pyrovalerone or RS)-1-(1,3-benzodioxol-5-yl)-2-(pyrrolidin-1-yl)pentan-1-one], is a cathinone-derived stimulant that has recently emerged on the illicit worldwide drug market. The reality is that MDPV is a psychoactive drug belonging to a group of β-ketone amphetamine-type stimulants. Developed and claimed by an English Patent in 1969 by Boehringer Ingelheim (1969) during an investigation of the medicinal properties of 1-(3,4-methyl­ene­dioxy­phenyl)-2-pyrrolidinoalkanones, MDPV never reached clinical usage. But, the underground drug market has taken notice.

The increased abuse of MDPV has not been overlooked. In 2011, the US Drug Enforcement Administration added MDPV and two other `bath salts', 4-methyl­methcathinone (mephedrone) and 3,4-methyl­ene­dioxy­methcathinone (methyl­one) (Drug Enforcement Administration, 2011) to the list of Schedule I Controlled Substances `due to their high potential for abuse, and lack of medical use' (Schedules of Controlled Substances, 1970). MDPV has been categorized as a pyrovalerone–cathinone due to its ability to block catecholamine uptake, which has been linked to higher addiction risks in humans (Simmler et al., 2013).

Experimental top

Synthesis and crystallization top

Samples of the illicit compounds (I), (II), and (IV) were obtained from law enforcement seizures. The identities of these materials were confirmed by routine mass spectrometric analyses as part of the usual forensic analytical protocol, and then were purified by recrystallization from aqueous solution to yield X-ray-quality crystals. Compound (V) was isolated from a similar procedure using aqueous HCl.

For (III), a sample of the seized illicit street drug 3,4-methyl­ene­dioxy­pyrovalerone, (I), was dissolved in water to make a 0.2% solution. To 1 ml of this drug solution was added 1 ml of 0.5% solution of HCl-acidified HAuCl4. Crystals of (III) grew over approximately 2–4 weeks by slow evaporation at room temperature.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. The H atoms for all of the structures were found in electron-density difference maps. The methyl H atoms were all placed in ideally staggered positions, with C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C). The methyl­ene, methine, aromatic, and amine H atoms were placed in geometrically idealized positions and constrained to ride on their parent C atoms, with C—H = 0.99, 1.00 and 0.95 Å, respectively; H atoms involved in hydrogen bonds were allowed to refine. All of the above had Uiso(H) = 1.2Ueq(C) or = 1.2Ueq(N). For (I), the Cl and Br positions were restrained by EADP and EXYZ, while the occupancies were allowed to refine; when the occupancy was determined, then the EADP and EXYZ were refined while the occupancies of these two ions were held constant.

Results and discussion top

The street drug MDPV has been found in drug seizures as an HCl–HBr (65.7:34.3%) salt, (I), and as the pure HBr salt, (II) (Wood et al., 2014a). The presence of the bromide counter-ion may be an artifact of the synthetic route (Boehringer Ingelheim, 1969). Both of these salts exist in the anhydrous form, and also the hydro­chloride has been crystallized in our laboratory as the hydroxonium chloride salt [C16H21NO3.HCl].[H7O3+.Cl-], (V) (Wood et al., 2014b); these structures are presented below.

The monomer of the HCl–HBr salt of MDPV (C16H21NO3.0.343HBr.0.657HCl), (I), crystallizes in the space group Pbca with eight molecules per cell (see Fig. 1 for the numbering scheme). It is found to contain 34.3 (2)% HBr salt along with 65.7 (2)% HCl salt. Upon discovering the presence of Cl- and Br- together in the lattice of MDPV, we scanned the Cambridge Structural Database (CSD, Version ???; Allen, 2002) to ascertain whether there were other recorded examples of crystals containing both of these anions. For those having R factors less than 7.5%, we obtained seven hits, as follows: CASGEK (Kumar et al., 2011), FENJOY and FENJUE (Schneider, D. & Schier, 2004), HIYNOS (Okamoto et al., 1998), MIPPUX (Arunachalam et al., 2007), VIZNAT (Staab et al., 1991), and YIDJAW (Amini et al., 1993). All seven contain ammonium cations, suggesting that they are effective in trapping dihalide anions in their crystals. In fact, only FENJOY and FENJUE have the halide counter-ions in essentially the same overlapping coordinate positions. Schneider & Schier (2004) remarked that FENJOY is isotypic with the dibromide, iodide–bromide and diiodide analogues, while FENJUE is isotypic with the dichloride. Like FENJOY and FENJUE, MVDP has the Cl- and Br- ions in essentially the same coordinate positions, though with slightly different anisotropic parameters, but unlike these two previously mentioned structures, MDPV is a monocation, as is shown in Fig. 1.

The bond lengths and angles for (I), as well as for the other structures in this study, are all in the expected ranges. The dihedral angles of all of the rings and other features for these structures are presented in Table 2 for comparison purposes. The only hydrogen bond in (I) exists between the quarternary N1 atom and the anionic Cl1 atom [3.136 (3) Å], and this has an N1—H1···Cl1 angle of 155.6 (13)° (Table 3). All five of the drug structures presented here have their quarternary N cations in close contact through a hydrogen bond to either a Cl-, a Br-, or an AuCl4- anion (see Tables 3–7 for the values for each individual structure).

Fig. 2 shows the asymmetric unit of the hydro­bromide salt of MDPV, (II) (C16H21NO3.HBr), with its numbering. This molecule crystallizes in the P21/c space group, with Z = 4 and Z' = 1. The only close-contact hydrogen-bond distance N1···Br1 is 3.198 (2) Å, and the N1—H1···Br1 angle is 171 (3)° (Table 4).

The aqueous reagent of acidified gold(III) chloride (HAuCl4) has been used in the analytical scheme of forensic drug testing for over 150 years, precipitating crystals of unique color, morphology, and optical properties that aid the experienced examiner in drug determination. Recently, the use of the gold chloride microcrystal test for the identification of 3,4-methyl­ene­dioxy­pyrovalerone (MDPV) was described (Slivka et al., 2012). As with the products of many microcrystal tests, little is known about the resulting microcrystals beyond the characteristics observed under the polarized light microscope (McCrone, 1992).

The authors' continuing investigation into the application of HAuCl4.3H2O as a forensic crystallizing agent for quarternary N-containing cations (such as these bath salts are) has led to the crystallization of MDPV as the tetra­chloro­aurate(III) salt, (III). This reaffirms the widespread utility of gold chloride as a good microchemical test reagent in the analytical scheme of forensic drug identification (Wood et al., 2007, 2010; Wood & Lalancette, 2013). When MDPV is mixed with HAuCl4.3H2O, a salt is formed between the charged protonated amine group of the ligand and the gold anion. We describe the atomic coordination, bonding, and close contacts that contribute to the formation and structure of the 3,4-methyl­ene­dioxy­pyrovalerone tetra­chloro­aurate salt. The presence of MDPV in the illicit drug sample was confirmed by mass spectrometry using a Thermo Scientific Trace MS and compared to published data (Yohannan & Bozenko, 2010). This is the only one of the five drugs here described to crystallize in a Sohncke space group P212121, with Z = 4.

Fig. 3 gives the numbering scheme for the gold ionic complex (III). The anion, AuCl4-, is relatively planar, with the r.m.s. deviation of all atoms from the best least-squares plane being 0.045 (3) Å. The only hydrogen bond in the structure is N1···Cl4 of 3.41 (1) Å, with an N1—H1···Cl4 angle of 151 (11)° (Table 5). There is disorder in the propyl group (shown in Fig. 3), and this has a ratio of 0.64:0.36 (3). The data crystal was racemically twinned with a refined ratio of 0.45:0.55 (2).

The fourth structure, ethyl­one, again is the HCl salt, (IV). It is a derivative of methyl­one in which the methyl group on the amine has been converted to an ethyl group; it is not banned per se in the United States, but is regulated `by inference' to methyl­one based upon structural similarity and pharmacological properties. Simmler et al. (2013) characterize the pharmacological effect of ethyl­one as cocaine–MDMA–mixed cathinone based on its inhibition of mono­amine uptake inhibitors similar to cocaine and seratonin releasers such as MDMA (3,4-methyl­ene­dioxy­methamphetamine). There is little additional information available regarding ethyl­one beyond anecdotal reports on drug user inter­net forums and supposition based upon the structural similarity to other substitued cathinones, such as methyl­one and butyl­one. The space group here is P21/c, with Z = 4, and one molecule in the asymmetric unit. Fig. 4 shows the numbering for (IV). The hydrogen bond formed between the quarternary N1 atom and the Cl1 ion is 3.103 (2) Å, with an N1—H1A···Cl1 angle of 161 (2)° (Table 6).

Salt (V) is MDPV.HCl.H7O3+.Cl- (see Fig. 5). This ionic structure crystallizes in the space group P21/c, with Z = 4. Inter­estingly, though the elemental analysis requires the presence of an H3O+ cation and two waters of crystallization, the hydroxonium cation present in this lattice has elemental composition H7O3+, as detailed next. According to a recent survey (Bernal & Watkins, 2014), there are three geometrical isomers of the hydroxonium cation with composition H7O3+, namely, those that can be formulated as H2O–H3O+–H2O, with a clearly defined H3O+ flanked by two hydrogen-bonded waters (see Fig. 6) (this is a classical V-shaped system), and a pair in which the charge is displaced from the middle to produce H3O+–H2O–H2O or H5O2+–H2O, the distinction being dependent on the hydrogen-bond lengths (Fig. 7). The inter­ested reader is referred to Bernal & Watkins (2014) for details.

The total number of reliable structures of cations with overall composition H7O3+ is 11 [CBZSUL01 (Roziere & Williams, 1978), GIDZEZ (Deacon, et al., 2007), HAZCAN (Jin et al., 2005), JOTQOY03 (Calleja et al., 2001), NITRAN01 (Andersen & Andersen, 1975), ODEBOO (Herzog et al., 2001), SALSUL (Mootz & Fayos, 1970), SINNAF (Ganin et al., 2006), SLBZAC10 (Attig & Mootz, 1976), SOJZOH (Stoyanov et al., 2008) and XUMQIF (Czado & Muller, 2002)], a significant number, but not excessively well represented, inasmuch as the total number of cations with composition HxOy+ (with x = 2n+1 and y = n) in the latest version of CSD (Allen, 2002) is 1406. Therefore, the serendipitous discovery of a precisely determined new example of H2O–H3O+–H2O is described herein and its geometrical parameters and environment are as follows.

Fig. 8 gives a view of the extensive hydrogen-bonding scheme in (V) between the drug molecule itself and the two waters of hydration and the hydro­nium chloride (making the hydroxonium ion H7O3+). Note the extensive network of hydrogen-bonded hydro­nium cations and waters, where the chlorides provide additional anchoring points to the ammonium cationic drug. The network propagates indefinitely; only a small segment is shown in the figure.

The hydrogen-bond distance between the quarternary N1 atom and Cl1 ion is 3.234 (2) Å and the N1—H1···Cl1 angle is 157 (3)° (Table 7). Table 7 also presents the O···Cl and O···O distances and angles which make up the extensive hydrogen-bonded lattice in this complex.

