Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The crystal structure of the title complex, [Cu(C5H7O2)I(C10H8N2)], in the space group P\overline{1} with Z = 4, is stabilized by π–π inter­actions and weak C—H...I inter­actions. The presence of two mol­ecules in the asymmetric unit is associated with different inter­molecular π–π inter­actions between two symmetry-related mol­ecules of each type.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270113018350/fg3291sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113018350/fg3291Isup2.hkl
Contains datablock I

CCDC reference: 964756

Introduction top

The ability of first-row transition metals to form complexes with ligands such as phenanthroline (phen), bi­pyridine (bipy) or acetyl­acetonate (acac) is well known. These ligands form five- or six-membered rings when coordinated to the metal atom. Many complexes, such as [Cu(bipy)3](ClO4)2, present the metal coordinated to one type of bidentate ligand. In cases such as [Zn(phen)3](ClO4)2.CH3CH2OH.H2O (Wei et al., 2004), the metal presents the conventional o­cta­hedral coordination geometry, with similar Zn—N bond lengths [2.142 (5)–2.179 (5) Å]. In contrast, the Cu—N bond lengths in copper complexes such as [Cu(bipy)3](ClO4)2 are more distinct [2.023 (9)–2.444 (10) Å]. In this way, the symmetry tends to be reduced in copper complexes compared with zinc complexes, possibly reflecting the higher asphericity of Cu2+ than Zn2+. If the metal is coordinated to more than one ligand type the local symmetry is reduced as well, for example in the compound [Cu(acac)(bipy)(H2O)]NO3.H2O (Onawumi et al., 2008).

The structures of mixed-ligand complexes of copper(II) with acac and bipy are known and they belong to the class of cytotoxic and anti­neoplastic compounds marketed as Casiopeinas. Examples are the complexes [Cu(acac)Cl(bipy)][Cu(acac)(bipy)(H2O)]Cl.H2O and [Cu(acac)Br(bipy)].H2O (Onawumi et al., 2011), one with chloride and the other with bromide. The title new mixed-ligand complex (acetyl­acetonato-κ2O,O')(2,2'-bi­pyridine-κ2N,N')iodidocopper(II), [Cu(acac)I(bipy)], (I), containing the iodide, is herein presented.

Experimental top

Synthesis and crystallization top

Copper(II) acetyl­acetonate was obtained as desribed previously (Glidewell, 1994). Single crystals of (I) were obtained from a methano­lic solution (50 ml) of copper(II) acetyl­acetonate (0.10 g), 2,2'-bi­pyridine (0.06 g) and potassium iodide (0.07 g). The rea­cta­nts were mixed at 298 K for 2 h and left to crystallize. After 2 d at 298 K, needle-like blue [Green prism given in CIF tables - please clarify] single crystals of (I) were formed and one was chosen for the diffraction experiment. The reaction yield was 68%.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. H atoms were geometrically fixed, with C—H = 0.93 Å, or 0.96 Å for methyl H, and with Uiso(H) = 1.2Ueq(C), or 0.05 Å2 for methyl H. [Please confirm added text] Methyl H atoms were allowed for considering each methyl as a rigid rotating group.

Results and discussion top

Complex (I) crystallizes in the triclinic space group P1, with two molecules (A and B) in the asymmetric unit. The CuII cation presents a slightly distorted square-planar coordination geometry, with the I atoms in the axial positions. The torsion angles in molecules A and B (Table 1) indicate that the bipy and acac ligands are approximately in the basal planes of the molecules.

It is inter­esting to note that the bond lengths and angles involving only the basal atoms are close to each other in both molecules. However, the bond lengths and angles involving the axial Cu—I bonds are different. Additionally, the I1—Cu1—N1 angle is close to the I1—Cu1—N2 angle, but angles I2—Cu2—N21 and I2—Cu2—N22 are clearly different (Table 2). The same effect is observed for the I—Cu—O angles. This is related to the fact that atom I2 is involved in inter­molecular C—H···I inter­actions, and is probably associated with the presence of two molecules in the asymmetric unit.

The mean planes through the acac O atoms and the bipy N atoms of each molecule were calculated, as well as the distances of the Cu and I atoms from these planes. It is inter­esting to note that the Cu-to-plane distances of the two independent molecules are similar [0.2557 (11) and 0.3461 (12) Å], as are the distances between the I atoms and the appropriate plane [3.1943 (11) and 3.1611 (12) Å, respectively].