Presented are five structures of a series of illicit drugs known on the street by various names, such as `bath salts', `Maddie', or `plant feeder'. They all have in common the basic moiety of a β-ketophenethyl­amine, with modification at the quarterary N atom, such as the pyrrole ring or alkanes of various configurations. This N atom in the drug is always presented as the HCl or HBr salt (probably for solubility aspects). We have also crystallized MDPV as the tetra­chloridoaurate salt and as the chloride salt having hydroxonium chloride (H7O3+.Cl-) as part of an extensive hydrogen-bonded lattice. Hopefully, these structures shed more light on the chemistry and the forensic identification of these drugs.

Related literature top

For related literature, see: Aarde et al. (2013); Allen (2002); Amini et al. (1993); Andersen & Andersen (1975); Arunachalam et al. (2007); Attig & Mootz (1976); Bernal & Watkins (2014); Boehringer (1969); Borek & Holstege (2012); Calleja et al. (2001); Czado & Muller (2002); Deacon et al. (2007); Drug (2011); Ganin et al. (2006); Herzog et al. (2001); Jin et al. (2005); Kumar et al. (2011); Kyle et al. (2011); McCrone (1992); Mootz & Fayos (1970); Nycz et al. (2011); Okamoto et al. (1998); Roziere & Williams (1978); Schneider & Schier (2004); Simmler et al. (2013); Slivka et al. (2012); Staab et al. (1991); Stoyanov et al. (2008); Trzybinski et al. (2013); Wood & Lalancette (2013); Wood et al. (2007, 2010, 2014a, 2014b); Yohannan & Bozenko (2010).

Computing details top

For all compounds, data collection: APEX2 (Bruker, 2006); cell refinement: APEX2 (Bruker, 2006); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008b); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2014); molecular graphics: SHELXTL (Sheldrick, 2008b); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b).