The two independent molecules (A and B) of the asymmetric unit of (I) are involved in ππ stacking inter­actions, which contribute to the formation of the crystal structure. The ππ stacking inter­actions between neighbouring molecules A and Ai (Fig. 2) involve the bipy groups. The mean plane between the bipy rings of the molecules at (x, y, z) and (-x, -y, -z) are parallel, with an inter­planar distance of 3.501 (2) Å. The distance between the centroid of the N1/C1–C5 ring at (x, y, z) and the centroid of the N2/C6–C10 ring at (-x, -y, -z) is 3.737 (2) Å. The ππ stacking inter­action between neighbouring molecules B and Bii (Fig. 2) involves the acac groups. The Cu–acac Cu2/O21/O22/C32/C33/C34 rings of the molecules at (x, y, z) and (-x, -y + 1, -z + 1) are parallel, with ring-centroid separations of 3.495 (2) Å. C—H···I inter­actions (Table 3) also contribute to the crystal packing of (I). As can be seen in Fig. 2, an infinite chain of molecules in the [011] direction is formed by C2—H2···I2 and C3—H3···I2 inter­actions and the above-mentioned ππ stacking inter­actions. C—H···I angles close to 120° suggest that these inter­actions are weak (Wood et al., 2009). C13—H13···I1i (Table 3) inter­actions also contribute to the crystal packing.

Related literature top

For related literature, see: Glidewell (1994); Onawumi et al. (2008, 2011); Wei et al. (2004); Wood et al. (2009).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012).

Figures top
Fig. 1. The two independent molecules in the asymmetric unit of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate C—H···I interactions?

Fig. 2. Part of the crystal structure of (I), showing the chain along the [011] direction built from C—H···I (dashed lines?) and ππ stacking interactions. Displacement ellipsoids are drawn at the 20% probability level. [Symmetry codes: (i) -x, -y, -z; (ii) -x, -y + 1, -z + 1; (iii) x, y + 1, z + 1; (iv) -x, -y + 2, -z + 2.]
(Acetylacetonato-κ2O,O')(2,2'-bipyridine-κ2N,N')iodidocopper(II) top
Crystal data top
[Cu(C5H7O2)I(C10H8N2)]V = 1615.04 (6) Å3
Mr = 445.75Z = 4
Triclinic, P1F(000) = 868
Hall symbol: -P 1Dx = 1.833 Mg m3
a = 8.1171 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.4659 (2) ŵ = 3.27 mm1
c = 18.1340 (4) ÅT = 293 K
α = 84.990 (2)°Prism, green
β = 80.120 (2)°0.26 × 0.24 × 0.12 mm
γ = 76.538 (2)°
Data collection top
Agilent Gemini
diffractometer
6540 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ω scansθmax = 29.8°, θmin = 1.8°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
h = 1111
Tmin = 0.678, Tmax = 1.000k = 1515
57283 measured reflectionsl = 2425
8476 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.031 w = 1/[σ2(Fo2) + (0.022P)2 + 1.1877P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.068(Δ/σ)max = 0.003
S = 1.05Δρmax = 1.02 e Å3
8476 reflectionsΔρmin = 1.08 e Å3
383 parameters
Crystal data top
[Cu(C5H7O2)I(C10H8N2)]γ = 76.538 (2)°
Mr = 445.75V = 1615.04 (6) Å3
Triclinic, P1Z = 4
a = 8.1171 (2) ÅMo Kα radiation
b = 11.4659 (2) ŵ = 3.27 mm1
c = 18.1340 (4) ÅT = 293 K
α = 84.990 (2)°0.26 × 0.24 × 0.12 mm
β = 80.120 (2)°
Data collection top
Agilent Gemini
diffractometer
8476 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
6540 reflections with I > 2σ(I)
Tmin = 0.678, Tmax = 1.000Rint = 0.041
57283 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.068H-atom parameters constrained
S = 1.05Δρmax = 1.02 e Å3
8476 reflectionsΔρmin = 1.08 e Å3
383 parameters
Special details top

Experimental. CrysAlisPro, Agilent Technologies, Version 1.171.35.21 (release 20-01-2012 CrysAlis171 .NET) (compiled Jan 23 2012,18:06:46) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.11919 (4)0.22269 (3)0.092482 (19)0.03959 (9)
I10.00139 (3)0.429446 (19)0.148853 (13)0.05470 (7)
O10.2516 (2)0.2059 (2)0.16830 (11)0.0488 (5)
O20.3209 (2)0.2876 (2)0.02190 (11)0.0493 (5)
N10.0176 (3)0.1799 (2)0.00704 (13)0.0383 (5)
N20.0798 (3)0.0963 (2)0.14003 (13)0.0383 (5)
C10.0249 (4)0.2318 (3)0.05908 (16)0.0470 (7)
H10.11730.29730.06560.056*
C20.0650 (4)0.1904 (3)0.11781 (17)0.0512 (8)
H20.03440.22780.16320.061*
C30.2003 (4)0.0930 (3)0.10785 (17)0.0501 (8)
H30.25990.06190.14720.06*
C40.2476 (4)0.0412 (3)0.03926 (17)0.0448 (7)
H40.34070.02370.03160.054*
C50.1543 (3)0.0876 (2)0.01810 (15)0.0349 (6)
C60.1930 (3)0.0426 (2)0.09441 (16)0.0364 (6)
C70.3346 (4)0.0454 (3)0.11979 (18)0.0475 (7)
H70.41140.08230.08770.057*
C80.3610 (4)0.0779 (3)0.1932 (2)0.0552 (8)
H80.45640.13620.21130.066*
C90.2442 (4)0.0230 (3)0.23923 (19)0.0541 (8)
H90.25960.04350.28880.065*
C100.1041 (4)0.0630 (3)0.21056 (17)0.0478 (7)
H100.0240.09910.24130.057*
C110.4867 (4)0.2139 (3)0.22950 (18)0.0545 (8)
H11A0.42420.13920.25030.05*
H11B0.47760.27830.26640.05*
H11C0.60520.21110.21470.05*
C120.4133 (3)0.2343 (2)0.16212 (16)0.0399 (6)
C130.5241 (4)0.2833 (3)0.09959 (18)0.0471 (7)
H130.64090.30050.10180.056*
C140.4750 (3)0.3085 (2)0.03466 (17)0.0418 (7)
C150.6094 (4)0.3652 (3)0.0276 (2)0.0611 (9)
H15A0.59110.32130.07410.05*
H15B0.7210.36380.01730.05*
H15C0.60190.44690.0310.05*
Cu20.17330 (4)0.30628 (3)0.418661 (19)0.04041 (9)
I20.14914 (2)0.109649 (18)0.328411 (11)0.04608 (6)
O210.0019 (3)0.42908 (19)0.38125 (12)0.0506 (5)
O220.0290 (3)0.28373 (19)0.51217 (11)0.0494 (5)
N210.3824 (3)0.22090 (19)0.46330 (12)0.0372 (5)
N220.3549 (3)0.3497 (2)0.33885 (13)0.0385 (5)
C210.3821 (4)0.1573 (3)0.52880 (17)0.0457 (7)
H210.27790.14990.55720.055*
C220.5320 (5)0.1025 (3)0.55533 (19)0.0540 (8)
H220.52880.05970.60140.065*
C230.6849 (5)0.1117 (3)0.5133 (2)0.0575 (9)
H230.7870.07450.53030.069*
C240.6879 (4)0.1762 (3)0.4455 (2)0.0514 (8)
H240.79150.18280.41630.062*
C250.5327 (3)0.2314 (2)0.42163 (16)0.0381 (6)
C260.5180 (3)0.3051 (2)0.35106 (16)0.0385 (6)
C270.6556 (4)0.3285 (3)0.30066 (19)0.0513 (8)
H270.76720.29710.30950.062*
C280.6242 (5)0.3997 (3)0.2364 (2)0.0582 (9)
H280.71480.4180.20210.07*
C290.4587 (5)0.4426 (3)0.22406 (18)0.0552 (8)
H290.43590.48920.18080.066*
C300.3262 (4)0.4161 (3)0.27625 (17)0.0477 (7)
H300.21390.44530.26760.057*
C310.2534 (4)0.5764 (3)0.3767 (2)0.0596 (9)
H31A0.25230.55370.32690.05*
H31B0.2070.64660.37420.05*
H31C0.36920.59340.40270.05*
C320.1467 (4)0.4753 (3)0.41809 (18)0.0436 (7)
C330.2062 (4)0.4406 (3)0.49116 (19)0.0505 (8)