Figures top
[Figure 1] Fig. 1. A view of the asymmetric unit of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level for non-H atoms. The Br- ion is not shown as it is in esssentially the same coordinate position (with slight changes) as the Cl- ion (see text).
[Figure 2] Fig. 2. A view of the asymmetric unit of (II), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level for non-H atoms.
[Figure 3] Fig. 3. A view of the asymmetric unit of (III), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level for non-H atoms. The disordered propyl group [0.64 (3):0.36 (3)] is shown with normal bonds (the 64% portion) and with open bonds (the 36% portion).
[Figure 4] Fig. 4. A view of the asymmetric unit of (IV), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level for non-H atoms.
[Figure 5] Fig. 5. A view of the asymmetric unit of (V), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level for non-H atoms.
[Figure 6] Fig. 6. The hydroxonium cation has the V-shape expected from an H3O+ cation flanked by two hydrogen-bonded waters. Note that the H atoms that are not engaged in bonding necessary for the formation of the hydroxonium moiety are engaged in hydrogen bonding to chloride anions [symmetry codes: (i) x, -y+3/2, z-1/2; (ii) -x+2, y-1/2, z-1/2]. In contrast, its geometrical isomer, (H2O)–(H2O)–(H3O+), is shown in Fig. 7.
[Figure 7] Fig. 7. This figure was drawn using the coordinates obtained from the species listed in the CSD (Allen, 2002) as SLBZAC10 (Attig & Mootz, 1976). It shows the ambiguity that may occur in describing the nature of crystalline H7O3+ cations, as discussed in a recent review (Bernal & Watkins, 2014). On the right, there is a water with a long (1.763 Å) hydrogen bond to an H5O2+ hydroxonium cation; that is one model. A second model is one in which, realising that H5O2+ is itself somewhat asymmetric, the description needed is that of a terminal H3O+ cation on the left with a H2O—H2O fragment attached to it. Again, as discussed in Bernal & Watkins (2014), the only cases in which the description is completely unambiguous is when the hydroxonium cation lies at a special position such as on a twofold axis, center of inversion etc.
[Figure 8] Fig. 8. A view of the extensive hydrogen-bonding scheme in (V) between the drug itself and the two waters of hydration and the hydronium chloride (making the hydroxonium ion H7O3+). Note the extensive network of hydrogen-bonded hydronium cations and waters, where the chlorides provide additional anchoring points to the ammonium cationic drug. The network propagates infinitely throughout the crystal; what is shown here is only a small segment.
(I) 1-(Benzo[d][1,3]dioxol-5-yl)-2-(pyrrolidin-1-ium-1-yl)pentan-1-one bromide/chloride (0.343/0.657) top
Crystal data top
C16H22NO3+·0.343(Br)·0.657(Cl)Dx = 1.389 Mg m3
Mr = 327.06Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, PbcaCell parameters from 9948 reflections
a = 7.0133 (5) Åθ = 3.5–70.1°
b = 17.8399 (13) ŵ = 2.73 mm1
c = 25.0044 (18) ÅT = 100 K
V = 3128.5 (4) Å3Plate, colourless
Z = 80.50 × 0.22 × 0.05 mm
F(000) = 1377.4
Data collection top
Bruker SMART CCD APEXII area-detector
diffractometer
2600 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.037
ϕ and ω scansθmax = 70.2°, θmin = 3.5°
Absorption correction: numerical
(SADABS; Sheldrick, 2008a)
h = 78
Tmin = 0.400, Tmax = 0.896k = 2121
27721 measured reflectionsl = 2929
2859 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.025H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.066 w = 1/[σ2(Fo2) + (0.0355P)2 + 1.1197P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.002
2859 reflectionsΔρmax = 0.23 e Å3
204 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL2014 (Sheldrick, 2014), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00029 (6)
Crystal data top
C16H22NO3+·0.343(Br)·0.657(Cl)V = 3128.5 (4) Å3
Mr = 327.06Z = 8
Orthorhombic, PbcaCu Kα radiation
a = 7.0133 (5) ŵ = 2.73 mm1
b = 17.8399 (13) ÅT = 100 K
c = 25.0044 (18) Å0.50 × 0.22 × 0.05 mm
Data collection top
Bruker SMART CCD APEXII area-detector
diffractometer
2859 independent reflections
Absorption correction: numerical
(SADABS; Sheldrick, 2008a)
2600 reflections with I > 2σ(I)
Tmin = 0.400, Tmax = 0.896Rint = 0.037
27721 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.066H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.23 e Å3
2859 reflectionsΔρmin = 0.17 e Å3
204 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl11.2980 (3)0.17033 (17)0.15215 (11)0.0151 (9)0.6568
Br11.2981 (4)0.16938 (17)0.15208 (12)0.0306 (11)0.3432
O10.90394 (13)0.07940 (5)0.05485 (4)0.0235 (2)
O20.21449 (14)0.11780 (6)0.08320 (4)0.0320 (3)
O30.34965 (14)0.19493 (5)0.01853 (4)0.0256 (2)
N10.85333 (17)0.15400 (6)0.14626 (4)0.0192 (2)
H10.979 (3)0.1464 (8)0.1413 (6)0.023*
C10.66150 (18)0.01211 (7)0.06467 (5)0.0183 (3)
C20.48103 (19)0.02830 (7)0.08732 (5)0.0207 (3)
H20.42660.00230.11440.025*
C30.38964 (18)0.09027 (7)0.06808 (5)0.0209 (3)
C40.46855 (19)0.13593 (7)0.02905 (5)0.0203 (3)
C50.6420 (2)0.12096 (7)0.00609 (5)0.0221 (3)
H50.69440.15210.02100.027*
C60.7374 (2)0.05753 (7)0.02474 (5)0.0210 (3)
H60.85760.04500.00980.025*
C70.77859 (18)0.05254 (7)0.08261 (5)0.0185 (3)
C80.74521 (19)0.08217 (7)0.13902 (5)0.0194 (3)
H80.60610.09270.14360.023*
C90.79433 (19)0.21617 (7)0.10770 (6)0.0224 (3)
H9A0.89960.22810.08270.027*
H9B0.68130.20080.08660.027*
C100.7478 (2)0.28363 (8)0.14276 (6)0.0271 (3)
H10A0.60920.28650.15010.033*
H10B0.78940.33080.12550.033*
C110.8599 (2)0.26915 (8)0.19427 (6)0.0281 (3)
H11A0.99630.28200.18990.034*
H11B0.80670.29800.22460.034*
C120.8329 (2)0.18580 (8)0.20211 (6)0.0244 (3)
H12A0.70530.17470.21710.029*
H12B0.93140.16510.22630.029*
C130.80501 (19)0.02272 (8)0.18023 (5)0.0234 (3)
H13A0.78660.04370.21650.028*
H13B0.71930.02110.17670.028*
C141.0107 (2)0.00422 (8)0.17520 (6)0.0291 (3)
H14A1.03550.01930.13770.035*
H14B1.09810.03750.18410.035*
C151.0513 (2)0.07005 (8)0.21202 (7)0.0345 (4)
H15A1.02880.05500.24920.052*
H15B1.18450.08570.20780.052*
H15C0.96700.11190.20280.052*
C160.1791 (2)0.18174 (8)0.04995 (6)0.0248 (3)
H16A0.06900.17210.02610.030*
H16B0.15000.22610.07230.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0017 (12)0.0238 (17)0.0198 (16)0.0012 (9)0.0016 (8)0.0049 (12)
Br10.0275 (17)0.0298 (18)0.0344 (19)0.0013 (10)0.0026 (10)0.0015 (12)
O10.0264 (5)0.0213 (5)0.0227 (5)0.0016 (4)0.0077 (4)0.0013 (4)
O20.0241 (6)0.0309 (6)0.0409 (6)0.0083 (4)0.0080 (4)0.0151 (5)
O30.0249 (5)0.0230 (5)0.0288 (5)0.0019 (4)0.0008 (4)0.0075 (4)
N10.0189 (6)0.0195 (6)0.0192 (6)0.0012 (5)0.0020 (4)0.0030 (4)
C10.0225 (7)0.0171 (6)0.0154 (6)0.0022 (5)0.0006 (5)0.0006 (5)
C20.0222 (7)0.0202 (6)0.0197 (6)0.0025 (5)0.0009 (5)0.0027 (5)
C30.0192 (7)0.0218 (7)0.0217 (7)0.0009 (5)0.0005 (5)0.0005 (5)
C40.0253 (7)0.0167 (6)0.0190 (7)0.0025 (5)0.0052 (5)0.0005 (5)
C50.0277 (7)0.0198 (7)0.0189 (7)0.0040 (5)0.0015 (5)0.0028 (5)
C60.0237 (7)0.0203 (7)0.0190 (7)0.0022 (5)0.0034 (5)0.0011 (5)
C70.0193 (7)0.0169 (6)0.0192 (7)0.0037 (5)0.0012 (5)0.0015 (5)
C80.0193 (6)0.0193 (7)0.0196 (7)0.0026 (5)0.0025 (5)0.0021 (5)
C90.0262 (8)0.0185 (7)0.0225 (7)0.0002 (5)0.0019 (5)0.0002 (6)
C100.0295 (7)0.0204 (7)0.0314 (8)0.0005 (6)0.0035 (6)0.0040 (6)
C110.0283 (8)0.0248 (7)0.0312 (8)0.0021 (6)0.0018 (6)0.0118 (6)
C120.0268 (8)0.0273 (7)0.0190 (7)0.0010 (6)0.0013 (5)0.0069 (6)
C130.0306 (8)0.0221 (7)0.0176 (7)0.0046 (5)0.0016 (5)0.0016 (5)
C140.0315 (8)0.0259 (7)0.0299 (8)0.0018 (6)0.0005 (6)0.0061 (6)
C150.0420 (9)0.0245 (7)0.0369 (9)0.0055 (6)0.0143 (7)0.0048 (6)
C160.0242 (7)0.0222 (7)0.0279 (8)0.0030 (5)0.0015 (6)0.0046 (6)
Geometric parameters (Å, º) top
O1—C71.2183 (16)C9—C101.5245 (19)
O2—C31.3759 (16)C9—H9A0.9900
O2—C161.4333 (17)C9—H9B0.9900
O3—C41.3683 (16)C10—C111.531 (2)
O3—C161.4501 (17)C10—H10A0.9900
N1—C81.5000 (16)C10—H10B0.9900
N1—C121.5141 (17)C11—C121.5116 (19)
N1—C91.5268 (17)C11—H11A0.9900
N1—H10.902 (18)C11—H11B0.9900
C1—C61.3915 (18)C12—H12A0.9900
C1—C21.4164 (19)C12—H12B0.9900
C1—C71.4851 (18)C13—C141.525 (2)
C2—C31.3653 (18)C13—H13A0.9900
C2—H20.9500C13—H13B0.9900
C3—C41.3865 (18)C14—C151.519 (2)
C4—C51.3716 (19)C14—H14A0.9900
C5—C61.3946 (19)C14—H14B0.9900
C5—H50.9500C15—H15A0.9800
C6—H60.9500C15—H15B0.9800
C7—C81.5245 (18)C15—H15C0.9800
C8—C131.5371 (18)C16—H16A0.9900
C8—H81.0000C16—H16B0.9900
C3—O2—C16106.22 (10)C9—C10—H10A111.0
C4—O3—C16105.89 (10)C11—C10—H10A111.0
C8—N1—C12112.56 (10)C9—C10—H10B111.0
C8—N1—C9114.04 (10)C11—C10—H10B111.0
C12—N1—C9106.54 (10)H10A—C10—H10B109.0
C8—N1—H1110.5 (10)C12—C11—C10102.16 (11)
C12—N1—H1106.0 (10)C12—C11—H11A111.3
C9—N1—H1106.7 (10)C10—C11—H11A111.3
C6—C1—C2120.65 (12)C12—C11—H11B111.3
C6—C1—C7117.23 (12)C10—C11—H11B111.3
C2—C1—C7122.12 (11)H11A—C11—H11B109.2
C3—C2—C1116.34 (12)C11—C12—N1103.72 (11)
C3—C2—H2121.8C11—C12—H12A111.0
C1—C2—H2121.8N1—C12—H12A111.0
C2—C3—O2127.69 (12)C11—C12—H12B111.0
C2—C3—C4122.43 (13)N1—C12—H12B111.0
O2—C3—C4109.88 (11)H12A—C12—H12B109.0
O3—C4—C5127.58 (12)C14—C13—C8114.84 (11)
O3—C4—C3110.12 (12)C14—C13—H13A108.6
C5—C4—C3122.29 (12)C8—C13—H13A108.6
C4—C5—C6116.31 (12)C14—C13—H13B108.6
C4—C5—H5121.8C8—C13—H13B108.6
C6—C5—H5121.8H13A—C13—H13B107.5
C1—C6—C5121.95 (13)C15—C14—C13111.79 (13)
C1—C6—H6119.0C15—C14—H14A109.3
C5—C6—H6119.0C13—C14—H14A109.3
O1—C7—C1122.17 (12)C15—C14—H14B109.3
O1—C7—C8120.10 (11)C13—C14—H14B109.3
C1—C7—C8117.64 (11)H14A—C14—H14B107.9
N1—C8—C7109.29 (10)C14—C15—H15A109.5
N1—C8—C13111.75 (11)C14—C15—H15B109.5
C7—C8—C13109.83 (10)H15A—C15—H15B109.5
N1—C8—H8108.6C14—C15—H15C109.5
C7—C8—H8108.6H15A—C15—H15C109.5
C13—C8—H8108.6H15B—C15—H15C109.5
C10—C9—N1105.56 (11)O2—C16—O3107.50 (10)
C10—C9—H9A110.6O2—C16—H16A110.2
N1—C9—H9A110.6O3—C16—H16A110.2
C10—C9—H9B110.6O2—C16—H16B110.2
N1—C9—H9B110.6O3—C16—H16B110.2
H9A—C9—H9B108.8H16A—C16—H16B108.5
C9—C10—C11103.92 (11)
C6—C1—C2—C30.48 (19)C12—N1—C8—C7178.05 (11)
C7—C1—C2—C3178.63 (12)C9—N1—C8—C760.42 (14)
C1—C2—C3—O2179.89 (12)C12—N1—C8—C1356.28 (14)
C1—C2—C3—C40.85 (19)C9—N1—C8—C13177.80 (10)
C16—O2—C3—C2177.78 (13)O1—C7—C8—N112.32 (17)
C16—O2—C3—C42.88 (15)C1—C7—C8—N1171.13 (11)
C16—O3—C4—C5175.48 (13)O1—C7—C8—C13110.60 (13)
C16—O3—C4—C34.77 (14)C1—C7—C8—C1365.94 (14)
C2—C3—C4—O3178.12 (12)C8—N1—C9—C10126.74 (12)
O2—C3—C4—O31.26 (15)C12—N1—C9—C101.94 (14)
C2—C3—C4—C51.6 (2)N1—C9—C10—C1123.49 (14)
O2—C3—C4—C5178.98 (12)C9—C10—C11—C1240.10 (14)
O3—C4—C5—C6178.75 (12)C10—C11—C12—N141.25 (14)
C3—C4—C5—C60.97 (19)C8—N1—C12—C11152.67 (11)
C2—C1—C6—C51.1 (2)C9—N1—C12—C1126.97 (14)
C7—C1—C6—C5178.03 (12)N1—C8—C13—C1465.13 (15)
C4—C5—C6—C10.4 (2)C7—C8—C13—C1456.33 (15)
C6—C1—C7—O121.76 (19)C8—C13—C14—C15172.24 (12)
C2—C1—C7—O1159.10 (12)C3—O2—C16—O35.72 (15)
C6—C1—C7—C8154.71 (12)C4—O3—C16—O26.45 (14)
C2—C1—C7—C824.43 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl10.902 (18)2.292 (18)3.136 (3)155.6 (13)
(II) 1-(Benzo[d][1,3]dioxol-5-yl)-2-(pyrrolidin-1-ium-1-yl)pentan-1-one bromide top
Crystal data top
C16H22NO3+·BrF(000) = 736
Mr = 356.25Dx = 1.485 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 7.1280 (1) ÅCell parameters from 9953 reflections
b = 21.3335 (5) Åθ = 4.1–69.8°
c = 10.5243 (2) ŵ = 3.60 mm1
β = 95.118 (1)°T = 293 K
V = 1594.00 (5) Å3Needle, colourless
Z = 40.43 × 0.18 × 0.06 mm
Data collection top
Bruker SMART CCD APEXII area-detector
diffractometer
2813 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.021
ϕ and ω scansθmax = 69.8°, θmin = 4.1°
Absorption correction: numerical
(SADABS; Sheldrick, 2008a)
h = 88
Tmin = 0.307, Tmax = 0.813k = 2425
14889 measured reflectionsl = 1212
2942 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: mixed
wR(F2) = 0.134H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.087P)2 + 3.9741P]
where P = (Fo2 + 2Fc2)/3
2942 reflections(Δ/σ)max = 0.001
194 parametersΔρmax = 0.69 e Å3
1 restraintΔρmin = 1.24 e Å3
Crystal data top
C16H22NO3+·BrV = 1594.00 (5) Å3
Mr = 356.25Z = 4
Monoclinic, P21/cCu Kα radiation
a = 7.1280 (1) ŵ = 3.60 mm1
b = 21.3335 (5) ÅT = 293 K
c = 10.5243 (2) Å0.43 × 0.18 × 0.06 mm
β = 95.118 (1)°
Data collection top
Bruker SMART CCD APEXII area-detector
diffractometer
2942 independent reflections
Absorption correction: numerical
(SADABS; Sheldrick, 2008a)
2813 reflections with I > 2σ(I)
Tmin = 0.307, Tmax = 0.813Rint = 0.021
14889 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0421 restraint
wR(F2) = 0.134H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.69 e Å3
2942 reflectionsΔρmin = 1.24 e Å3
194 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.24512 (4)0.11423 (2)0.51185 (3)0.02080 (17)
O10.6359 (3)0.16662 (10)0.7789 (2)0.0126 (4)
O21.0762 (3)0.22853 (10)1.1743 (2)0.0133 (5)
O31.3764 (3)0.19542 (10)1.1351 (2)0.0148 (5)
N10.6950 (4)0.10850 (11)0.5502 (2)0.0078 (5)
H10.573 (3)0.1110 (16)0.549 (4)0.009*
C10.9461 (4)0.14754 (13)0.8689 (3)0.0084 (6)
C20.9151 (4)0.18242 (13)0.9796 (3)0.0092 (6)
H20.79500.19540.99600.011*
C31.0692 (4)0.19605 (13)1.0611 (3)0.0088 (6)
C41.2490 (4)0.17612 (14)1.0389 (3)0.0101 (6)
C51.2829 (4)0.14139 (14)0.9337 (3)0.0116 (6)
H51.40350.12780.92010.014*
C61.1270 (4)0.12737 (14)0.8474 (3)0.0103 (6)
H61.14440.10420.77460.012*
C70.7821 (4)0.13681 (13)0.7753 (3)0.0088 (6)
C80.7882 (4)0.08502 (13)0.6750 (3)0.0081 (6)
H80.91880.07300.66540.010*
C90.7556 (4)0.17352 (14)0.5109 (3)0.0120 (6)
H9A0.88010.18340.55080.014*
H9B0.66770.20500.53570.014*
C100.7572 (5)0.17139 (15)0.3656 (3)0.0156 (6)
H10A0.88500.17410.34120.019*
H10B0.68440.20580.32620.019*
C110.6680 (5)0.10822 (14)0.3247 (3)0.0129 (6)
H11A0.53200.11150.31060.015*
H11B0.71740.09260.24780.015*
C120.7266 (4)0.06627 (14)0.4390 (3)0.0107 (6)
H12A0.64850.02900.43900.013*
H12B0.85770.05390.44000.013*
C130.6757 (4)0.02809 (13)0.7171 (3)0.0109 (6)
H13A0.54670.04110.72450.013*
H13B0.67340.00360.65090.013*
C140.7526 (4)0.00147 (14)0.8432 (3)0.0133 (6)
H14A0.76800.03090.90800.016*
H14B0.66170.03150.86970.016*
C150.9409 (5)0.03448 (15)0.8345 (3)0.0183 (7)
H15A0.92800.06540.76810.027*
H15B0.97880.05450.91440.027*
H15C1.03440.00430.81570.027*
C161.2736 (4)0.23485 (15)1.2172 (3)0.0152 (6)
H16A1.29650.22151.30530.018*
H16B1.31300.27821.21100.018*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0163 (2)0.0259 (3)0.0200 (2)0.00014 (12)0.00035 (15)0.00320 (13)
O10.0092 (10)0.0141 (10)0.0141 (10)0.0013 (8)0.0015 (8)0.0017 (8)
O20.0131 (11)0.0171 (11)0.0091 (10)0.0002 (8)0.0019 (8)0.0055 (8)
O30.0119 (10)0.0201 (11)0.0111 (10)0.0011 (8)0.0054 (8)0.0054 (9)
N10.0088 (12)0.0066 (11)0.0075 (12)0.0004 (9)0.0015 (10)0.0016 (9)
C10.0105 (13)0.0060 (12)0.0083 (13)0.0012 (10)0.0010 (11)0.0022 (10)
C20.0100 (13)0.0072 (12)0.0101 (14)0.0013 (10)0.0002 (11)0.0008 (11)
C30.0137 (14)0.0065 (13)0.0061 (13)0.0010 (10)0.0001 (11)0.0001 (10)
C40.0113 (14)0.0094 (13)0.0087 (13)0.0023 (10)0.0041 (11)0.0025 (11)
C50.0101 (14)0.0141 (14)0.0104 (14)0.0001 (11)0.0002 (11)0.0003 (12)
C60.0117 (14)0.0108 (13)0.0083 (14)0.0010 (11)0.0006 (11)0.0006 (11)
C70.0096 (14)0.0073 (13)0.0093 (14)0.0024 (10)0.0003 (11)0.0019 (11)
C80.0095 (13)0.0083 (13)0.0058 (13)0.0007 (10)0.0029 (10)0.0017 (11)
C90.0175 (16)0.0053 (14)0.0128 (15)0.0034 (10)0.0012 (12)0.0035 (10)
C100.0187 (16)0.0165 (15)0.0112 (15)0.0047 (12)0.0014 (12)0.0051 (12)
C110.0149 (15)0.0155 (15)0.0078 (14)0.0004 (11)0.0015 (12)0.0021 (11)
C120.0132 (14)0.0100 (13)0.0085 (14)0.0000 (11)0.0020 (11)0.0019 (11)
C130.0134 (14)0.0086 (13)0.0101 (14)0.0028 (11)0.0020 (11)0.0017 (11)
C140.0197 (15)0.0106 (14)0.0090 (14)0.0024 (11)0.0021 (12)0.0033 (11)
C150.0224 (17)0.0124 (14)0.0186 (16)0.0010 (12)0.0065 (13)0.0057 (12)
C160.0155 (15)0.0178 (15)0.0113 (14)0.0006 (12)0.0042 (12)0.0049 (12)
Geometric parameters (Å, º) top
O1—C71.225 (4)C9—C101.531 (4)
O2—C31.375 (3)C9—H9A0.9700
O2—C161.445 (4)C9—H9B0.9700
O3—C41.362 (4)C10—C111.535 (4)
O3—C161.451 (4)C10—H10A0.9700
N1—C81.504 (3)C10—H10B0.9700
N1—C121.510 (4)C11—C121.527 (4)
N1—C91.521 (4)C11—H11A0.9700
N1—H10.868 (19)C11—H11B0.9700
C1—C61.397 (4)C12—H12A0.9700
C1—C21.417 (4)C12—H12B0.9700
C1—C71.477 (4)C13—C141.526 (4)
C2—C31.364 (4)C13—H13A0.9700
C2—H20.9300C13—H13B0.9700
C3—C41.390 (4)C14—C151.526 (4)
C4—C51.372 (4)C14—H14A0.9700
C5—C61.403 (4)C14—H14B0.9700
C5—H50.9300C15—H15A0.9600
C6—H60.9300C15—H15B0.9600
C7—C81.531 (4)C15—H15C0.9600
C8—C131.542 (4)C16—H16A0.9700
C8—H80.9800C16—H16B0.9700
C3—O2—C16106.1 (2)C9—C10—H10A110.7
C4—O3—C16106.2 (2)C11—C10—H10A110.7
C8—N1—C12113.2 (2)C9—C10—H10B110.7
C8—N1—C9115.3 (2)C11—C10—H10B110.7
C12—N1—C9105.5 (2)H10A—C10—H10B108.8
C8—N1—H1113 (3)C12—C11—C10102.5 (2)
C12—N1—H1104 (2)C12—C11—H11A111.3
C9—N1—H1104 (2)C10—C11—H11A111.3
C6—C1—C2120.6 (3)C12—C11—H11B111.3
C6—C1—C7122.1 (3)C10—C11—H11B111.3
C2—C1—C7117.2 (3)H11A—C11—H11B109.2
C3—C2—C1117.0 (3)N1—C12—C11102.2 (2)
C3—C2—H2121.5N1—C12—H12A111.3
C1—C2—H2121.5C11—C12—H12A111.3
C2—C3—O2128.1 (3)N1—C12—H12B111.3
C2—C3—C4122.2 (3)C11—C12—H12B111.3
O2—C3—C4109.7 (2)H12A—C12—H12B109.2
O3—C4—C5127.6 (3)C14—C13—C8114.8 (2)
O3—C4—C3110.3 (3)C14—C13—H13A108.6
C5—C4—C3122.2 (3)C8—C13—H13A108.6
C4—C5—C6116.8 (3)C14—C13—H13B108.6
C4—C5—H5121.6C8—C13—H13B108.6
C6—C5—H5121.6H13A—C13—H13B107.5
C1—C6—C5121.3 (3)C15—C14—C13112.9 (3)
C1—C6—H6119.3C15—C14—H14A109.0
C5—C6—H6119.3C13—C14—H14A109.0
O1—C7—C1121.6 (3)C15—C14—H14B109.0
O1—C7—C8118.2 (3)C13—C14—H14B109.0
C1—C7—C8120.1 (2)H14A—C14—H14B107.8
N1—C8—C7108.9 (2)C14—C15—H15A109.5
N1—C8—C13108.2 (2)C14—C15—H15B109.5
C7—C8—C13108.8 (2)H15A—C15—H15B109.5
N1—C8—H8110.3C14—C15—H15C109.5
C7—C8—H8110.3H15A—C15—H15C109.5
C13—C8—H8110.3H15B—C15—H15C109.5
N1—C9—C10105.8 (2)O2—C16—O3106.8 (2)
N1—C9—H9A110.6O2—C16—H16A110.4
C10—C9—H9A110.6O3—C16—H16A110.4
N1—C9—H9B110.6O2—C16—H16B110.4
C10—C9—H9B110.6O3—C16—H16B110.4
H9A—C9—H9B108.7H16A—C16—H16B108.6
C9—C10—C11105.4 (2)
C6—C1—C2—C31.3 (4)C12—N1—C8—C7168.7 (2)
C7—C1—C2—C3175.4 (2)C9—N1—C8—C747.0 (3)
C1—C2—C3—O2179.5 (3)C12—N1—C8—C1373.1 (3)
C1—C2—C3—C41.0 (4)C9—N1—C8—C13165.2 (2)
C16—O2—C3—C2174.9 (3)O1—C7—C8—N143.0 (3)
C16—O2—C3—C46.4 (3)C1—C7—C8—N1140.3 (3)
C16—O3—C4—C5175.3 (3)O1—C7—C8—C1374.8 (3)
C16—O3—C4—C35.4 (3)C1—C7—C8—C13101.9 (3)
C2—C3—C4—O3179.4 (3)C8—N1—C9—C10144.1 (2)
O2—C3—C4—O30.6 (3)C12—N1—C9—C1018.4 (3)
C2—C3—C4—C50.1 (5)N1—C9—C10—C118.5 (3)
O2—C3—C4—C5178.7 (3)C9—C10—C11—C1231.6 (3)
O3—C4—C5—C6180.0 (3)C8—N1—C12—C11165.1 (2)
C3—C4—C5—C60.8 (4)C9—N1—C12—C1138.1 (3)
C2—C1—C6—C50.6 (4)C10—C11—C12—N142.8 (3)
C7—C1—C6—C5176.0 (3)N1—C8—C13—C14180.0 (2)
C4—C5—C6—C10.5 (4)C7—C8—C13—C1461.7 (3)
C6—C1—C7—O1162.3 (3)C8—C13—C14—C1569.0 (3)
C2—C1—C7—O114.4 (4)C3—O2—C16—O39.6 (3)
C6—C1—C7—C821.1 (4)C4—O3—C16—O29.2 (3)
C2—C1—C7—C8162.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Br10.87 (2)2.34 (2)3.198 (2)171 (3)
(III) 1-(Benzo[d][1,3]dioxol-5-yl)-2-(pyrrolidin-1-ium-1-yl)pentan-1-one tetrachloridoaurate top
Crystal data top
(C16H22NO3)[AuCl4]Dx = 1.990 Mg m3
Mr = 615.11Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, P212121Cell parameters from 9955 reflections
a = 10.5046 (4) Åθ = 2.5–67.5°
b = 11.1534 (4) ŵ = 18.40 mm1
c = 17.5193 (6) ÅT = 100 K
V = 2052.60 (13) Å3Rod, orange
Z = 40.23 × 0.19 × 0.11 mm
F(000) = 1184
Data collection top
Bruker SMART CCD APEXII area-detector
diffractometer
3479 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.047
ϕ and ω scansθmax = 69.5°, θmin = 4.7°
Absorption correction: numerical
(SADABS; Sheldrick, 2008a)
h = 1112
Tmin = 0.101, Tmax = 0.237k = 1313
24150 measured reflectionsl = 1920
3554 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0361P)2 + 26.5568P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
3554 reflectionsΔρmax = 1.66 e Å3
250 parametersΔρmin = 2.42 e Å3
37 restraintsAbsolute structure: Refined as an inversion twin.
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.45 (3)
Crystal data top
(C16H22NO3)[AuCl4]V = 2052.60 (13) Å3
Mr = 615.11Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 10.5046 (4) ŵ = 18.40 mm1
b = 11.1534 (4) ÅT = 100 K
c = 17.5193 (6) Å0.23 × 0.19 × 0.11 mm
Data collection top
Bruker SMART CCD APEXII area-detector
diffractometer
3554 independent reflections
Absorption correction: numerical
(SADABS; Sheldrick, 2008a)
3479 reflections with I > 2σ(I)
Tmin = 0.101, Tmax = 0.237Rint = 0.047
24150 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0361P)2 + 26.5568P]
where P = (Fo2 + 2Fc2)/3
S = 1.08Δρmax = 1.66 e Å3
3554 reflectionsΔρmin = 2.42 e Å3
250 parametersAbsolute structure: Refined as an inversion twin.
37 restraintsAbsolute structure parameter: 0.45 (3)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Au10.25988 (5)0.56871 (4)0.73961 (3)0.02131 (17)
Cl10.1087 (3)0.4661 (3)0.6703 (2)0.0243 (8)
Cl20.4186 (3)0.4495 (3)0.68729 (18)0.0165 (6)
Cl30.4104 (3)0.6774 (3)0.8065 (2)0.0208 (7)
Cl40.1020 (3)0.6797 (3)0.7969 (2)0.0238 (7)
O10.1064 (9)0.4066 (8)0.8349 (6)0.028 (2)
O20.2999 (8)0.0654 (9)0.9967 (5)0.030 (2)
O30.5179 (10)0.0964 (10)0.9978 (6)0.039 (3)
N10.1920 (10)0.5795 (9)0.7451 (6)0.026 (2)
H10.114 (5)0.581 (13)0.769 (6)0.031*
C10.3050 (13)0.3437 (11)0.8823 (8)0.021 (3)
C20.2480 (18)0.2434 (10)0.9192 (6)0.027 (3)
H20.15870.23020.91910.032*
C30.3314 (14)0.1671 (12)0.9549 (8)0.026 (3)
C40.4579 (13)0.1849 (13)0.9577 (8)0.026 (3)
C50.5162 (14)0.2821 (14)0.9232 (8)0.032 (3)
H50.60590.29280.92390.038*
C60.4347 (15)0.3633 (14)0.8872 (8)0.031 (3)
H60.46950.43410.86550.037*
C70.2178 (13)0.4277 (12)0.8428 (7)0.026 (3)
C80.2704 (16)0.5474 (11)0.8150 (7)0.032 (3)
H8A0.36030.54560.80520.038*0.5133
H8AA0.35310.52840.79500.038*0.4867
C90.2175 (14)0.4997 (12)0.6775 (7)0.028 (3)
H9A0.16280.42750.67940.034*
H9B0.30770.47400.67680.034*
C100.1869 (17)0.5748 (19)0.6073 (9)0.052 (5)
H10A0.11620.53860.57790.062*
H10B0.26230.58190.57380.062*
C110.1477 (15)0.6995 (15)0.6394 (11)0.044 (4)
H11A0.17960.76490.60630.053*
H11B0.05400.70620.64370.053*
C120.2085 (16)0.7042 (13)0.7159 (8)0.039 (4)
H12A0.16530.76300.74940.047*
H12B0.29980.72550.71180.047*
C130.231 (4)0.651 (2)0.8644 (10)0.047 (9)0.51 (4)
H13A0.17210.69970.83300.51 (4)*0.51 (4)
H13B0.30840.70030.87160.51 (4)*0.51 (4)
C13A0.297 (3)0.633 (2)0.8819 (13)0.011 (6)0.49 (4)
H13C0.39060.64280.87880.487*0.49 (4)
H13D0.26170.70940.86290.487*0.49 (4)
C140.169 (3)0.642 (2)0.9432 (12)0.044 (10)0.51 (4)
H14A0.18370.56040.96400.51 (4)*0.51 (4)
H14B0.07590.65310.93790.51 (4)*0.51 (4)
C14A0.279 (3)0.640 (2)0.9466 (12)0.042 (10)0.49 (4)
H14C0.36380.62460.96920.487*0.49 (4)
H14D0.22840.56690.95800.487*0.49 (4)
C150.221 (2)0.7347 (14)0.9993 (10)0.065 (6)
H15A0.15930.74771.04030.097*0.51 (4)
H15B0.23660.81030.97240.097*0.51 (4)
H15C0.30130.70541.02120.097*0.51 (4)
H15D0.30550.76120.98230.097*0.49 (4)
H15E0.22820.69861.05010.097*0.49 (4)
H15F0.16350.80361.00140.097*0.49 (4)
C160.4192 (15)0.0127 (15)1.0181 (9)0.036 (4)
H16A0.43180.06410.99090.043*
H16B0.42090.00301.07370.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.0199 (3)0.0167 (2)0.0274 (3)0.0004 (2)0.0005 (2)0.00284 (18)
Cl10.0191 (16)0.0164 (15)0.037 (2)0.0031 (12)0.0047 (13)0.0007 (13)
Cl20.0132 (13)0.0117 (13)0.0247 (15)0.0056 (11)0.0005 (11)0.0017 (12)