H330.31370.4820.5130.061*
C340.1178 (4)0.3491 (3)0.53424 (18)0.0465 (7)
C350.1937 (5)0.3212 (4)0.61349 (19)0.0648 (10)
H35A0.18530.23620.62120.05*
H35B0.31210.36240.62250.05*
H35C0.13240.34710.64740.05*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02935 (17)0.0515 (2)0.03531 (19)0.00232 (14)0.00483 (14)0.00631 (15)
I10.04142 (11)0.05483 (13)0.06307 (14)0.00741 (9)0.00834 (10)0.01466 (10)
O10.0313 (10)0.0688 (14)0.0443 (12)0.0037 (9)0.0069 (9)0.0106 (10)
O20.0345 (11)0.0663 (14)0.0436 (12)0.0052 (10)0.0005 (9)0.0130 (10)
N10.0347 (12)0.0445 (13)0.0357 (13)0.0082 (10)0.0057 (10)0.0026 (10)
N20.0320 (12)0.0461 (13)0.0366 (13)0.0079 (10)0.0030 (10)0.0073 (10)
C10.0446 (17)0.0556 (18)0.0385 (16)0.0056 (14)0.0044 (13)0.0084 (14)
C20.0532 (19)0.067 (2)0.0365 (17)0.0178 (16)0.0081 (14)0.0057 (15)
C30.0495 (18)0.064 (2)0.0410 (17)0.0192 (16)0.0150 (14)0.0081 (15)
C40.0381 (15)0.0488 (17)0.0464 (18)0.0077 (13)0.0099 (13)0.0057 (13)
C50.0307 (13)0.0386 (14)0.0361 (14)0.0118 (11)0.0044 (11)0.0033 (11)
C60.0283 (13)0.0393 (15)0.0426 (16)0.0113 (11)0.0043 (11)0.0001 (12)
C70.0376 (16)0.0484 (17)0.0549 (19)0.0054 (13)0.0075 (14)0.0046 (14)
C80.0399 (17)0.0529 (19)0.069 (2)0.0035 (14)0.0016 (16)0.0178 (17)
C90.0491 (18)0.065 (2)0.0481 (19)0.0152 (16)0.0037 (15)0.0208 (16)
C100.0410 (16)0.063 (2)0.0401 (17)0.0126 (14)0.0040 (13)0.0112 (14)
C110.0455 (18)0.069 (2)0.0518 (19)0.0139 (16)0.0179 (15)0.0035 (16)
C120.0347 (14)0.0386 (15)0.0464 (17)0.0085 (12)0.0111 (12)0.0083 (12)
C130.0284 (14)0.0550 (18)0.0542 (19)0.0047 (13)0.0058 (13)0.0028 (15)
C140.0335 (14)0.0356 (15)0.0516 (18)0.0047 (12)0.0012 (13)0.0014 (13)
C150.0452 (18)0.066 (2)0.064 (2)0.0054 (16)0.0089 (16)0.0124 (18)
Cu20.03122 (17)0.0488 (2)0.03593 (19)0.00044 (14)0.00437 (14)0.00176 (15)
I20.04460 (11)0.05291 (12)0.04093 (11)0.00439 (9)0.01379 (8)0.00680 (8)
O210.0409 (11)0.0566 (13)0.0446 (12)0.0086 (10)0.0073 (9)0.0014 (10)
O220.0413 (11)0.0580 (13)0.0417 (12)0.0039 (10)0.0017 (9)0.0011 (10)
N210.0390 (12)0.0358 (12)0.0362 (13)0.0026 (10)0.0094 (10)0.0065 (10)
N220.0379 (12)0.0397 (13)0.0364 (13)0.0052 (10)0.0061 (10)0.0017 (10)
C210.0545 (18)0.0416 (16)0.0393 (16)0.0042 (13)0.0106 (14)0.0044 (13)
C220.068 (2)0.0427 (17)0.052 (2)0.0014 (15)0.0279 (17)0.0000 (14)
C230.058 (2)0.0481 (19)0.071 (2)0.0001 (15)0.0373 (19)0.0055 (17)
C240.0387 (16)0.0506 (18)0.066 (2)0.0033 (13)0.0158 (15)0.0098 (16)
C250.0368 (14)0.0360 (14)0.0429 (16)0.0045 (11)0.0112 (12)0.0095 (12)
C260.0377 (15)0.0380 (15)0.0418 (16)0.0085 (12)0.0058 (12)0.0126 (12)
C270.0399 (16)0.0554 (19)0.060 (2)0.0156 (14)0.0004 (15)0.0126 (16)
C280.060 (2)0.060 (2)0.055 (2)0.0273 (17)0.0112 (17)0.0099 (17)
C290.073 (2)0.0468 (18)0.0442 (18)0.0179 (17)0.0024 (16)0.0029 (14)