Cl30.0115 (14)0.0198 (16)0.0309 (18)0.0015 (12)0.0082 (13)0.0100 (14)
Cl40.0222 (17)0.0199 (16)0.0293 (18)0.0017 (13)0.0045 (14)0.0008 (14)
O10.027 (6)0.025 (5)0.031 (5)0.004 (4)0.007 (4)0.000 (4)
O20.031 (5)0.026 (5)0.032 (5)0.006 (5)0.008 (4)0.005 (4)
O30.032 (6)0.051 (7)0.034 (6)0.007 (5)0.007 (5)0.017 (5)
N10.026 (5)0.023 (5)0.029 (6)0.009 (5)0.009 (5)0.001 (5)
C10.026 (7)0.013 (6)0.025 (7)0.006 (5)0.009 (5)0.001 (5)
C20.036 (8)0.024 (6)0.021 (6)0.004 (8)0.000 (8)0.005 (4)
C30.040 (9)0.021 (7)0.017 (7)0.000 (6)0.000 (6)0.000 (5)
C40.023 (7)0.031 (8)0.023 (7)0.007 (6)0.000 (6)0.003 (6)
C50.022 (8)0.044 (9)0.028 (8)0.008 (7)0.002 (6)0.001 (7)
C60.034 (9)0.039 (8)0.020 (7)0.006 (7)0.004 (6)0.000 (6)
C70.031 (8)0.021 (6)0.025 (6)0.001 (7)0.003 (5)0.005 (5)
C80.051 (10)0.024 (6)0.021 (6)0.006 (7)0.005 (7)0.001 (5)
C90.029 (9)0.030 (7)0.024 (7)0.006 (6)0.001 (6)0.002 (5)
C100.047 (10)0.073 (13)0.034 (9)0.021 (11)0.003 (7)0.016 (10)
C110.021 (8)0.043 (9)0.068 (12)0.001 (7)0.004 (8)0.029 (9)
C120.051 (10)0.030 (7)0.037 (8)0.008 (7)0.017 (7)0.018 (6)
C130.052 (15)0.040 (12)0.050 (13)0.001 (11)0.004 (12)0.001 (10)
C13A0.012 (7)0.011 (7)0.011 (7)0.001 (3)0.002 (3)0.001 (3)
C140.038 (15)0.038 (13)0.055 (15)0.002 (10)0.008 (11)0.011 (11)
C14A0.042 (15)0.038 (13)0.046 (14)0.002 (10)0.016 (11)0.007 (10)
C150.091 (17)0.042 (10)0.060 (11)0.009 (11)0.035 (12)0.014 (8)
C160.024 (8)0.048 (9)0.035 (9)0.005 (7)0.005 (7)0.007 (7)
Geometric parameters (Å, º) top
Au1—Cl42.300 (3)C9—H9B0.9900
Au1—Cl12.304 (3)C10—C111.56 (3)
Au1—Cl32.312 (3)C10—H10A0.9900
Au1—Cl22.321 (3)C10—H10B0.9900
O1—C71.201 (16)C11—C121.48 (2)
O2—C31.389 (16)C11—H11A0.9900
O2—C161.434 (18)C11—H11B0.9900
O3—C41.366 (17)C12—H12A0.9900
O3—C161.439 (18)C12—H12B0.9900
N1—C121.492 (17)C13—C141.529 (3)
N1—C91.505 (16)C13—H13A0.9900
N1—C81.519 (17)C13—H13B0.9900
N1—H10.920 (3)C13A—C14A1.15 (3)
C1—C61.38 (2)C13A—H13C0.9900
C1—C21.424 (18)C13A—H13D0.9900
C1—C71.482 (19)C14—C151.530 (3)
C2—C31.37 (2)C14—H14A0.9900
C2—H20.9500C14—H14B0.9900
C3—C41.34 (2)C14A—C151.531 (3)
C4—C51.38 (2)C14A—H14C0.9900
C5—C61.40 (2)C14A—H14D0.9900
C5—H50.9500C15—H15A0.9800
C6—H60.9500C15—H15B0.9800
C7—C81.525 (18)C15—H15C0.9800
C8—C131.50 (2)C15—H15D0.9800
C8—C13A1.54 (2)C15—H15E0.9800
C8—H8A0.9601C15—H15F0.9800
C8—H8AA0.9603C16—H16A0.9900
C9—C101.52 (2)C16—H16B0.9900
C9—H9A0.9900
Cl4—Au1—Cl190.02 (12)C10—C11—H11B110.9
Cl4—Au1—Cl389.41 (10)H11A—C11—H11B109.0
Cl1—Au1—Cl3178.02 (13)C11—C12—N1103.1 (13)
Cl4—Au1—Cl2176.92 (12)C11—C12—H12A111.1
Cl1—Au1—Cl290.13 (10)N1—C12—H12A111.1
Cl3—Au1—Cl290.54 (11)C11—C12—H12B111.1
C3—O2—C16105.3 (11)N1—C12—H12B111.1
C4—O3—C16105.3 (11)H12A—C12—H12B109.1
C12—N1—C9105.1 (10)C8—C13—C14126 (2)
C12—N1—C8115.6 (11)C8—C13—H13A105.8
C9—N1—C8113.5 (9)C14—C13—H13A105.8
C12—N1—H1104 (9)C8—C13—H13B105.8
C9—N1—H1122 (8)C14—C13—H13B105.8
C8—N1—H196 (7)H13A—C13—H13B106.2
C6—C1—C2120.7 (14)C14A—C13A—C8140 (3)
C6—C1—C7122.6 (12)C14A—C13A—H13C102.1
C2—C1—C7116.6 (12)C8—C13A—H13C102.1
C3—C2—C1115.2 (15)C14A—C13A—H13D102.1
C3—C2—H2122.4C8—C13A—H13D102.1
C1—C2—H2122.4H13C—C13A—H13D104.8
C4—C3—C2123.7 (14)C13—C14—C15112.4 (15)
C4—C3—O2109.7 (12)C13—C14—H14A109.1
C2—C3—O2126.5 (14)C15—C14—H14A109.1
C3—C4—O3111.6 (12)C13—C14—H14B109.1
C3—C4—C5122.5 (14)C15—C14—H14B109.1
O3—C4—C5125.9 (13)H14A—C14—H14B107.8
C4—C5—C6115.7 (14)C13A—C14A—C15135 (2)
C4—C5—H5122.1C13A—C14A—H14C103.5
C6—C5—H5122.1C15—C14A—H14C103.5
C1—C6—C5122.0 (14)C13A—C14A—H14D103.5
C1—C6—H6119.0C15—C14A—H14D103.5
C5—C6—H6119.0H14C—C14A—H14D105.3
O1—C7—C1122.2 (12)C14—C15—C14A44.4 (18)
O1—C7—C8119.2 (12)C14—C15—H15A109.5
C1—C7—C8118.6 (12)C14A—C15—H15A143.9
C13—C8—N197.7 (14)C14—C15—H15B109.5
C13—C8—C7112.9 (15)C14A—C15—H15B103.9
N1—C8—C7105.5 (11)H15A—C15—H15B109.5
C13—C8—C13A30.0 (13)C14—C15—H15C109.5
N1—C8—C13A124.7 (14)C14A—C15—H15C70.4
C7—C8—C13A111.4 (13)H15A—C15—H15C109.5
C13—C8—H8A113.0H15B—C15—H15C109.5
N1—C8—H8A113.3C14—C15—H15D109.5
C7—C8—H8A113.3C14A—C15—H15D70.6
C13A—C8—H8A88.3H15A—C15—H15D141.1
C13—C8—H8AA129.0H15B—C15—H15D56.3
N1—C8—H8AA104.4H15C—C15—H15D56.3
C7—C8—H8AA104.5C14—C15—H15E109.5
C13A—C8—H8AA104.5C14A—C15—H15E103.6
H8A—C8—H8AA16.3H15A—C15—H15E56.3
N1—C9—C10105.8 (12)H15B—C15—H15E141.1
N1—C9—H9A110.6H15C—C15—H15E56.3
C10—C9—H9A110.6H15D—C15—H15E109.5
N1—C9—H9B110.6C14—C15—H15F109.5
C10—C9—H9B110.6C14A—C15—H15F144.2
H9A—C9—H9B108.7H15A—C15—H15F56.3
C9—C10—C11104.9 (13)H15B—C15—H15F56.3
C9—C10—H10A110.8H15C—C15—H15F141.1
C11—C10—H10A110.8H15D—C15—H15F109.5
C9—C10—H10B110.8H15E—C15—H15F109.5
C11—C10—H10B110.8O2—C16—O3107.4 (12)
H10A—C10—H10B108.9O2—C16—H16A110.2
C12—C11—C10104.1 (13)O3—C16—H16A110.2
C12—C11—H11A110.9O2—C16—H16B110.2
C10—C11—H11A110.9O3—C16—H16B110.2
C12—C11—H11B110.9H16A—C16—H16B108.5
C6—C1—C2—C33.5 (18)C9—N1—C8—C13A159.7 (16)
C7—C1—C2—C3179.7 (11)O1—C7—C8—C1373 (2)
C1—C2—C3—C41.7 (19)C1—C7—C8—C13104.4 (19)
C1—C2—C3—O2177.9 (11)O1—C7—C8—N133.0 (15)
C16—O2—C3—C46.8 (15)C1—C7—C8—N1150.1 (11)
C16—O2—C3—C2176.5 (13)O1—C7—C8—C13A104.9 (17)
C2—C3—C4—O3179.0 (12)C1—C7—C8—C13A72.0 (18)
O2—C3—C4—O32.3 (16)C12—N1—C9—C1025.8 (14)
C2—C3—C4—C51 (2)C8—N1—C9—C10153.1 (12)
O2—C3—C4—C5177.8 (12)N1—C9—C10—C111.7 (15)
C16—O3—C4—C33.3 (16)C9—C10—C11—C1223.1 (16)
C16—O3—C4—C5176.6 (15)C10—C11—C12—N139.0 (15)
C3—C4—C5—C62 (2)C9—N1—C12—C1140.7 (14)
O3—C4—C5—C6178.1 (13)C8—N1—C12—C11166.7 (12)
C2—C1—C6—C55 (2)N1—C8—C13—C14123 (3)
C7—C1—C6—C5178.5 (13)C7—C8—C13—C1412 (4)
C4—C5—C6—C14 (2)C13A—C8—C13—C1481 (3)
C6—C1—C7—O1175.5 (13)C13—C8—C13A—C14A89 (4)
C2—C1—C7—O17.7 (18)N1—C8—C13A—C14A118 (3)
C6—C1—C7—C87.7 (19)C7—C8—C13A—C14A10 (4)
C2—C1—C7—C8169.1 (10)C8—C13—C14—C15139 (3)
C12—N1—C8—C1352.4 (18)C8—C13A—C14A—C15127 (4)
C9—N1—C8—C13174.0 (16)C13—C14—C15—C14A52.5 (17)
C12—N1—C8—C7168.8 (11)C13A—C14A—C15—C1477 (4)
C9—N1—C8—C769.6 (14)C3—O2—C16—O38.7 (15)
C12—N1—C8—C13A38 (2)C4—O3—C16—O27.4 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl40.92 (1)2.57 (7)3.41 (1)151 (11)
(IV) N-{1-[(Benzo[d][1,3]dioxol-5-yl)carbonyl]ethyl}ethanaminium chloride top
Crystal data top
C12H16NO3+·ClF(000) = 544
Mr = 257.71Dx = 1.334 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 10.6159 (4) ÅCell parameters from 9152 reflections
b = 7.1060 (3) Åθ = 4.3–70.1°
c = 17.6348 (6) ŵ = 2.62 mm1
β = 105.3310 (18)°T = 100 K
V = 1282.97 (9) Å3Block, colourless
Z = 40.33 × 0.31 × 0.15 mm
Data collection top
Bruker SMART CCD APEXII area-detector
diffractometer
2097 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.030
ϕ and ω scansθmax = 70.1°, θmin = 4.3°
Absorption correction: numerical
(SADABS; Sheldrick, 2008a)
h = 1212
Tmin = 0.475, Tmax = 0.696k = 88
9602 measured reflectionsl = 2121
2253 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: mixed
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.20 w = 1/[σ2(Fo2) + (0.0393P)2 + 1.4462P]
where P = (Fo2 + 2Fc2)/3
2253 reflections(Δ/σ)max < 0.001
162 parametersΔρmax = 0.36 e Å3
2 restraintsΔρmin = 0.26 e Å3
Crystal data top
C12H16NO3+·ClV = 1282.97 (9) Å3
Mr = 257.71Z = 4
Monoclinic, P21/cCu Kα radiation
a = 10.6159 (4) ŵ = 2.62 mm1
b = 7.1060 (3) ÅT = 100 K
c = 17.6348 (6) Å0.33 × 0.31 × 0.15 mm
β = 105.3310 (18)°
Data collection top
Bruker SMART CCD APEXII area-detector
diffractometer
2253 independent reflections
Absorption correction: numerical
(SADABS; Sheldrick, 2008a)
2097 reflections with I > 2σ(I)
Tmin = 0.475, Tmax = 0.696Rint = 0.030
9602 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0392 restraints
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.20Δρmax = 0.36 e Å3
2253 reflectionsΔρmin = 0.26 e Å3
162 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.15694 (5)1.27762 (7)0.29089 (3)0.01916 (17)
O10.36322 (15)0.8936 (2)0.40504 (9)0.0229 (4)
O20.29141 (16)0.1995 (2)0.58561 (9)0.0261 (4)
O30.45735 (15)0.3175 (2)0.68818 (9)0.0243 (4)
N10.13611 (18)0.8424 (3)0.29510 (10)0.0165 (4)
H1A0.157 (2)0.964 (3)0.3047 (14)0.020*
H1B0.0489 (17)0.839 (4)0.2697 (13)0.020*
C10.3410 (2)0.6464 (3)0.49155 (12)0.0167 (4)
C20.2827 (2)0.4704 (3)0.49730 (12)0.0180 (5)
H20.21290.42310.45620.022*
C30.3320 (2)0.3715 (3)0.56527 (12)0.0184 (5)
C40.4317 (2)0.4407 (3)0.62628 (12)0.0196 (5)
C50.4909 (2)0.6104 (3)0.62154 (12)0.0210 (5)
H50.56040.65580.66330.025*
C60.4440 (2)0.7129 (3)0.55232 (12)0.0191 (5)
H60.48300.83050.54640.023*
C70.2959 (2)0.7698 (3)0.42134 (12)0.0169 (4)
C80.1547 (2)0.7454 (3)0.37234 (12)0.0179 (5)
H80.13460.60840.36350.022*
C90.0625 (2)0.8330 (4)0.41627 (13)0.0259 (5)
H9A0.08770.96410.42930.039*
H9B0.06810.76220.46480.039*
H9C0.02730.82860.38290.039*
C100.2096 (2)0.7604 (3)0.24129 (13)0.0225 (5)
H10A0.20030.62170.24020.027*
H10B0.30360.79090.26120.027*
C110.1584 (2)0.8377 (4)0.15924 (13)0.0274 (5)
H11A0.06650.80210.13860.041*
H11B0.20950.78610.12520.041*
H11C0.16590.97520.16060.041*
C120.3786 (2)0.1531 (4)0.66032 (13)0.0242 (5)
H12A0.43510.04590.65470.029*
H12B0.32840.11720.69810.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0170 (3)0.0162 (3)0.0223 (3)0.00033 (18)0.0019 (2)0.00118 (19)
O10.0224 (8)0.0231 (9)0.0218 (8)0.0049 (7)0.0034 (6)0.0024 (7)
O20.0295 (9)0.0240 (9)0.0216 (8)0.0058 (7)0.0009 (7)0.0069 (7)
O30.0235 (8)0.0306 (10)0.0167 (7)0.0002 (7)0.0014 (6)0.0059 (7)
N10.0170 (9)0.0149 (9)0.0167 (9)0.0009 (7)0.0030 (7)0.0003 (7)
C10.0162 (10)0.0189 (11)0.0158 (10)0.0017 (8)0.0058 (8)0.0001 (8)
C20.0169 (10)0.0212 (12)0.0153 (9)0.0002 (9)0.0031 (8)0.0022 (8)
C30.0195 (10)0.0189 (12)0.0184 (10)0.0000 (9)0.0077 (8)0.0001 (9)
C40.0159 (10)0.0289 (13)0.0142 (9)0.0053 (9)0.0044 (8)0.0011 (9)
C50.0154 (10)0.0295 (13)0.0169 (10)0.0017 (9)0.0021 (8)0.0039 (9)
C60.0166 (10)0.0220 (12)0.0195 (10)0.0003 (9)0.0062 (8)0.0023 (9)
C70.0192 (10)0.0156 (11)0.0166 (10)0.0009 (9)0.0060 (8)0.0028 (8)
C80.0185 (10)0.0183 (11)0.0158 (10)0.0009 (9)0.0023 (8)0.0018 (8)
C90.0224 (11)0.0355 (14)0.0205 (11)0.0033 (10)0.0069 (9)0.0019 (10)
C100.0261 (11)0.0218 (12)0.0219 (11)0.0049 (10)0.0104 (9)0.0011 (9)
C110.0245 (11)0.0376 (15)0.0214 (11)0.0024 (11)0.0087 (9)0.0007 (10)
C120.0255 (11)0.0267 (13)0.0203 (11)0.0018 (10)0.0055 (9)0.0044 (9)
Geometric parameters (Å, º) top
O1—C71.215 (3)C5—H50.9500
O2—C31.374 (3)C6—H60.9500
O2—C121.434 (3)C7—C81.529 (3)
O3—C41.370 (3)C8—C91.532 (3)
O3—C121.445 (3)C8—H81.0000
N1—C81.493 (3)C9—H9A0.9800
N1—C101.497 (3)C9—H9B0.9800
N1—H1A0.896 (17)C9—H9C0.9800
N1—H1B0.916 (16)C10—C111.508 (3)
C1—C61.396 (3)C10—H10A0.9900
C1—C21.411 (3)C10—H10B0.9900
C1—C71.489 (3)C11—H11A0.9800
C2—C31.369 (3)C11—H11B0.9800
C2—H20.9500C11—H11C0.9800
C3—C41.385 (3)C12—H12A0.9900
C4—C51.372 (3)C12—H12B0.9900
C5—C61.396 (3)
C3—O2—C12105.89 (17)N1—C8—C9109.00 (18)
C4—O3—C12105.72 (16)C7—C8—C9109.27 (17)
C8—N1—C10115.66 (17)N1—C8—H8109.6
C8—N1—H1A107.9 (16)C7—C8—H8109.6
C10—N1—H1A110.2 (16)C9—C8—H8109.6
C8—N1—H1B107.9 (16)C8—C9—H9A109.5
C10—N1—H1B107.9 (16)C8—C9—H9B109.5
H1A—N1—H1B107 (2)H9A—C9—H9B109.5
C6—C1—C2120.99 (19)C8—C9—H9C109.5
C6—C1—C7116.9 (2)H9A—C9—H9C109.5
C2—C1—C7122.07 (18)H9B—C9—H9C109.5
C3—C2—C1116.42 (19)N1—C10—C11110.50 (18)
C3—C2—H2121.8N1—C10—H10A109.6
C1—C2—H2121.8C11—C10—H10A109.6
C2—C3—O2127.7 (2)N1—C10—H10B109.6
C2—C3—C4122.3 (2)C11—C10—H10B109.6
O2—C3—C4109.94 (19)H10A—C10—H10B108.1
O3—C4—C5127.78 (19)C10—C11—H11A109.5
O3—C4—C3110.0 (2)C10—C11—H11B109.5
C5—C4—C3122.2 (2)H11A—C11—H11B109.5
C4—C5—C6116.66 (19)C10—C11—H11C109.5
C4—C5—H5121.7H11A—C11—H11C109.5
C6—C5—H5121.7H11B—C11—H11C109.5
C5—C6—C1121.4 (2)O2—C12—O3107.52 (18)
C5—C6—H6119.3O2—C12—H12A110.2
C1—C6—H6119.3O3—C12—H12A110.2
O1—C7—C1122.90 (19)O2—C12—H12B110.2
O1—C7—C8119.89 (19)O3—C12—H12B110.2
C1—C7—C8117.05 (18)H12A—C12—H12B108.5
N1—C8—C7109.69 (17)
C6—C1—C2—C30.5 (3)C2—C1—C6—C51.6 (3)
C7—C1—C2—C3179.19 (19)C7—C1—C6—C5178.13 (19)
C1—C2—C3—O2179.0 (2)C6—C1—C7—O120.6 (3)
C1—C2—C3—C41.4 (3)C2—C1—C7—O1159.7 (2)
C12—O2—C3—C2176.9 (2)C6—C1—C7—C8154.76 (19)
C12—O2—C3—C45.2 (2)C2—C1—C7—C824.9 (3)
C12—O3—C4—C5174.0 (2)C10—N1—C8—C766.3 (2)
C12—O3—C4—C36.6 (2)C10—N1—C8—C9174.07 (18)
C2—C3—C4—O3177.09 (19)O1—C7—C8—N118.5 (3)
O2—C3—C4—O30.9 (2)C1—C7—C8—N1165.97 (18)
C2—C3—C4—C52.3 (3)O1—C7—C8—C9100.9 (2)
O2—C3—C4—C5179.69 (19)C1—C7—C8—C974.6 (2)
O3—C4—C5—C6178.1 (2)C8—N1—C10—C11166.02 (19)
C3—C4—C5—C61.2 (3)C3—O2—C12—O39.2 (2)
C4—C5—C6—C10.7 (3)C4—O3—C12—O29.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl10.90 (2)2.24 (2)3.103 (2)161 (2)
(V) Hydroxonium 1-(benzo[d][1,3]dioxol-5-yl)-2-(pyrrolidin-1-ium-1-yl)pentan-1-one dichloride top
Crystal data top
H7O3+·C16H22NO3+·2ClF(000) = 856
Mr = 402.30Dx = 1.335 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 15.8084 (3) ÅCell parameters from 9949 reflections
b = 11.4143 (2) Åθ = 2.9–68.8°
c = 11.6289 (2) ŵ = 3.18 mm1
β = 107.4200 (9)°T = 100 K
V = 2002.10 (6) Å3Plate, colourless
Z = 40.46 × 0.35 × 0.06 mm
Data collection top
Bruker SMART CCD APEXII area-detector
diffractometer
3393 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.022
ϕ and ω scansθmax = 68.6°, θmin = 2.9°
Absorption correction: numerical
(SADABS; Sheldrick, 2008a)
h = 1917
Tmin = 0.322, Tmax = 0.827k = 1312
18712 measured reflectionsl = 1313
3588 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.151 w = 1/[σ2(Fo2) + (0.0857P)2 + 3.7517P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
3588 reflectionsΔρmax = 1.53 e Å3
231 parametersΔρmin = 0.39 e Å3
0 restraintsExtinction correction: SHELXL2014 (Sheldrick, 2014), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0018 (4)
Crystal data top
H7O3+·C16H22NO3+·2ClV = 2002.10 (6) Å3
Mr = 402.30Z = 4
Monoclinic, P21/cCu Kα radiation
a = 15.8084 (3) ŵ = 3.18 mm1
b = 11.4143 (2) ÅT = 100 K
c = 11.6289 (2) Å0.46 × 0.35 × 0.06 mm
β = 107.4200 (9)°
Data collection top
Bruker SMART CCD APEXII area-detector
diffractometer
3588 independent reflections
Absorption correction: numerical
(SADABS; Sheldrick, 2008a)
3393 reflections with I > 2σ(I)
Tmin = 0.322, Tmax = 0.827Rint = 0.022
18712 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.151H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 1.53 e Å3
3588 reflectionsΔρmin = 0.39 e Å3
231 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.81575 (4)0.44395 (5)0.20852 (5)0.0120 (2)
Cl20.86519 (4)0.92061 (5)0.22051 (6)0.0205 (2)
O10.63452 (13)0.21312 (18)0.17429 (17)0.0235 (5)
O20.44639 (14)0.09337 (19)0.19210 (19)0.0262 (5)
O30.32086 (14)0.06743 (19)0.0303 (2)0.0285 (5)
O40.81206 (16)0.6990 (2)0.1030 (2)0.0345 (5)
H4A0.81100.62600.12800.052*
H4B0.82200.75500.14900.052*
O50.94897 (16)0.5593 (2)0.3237 (2)0.0368 (6)
H5A0.91100.52900.29000.055*
H5B1.00080.52500.31300.055*
O60.91195 (16)0.7670 (2)0.3960 (2)0.0350 (6)
H6A0.89500.80800.34300.053*
H6B0.91700.69300.37200.053*
H6C0.87900.78900.46840.053*
N10.78492 (16)0.2702 (2)0.0051 (2)0.0202 (5)
H10.777 (2)0.315 (3)0.077 (3)0.024*
C10.54542 (19)0.1745 (2)0.0466 (3)0.0204 (6)
C20.54399 (19)0.1547 (2)0.0725 (3)0.0207 (6)
H20.59550.16420.13950.025*
C30.4645 (2)0.1209 (2)0.0869 (3)0.0214 (6)
C40.38886 (19)0.1052 (2)0.0103 (3)0.0232 (6)
C50.3889 (2)0.1230 (3)0.1275 (3)0.0248 (6)
H50.33710.11180.19370.030*
C60.4689 (2)0.1582 (2)0.1437 (3)0.0223 (6)
H60.47160.17160.22320.027*
C70.62697 (19)0.2129 (2)0.0727 (2)0.0198 (6)
C80.70189 (18)0.2617 (2)0.0320 (2)0.0198 (6)
H80.71270.20660.10180.024*
C90.86129 (19)0.3256 (3)0.0893 (3)0.0257 (6)
H9A0.86210.30020.17100.031*
H9B0.85690.41210.08490.031*
C100.9444 (2)0.2836 (3)0.0605 (3)0.0391 (9)
H10A0.98940.25630.13470.047*
H10B0.97020.34780.02470.047*
C110.9149 (2)0.1824 (3)0.0295 (3)0.0268 (7)
H11A0.91630.20650.11070.032*
H11B0.95420.11370.00330.032*
C120.8210 (2)0.1536 (3)0.0307 (3)0.0249 (6)
H12A0.78590.12260.11020.030*
H12B0.82070.09540.03230.030*
C130.67422 (19)0.3815 (2)0.0697 (3)0.0218 (6)
H13A0.62530.36940.10520.026*
H13B0.72490.41490.13330.026*
C140.6443 (2)0.4703 (3)0.0325 (3)0.0271 (7)
H14A0.69230.48200.07000.033*
H14B0.59180.43950.09510.033*
C150.6212 (3)0.5872 (3)0.0133 (3)0.0373 (8)
H15A0.57240.57620.04800.056*
H15B0.60320.64290.05370.056*
H15C0.67320.61780.07520.056*
C160.3524 (2)0.0827 (3)0.1598 (3)0.0283 (7)
H16A0.32620.15400.18360.034*
H16B0.33580.01440.20080.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0159 (3)0.0109 (3)0.0112 (3)0.0004 (2)0.0070 (2)0.0028 (2)
Cl20.0241 (4)0.0166 (3)0.0204 (4)0.0029 (2)0.0063 (3)0.0004 (2)
O10.0276 (11)0.0239 (10)0.0191 (10)0.0010 (8)0.0072 (8)0.0006 (8)
O20.0273 (11)0.0281 (11)0.0257 (11)0.0019 (9)0.0117 (9)0.0020 (9)
O30.0242 (11)0.0303 (12)0.0313 (12)0.0039 (9)0.0090 (9)0.0029 (9)
O40.0399 (13)0.0301 (12)0.0340 (13)0.0010 (10)0.0121 (10)0.0019 (10)
O50.0386 (13)0.0309 (13)0.0456 (14)0.0031 (10)0.0199 (11)0.0048 (10)
O60.0423 (13)0.0322 (12)0.0321 (12)0.0062 (10)0.0135 (10)0.0002 (10)
N10.0235 (12)0.0185 (12)0.0183 (12)0.0019 (9)0.0057 (10)0.0003 (9)
C10.0260 (14)0.0127 (13)0.0220 (14)0.0031 (11)0.0064 (11)0.0007 (10)
C20.0226 (14)0.0172 (13)0.0212 (14)0.0017 (11)0.0047 (11)0.0011 (11)
C30.0288 (15)0.0140 (13)0.0221 (14)0.0013 (11)0.0087 (12)0.0011 (10)
C40.0232 (15)0.0162 (14)0.0304 (16)0.0011 (11)0.0083 (12)0.0010 (11)
C50.0251 (15)0.0198 (14)0.0252 (15)0.0009 (11)0.0011 (12)0.0002 (11)
C60.0279 (15)0.0166 (13)0.0207 (14)0.0020 (11)0.0048 (12)0.0003 (11)
C70.0262 (15)0.0140 (13)0.0191 (14)0.0044 (10)0.0064 (11)0.0013 (10)
C80.0236 (14)0.0178 (14)0.0187 (13)0.0005 (11)0.0074 (11)0.0012 (11)
C90.0235 (15)0.0282 (16)0.0231 (15)0.0014 (12)0.0036 (12)0.0054 (12)
C100.0243 (17)0.045 (2)0.044 (2)0.0035 (14)0.0033 (14)0.0170 (16)
C110.0263 (15)0.0268 (16)0.0263 (15)0.0045 (12)0.0064 (12)0.0031 (12)
C120.0281 (15)0.0199 (14)0.0276 (15)0.0040 (12)0.0096 (12)0.0016 (12)
C130.0230 (14)0.0214 (14)0.0213 (14)0.0003 (11)0.0069 (11)0.0034 (11)
C140.0339 (17)0.0207 (15)0.0271 (16)0.0044 (12)0.0098 (13)0.0005 (12)
C150.048 (2)0.0250 (17)0.0351 (19)0.0094 (15)0.0062 (16)0.0026 (14)
C160.0282 (16)0.0285 (16)0.0311 (17)0.0027 (12)0.0135 (13)0.0039 (13)
Geometric parameters (Å, º) top
O1—C71.222 (3)C7—C81.528 (4)
O2—C31.374 (4)C8—C131.539 (4)
O2—C161.424 (4)C8—H81.0000
O3—C41.367 (4)C9—C101.526 (4)
O3—C161.448 (4)C9—H9A0.9900
O4—H4A0.8806C9—H9B0.9900
O4—H4B0.8776C10—C111.535 (4)
O5—H5A0.8800C10—H10A0.9900
O5—H5B0.8828C10—H10B0.9900
O6—H6A0.8775C11—C121.517 (4)
O6—H6B0.8860C11—H11A0.9900
O6—H6C0.8831C11—H11B0.9900
N1—C81.503 (4)C12—H12A0.9900
N1—C91.507 (4)C12—H12B0.9900
N1—C121.512 (4)C13—C141.526 (4)
N1—H10.95 (4)C13—H13A0.9900
C1—C61.398 (4)C13—H13B0.9900
C1—C21.411 (4)C14—C151.521 (4)
C1—C71.477 (4)C14—H14A0.9900
C2—C31.371 (4)C14—H14B0.9900
C2—H20.9500C15—H15A0.9800
C3—C41.389 (4)C15—H15B0.9800
C4—C51.379 (4)C15—H15C0.9800
C5—C61.393 (4)C16—H16A0.9900
C5—H50.9500C16—H16B0.9900
C6—H60.9500
C3—O2—C16105.3 (2)C10—C9—H9B110.7
C4—O3—C16105.0 (2)H9A—C9—H9B108.8
H4A—O4—H4B118.5C9—C10—C11106.3 (3)
H5A—O5—H5B119.4C9—C10—H10A110.5
H6A—O6—H6B107.7C11—C10—H10A110.5
H6A—O6—H6C107.5C9—C10—H10B110.5
H6B—O6—H6C122.9C11—C10—H10B110.5
C8—N1—C9113.3 (2)H10A—C10—H10B108.7
C8—N1—C12114.4 (2)C12—C11—C10105.4 (2)
C9—N1—C12104.3 (2)C12—C11—H11A110.7
C8—N1—H1113 (2)C10—C11—H11A110.7
C9—N1—H1106 (2)C12—C11—H11B110.7
C12—N1—H1105 (2)C10—C11—H11B110.7
C6—C1—C2120.5 (3)H11A—C11—H11B108.8
C6—C1—C7118.1 (3)N1—C12—C11103.5 (2)
C2—C1—C7121.4 (3)N1—C12—H12A111.1
C3—C2—C1116.7 (3)C11—C12—H12A111.1
C3—C2—H2121.6N1—C12—H12B111.1
C1—C2—H2121.6C11—C12—H12B111.1
C2—C3—O2128.0 (3)H12A—C12—H12B109.0
C2—C3—C4122.3 (3)C14—C13—C8114.6 (2)
O2—C3—C4109.6 (3)C14—C13—H13A108.6
O3—C4—C5128.4 (3)C8—C13—H13A108.6
O3—C4—C3109.5 (3)C14—C13—H13B108.6
C5—C4—C3122.0 (3)C8—C13—H13B108.6
C4—C5—C6116.5 (3)H13A—C13—H13B107.6
C4—C5—H5121.8C15—C14—C13111.1 (3)
C6—C5—H5121.8C15—C14—H14A109.4
C5—C6—C1122.0 (3)C13—C14—H14A109.4
C5—C6—H6119.0C15—C14—H14B109.4
C1—C6—H6119.0C13—C14—H14B109.4
O1—C7—C1122.9 (3)H14A—C14—H14B108.0
O1—C7—C8119.5 (3)C14—C15—H15A109.5
C1—C7—C8117.4 (2)C14—C15—H15B109.5
N1—C8—C7109.3 (2)H15A—C15—H15B109.5
N1—C8—C13111.8 (2)C14—C15—H15C109.5
C7—C8—C13109.4 (2)H15A—C15—H15C109.5
N1—C8—H8108.7H15B—C15—H15C109.5
C7—C8—H8108.7O2—C16—O3107.0 (2)
C13—C8—H8108.7O2—C16—H16A110.3
N1—C9—C10105.2 (2)O3—C16—H16A110.3
N1—C9—H9A110.7O2—C16—H16B110.3
C10—C9—H9A110.7O3—C16—H16B110.3
N1—C9—H9B110.7H16A—C16—H16B108.6
C6—C1—C2—C30.9 (4)C9—N1—C8—C7175.9 (2)
C7—C1—C2—C3179.0 (2)C12—N1—C8—C764.8 (3)
C1—C2—C3—O2178.0 (3)C9—N1—C8—C1354.6 (3)
C1—C2—C3—C40.8 (4)C12—N1—C8—C13173.9 (2)
C16—O2—C3—C2171.0 (3)O1—C7—C8—N116.7 (3)
C16—O2—C3—C411.5 (3)C1—C7—C8—N1167.4 (2)
C16—O3—C4—C5171.0 (3)O1—C7—C8—C13106.1 (3)
C16—O3—C4—C311.3 (3)C1—C7—C8—C1369.9 (3)
C2—C3—C4—O3177.7 (3)C8—N1—C9—C10158.0 (3)
O2—C3—C4—O30.0 (3)C12—N1—C9—C1033.0 (3)
C2—C3—C4—C50.2 (4)N1—C9—C10—C1113.5 (4)
O2—C3—C4—C5177.9 (3)C9—C10—C11—C1210.9 (4)
O3—C4—C5—C6177.8 (3)C8—N1—C12—C11164.1 (2)
C3—C4—C5—C60.3 (4)C9—N1—C12—C1139.8 (3)
C4—C5—C6—C10.2 (4)C10—C11—C12—N131.0 (3)
C2—C1—C6—C50.4 (4)N1—C8—C13—C1467.1 (3)
C7—C1—C6—C5179.5 (3)C7—C8—C13—C1454.1 (3)
C6—C1—C7—O111.9 (4)C8—C13—C14—C15178.1 (3)
C2—C1—C7—O1168.2 (3)C3—O2—C16—O318.2 (3)
C6—C1—C7—C8163.9 (2)C4—O3—C16—O218.2 (3)
C2—C1—C7—C816.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl10.95 (4)2.34 (4)3.234 (2)157 (3)
O4—H4A···Cl1i0.882.293.166 (2)173
O4—H4B···Cl20.882.253.108 (2)165
O5—H5A···Cl1i0.882.233.107 (2)177
O5—H5B···Cl2ii0.882.363.240 (2)176
O6—H6A···Cl20.882.072.948 (2)173
O6—H6B···O50.891.652.525 (3)168
O6—H6C···O4iii0.881.612.482 (3)168
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1/2, z+1/2; (iii) x, y+1/2, z+1/2.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC16H22NO3+·0.343(Br)·0.657(Cl)C16H22NO3+·Br(C16H22NO3)[AuCl4]
Mr327.06356.25615.11
Crystal system, space groupOrthorhombic, PbcaMonoclinic, P21/cOrthorhombic, P212121
Temperature (K)100293100
a, b, c (Å)7.0133 (5), 17.8399 (13), 25.0044 (18)7.1280 (1), 21.3335 (5), 10.5243 (2)10.5046 (4), 11.1534 (4), 17.5193 (6)
α, β, γ (°)90, 90, 9090, 95.118 (1), 9090, 90, 90
V3)3128.5 (4)1594.00 (5)2052.60 (13)
Z844
Radiation typeCu KαCu KαCu Kα
µ (mm1)2.733.6018.40
Crystal size (mm)0.50 × 0.22 × 0.050.43 × 0.18 × 0.060.23 × 0.19 × 0.11
Data collection
DiffractometerBruker SMART CCD APEXII area-detector
diffractometer
Bruker SMART CCD APEXII area-detector
diffractometer
Bruker SMART CCD APEXII area-detector
diffractometer
Absorption correctionNumerical
(SADABS; Sheldrick, 2008a)
Numerical
(SADABS; Sheldrick, 2008a)
Numerical
(SADABS; Sheldrick, 2008a)
Tmin, Tmax0.400, 0.8960.307, 0.8130.101, 0.237
No. of measured, independent and
observed [I > 2σ(I)] reflections
27721, 2859, 2600 14889, 2942, 2813 24150, 3554, 3479
Rint0.0370.0210.047
(sin θ/λ)max1)0.6100.6090.608
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.066, 1.04 0.042, 0.134, 1.06 0.039, 0.096, 1.08
No. of reflections285929423554
No. of parameters204194250
No. of restraints0137
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.0355P)2 + 1.1197P]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.087P)2 + 3.9741P]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.0361P)2 + 26.5568P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.23, 0.170.69, 1.241.66, 2.42
Absolute structure??Refined as an inversion twin.
Absolute structure parameter??0.45 (3)