C300.0519 (18)0.0475 (17)0.0410 (17)0.0061 (14)0.0072 (14)0.0004 (13)
C310.0464 (18)0.0526 (19)0.078 (2)0.0073 (15)0.0221 (17)0.0173 (17)
C320.0347 (15)0.0414 (16)0.0571 (19)0.0032 (12)0.0147 (14)0.0156 (14)
C330.0314 (15)0.0544 (19)0.062 (2)0.0061 (13)0.0027 (14)0.0144 (16)
C340.0394 (16)0.0541 (18)0.0493 (18)0.0187 (14)0.0015 (13)0.0151 (14)
C350.056 (2)0.080 (3)0.056 (2)0.0241 (19)0.0133 (17)0.0131 (18)
Geometric parameters (Å, º) top
Cu1—O11.9316 (19)Cu2—O221.923 (2)
Cu1—O21.9372 (19)Cu2—O211.9230 (19)
Cu1—N12.019 (2)Cu2—N221.999 (2)
Cu1—N22.025 (2)Cu2—N212.014 (2)
Cu1—I12.8171 (4)Cu2—I22.9598 (4)
O1—C121.264 (3)O21—C321.269 (3)
O2—C141.275 (3)O22—C341.271 (3)
N1—C11.341 (4)N21—C211.338 (4)
N1—C51.344 (3)N21—C251.345 (4)
N2—C101.335 (4)N22—C301.334 (4)
N2—C61.348 (3)N22—C261.352 (3)
C1—C21.381 (4)C21—C221.378 (4)
C1—H10.93C21—H210.93
C2—C31.372 (4)C22—C231.362 (5)
C2—H20.93C22—H220.93
C3—C41.380 (4)C23—C241.377 (5)
C3—H30.93C23—H230.93
C4—C51.387 (4)C24—C251.394 (4)
C4—H40.93C24—H240.93
C5—C61.476 (4)C25—C261.478 (4)
C6—C71.382 (4)C26—C271.378 (4)
C7—C81.381 (4)C27—C281.389 (5)
C7—H70.93C27—H270.93
C8—C91.376 (5)C28—C291.369 (5)
C8—H80.93C28—H280.93
C9—C101.379 (4)C29—C301.377 (4)
C9—H90.93C29—H290.93
C10—H100.93C30—H300.93
C11—C121.506 (4)C31—C321.504 (4)
C11—H11A0.96C31—H31A0.96
C11—H11B0.96C31—H31B0.96
C11—H11C0.96C31—H31C0.96
C12—C131.391 (4)C32—C331.387 (4)
C13—C141.379 (4)C33—C341.387 (4)
C13—H130.93C33—H330.93
C14—C151.504 (4)C34—C351.502 (4)
C15—H15A0.96C35—H35A0.96
C15—H15B0.96C35—H35B0.96
C15—H15C0.96C35—H35C0.96
O1—Cu1—O293.32 (8)O22—Cu2—O2193.11 (9)
O1—Cu1—N1160.23 (9)O22—Cu2—N22164.65 (9)
O2—Cu1—N189.50 (9)O21—Cu2—N2291.81 (9)
O1—Cu1—N290.21 (9)O22—Cu2—N2190.44 (9)
O2—Cu1—N2157.13 (10)O21—Cu2—N21162.81 (9)
N1—Cu1—N279.94 (9)N22—Cu2—N2180.77 (9)
O1—Cu1—I1101.11 (7)O22—Cu2—I2103.84 (7)
O2—Cu1—I1102.49 (7)O21—Cu2—I297.55 (7)
N1—Cu1—I197.36 (7)N22—Cu2—I289.90 (6)
N2—Cu1—I198.97 (7)N21—Cu2—I297.91 (6)
C12—O1—Cu1125.53 (19)C32—O21—Cu2125.8 (2)
C14—O2—Cu1125.21 (19)C34—O22—Cu2125.6 (2)
C1—N1—C5119.8 (2)C21—N21—C25119.5 (2)
C1—N1—Cu1124.74 (19)C21—N21—Cu2125.8 (2)
C5—N1—Cu1115.35 (18)C25—N21—Cu2114.74 (18)
C10—N2—C6119.4 (2)C30—N22—C26119.5 (3)
C10—N2—Cu1125.5 (2)C30—N22—Cu2125.2 (2)
C6—N2—Cu1115.07 (18)C26—N22—Cu2115.32 (19)
N1—C1—C2121.8 (3)N21—C21—C22121.8 (3)
N1—C1—H1119.1N21—C21—H21119.1
C2—C1—H1119.1C22—C21—H21119.1
C3—C2—C1118.7 (3)C23—C22—C21119.2 (3)
C3—C2—H2120.7C23—C22—H22120.4
C1—C2—H2120.7C21—C22—H22120.4
C2—C3—C4119.8 (3)C22—C23—C24119.8 (3)
C2—C3—H3120.1C22—C23—H23120.1
C4—C3—H3120.1C24—C23—H23120.1
C3—C4—C5119.0 (3)C23—C24—C25118.8 (3)
C3—C4—H4120.5C23—C24—H24120.6
C5—C4—H4120.5C25—C24—H24120.6
N1—C5—C4120.8 (3)