(IV)(V)
Crystal data
Chemical formulaC12H16NO3+·ClH7O3+·C16H22NO3+·2Cl
Mr257.71402.30
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/c
Temperature (K)100100
a, b, c (Å)10.6159 (4), 7.1060 (3), 17.6348 (6)15.8084 (3), 11.4143 (2), 11.6289 (2)
α, β, γ (°)90, 105.3310 (18), 9090, 107.4200 (9), 90
V3)1282.97 (9)2002.10 (6)
Z44
Radiation typeCu KαCu Kα
µ (mm1)2.623.18
Crystal size (mm)0.33 × 0.31 × 0.150.46 × 0.35 × 0.06
Data collection
DiffractometerBruker SMART CCD APEXII area-detector
diffractometer
Bruker SMART CCD APEXII area-detector
diffractometer
Absorption correctionNumerical
(SADABS; Sheldrick, 2008a)
Numerical
(SADABS; Sheldrick, 2008a)
Tmin, Tmax0.475, 0.6960.322, 0.827
No. of measured, independent and
observed [I > 2σ(I)] reflections
9602, 2253, 2097 18712, 3588, 3393
Rint0.0300.022
(sin θ/λ)max1)0.6100.604
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.107, 1.20 0.048, 0.151, 1.09
No. of reflections22533588
No. of parameters162231
No. of restraints20
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.0393P)2 + 1.4462P]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.0857P)2 + 3.7517P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.36, 0.261.53, 0.39
Absolute structure??
Absolute structure parameter??

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008b), SHELXL2014 (Sheldrick, 2014).

Comparison of the dihedral angles (°) in all five title structures top
(I)(II)(III)(IV)(V)
Phenyl ring versus Dioxo ring1.80 (9)2.40 (18)1.1 (6)2.04 (14)3.52 (9)
Phenyl ring versus Ketone23.70 (8)17.73 (17)8.1 (6)23.58 (13)14.3 (1)
Phenyl ring versus Pyrrole78.60 (5)88.94 (11)82.0 (4)62.15 (11)
Dioxo ring versus Ketone25.28 (8)17.26 (19)8.5 (6)25.35 (13)13.37 (11)
Dioxo ring versus Pyrrole80.34 (5)89.85 (12)82.9 (4)59.18 (12)
Pyrrole versus Ketone62.37 (5)74.95 (12)75.0 (5)51.07 (13)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl10.902 (18)2.292 (18)3.136 (3)155.6 (13)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Br10.868 (19)2.34 (2)3.198 (2)171 (3)
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl40.920 (3)2.57 (7)3.41 (1)151 (11)
Hydrogen-bond geometry (Å, º) for (IV) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl10.896 (17)2.243 (18)3.103 (2)161 (2)
Hydrogen-bond geometry (Å, º) for (V) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl10.95 (4)2.34 (4)3.234 (2)157 (3)
O4—H4A···Cl1i0.882.293.166 (2)173
O4—H4B···Cl20.882.253.108 (2)165
O5—H5A···Cl1i0.882.233.107 (2)177
O5—H5B···Cl2ii0.882.363.240 (2)176
O6—H6A···Cl20.882.072.948 (2)173
O6—H6B···O50.891.652.525 (3)168
O6—H6C···O4iii0.881.612.482 (3)168
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1/2, z+1/2; (iii) x, y+1/2, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds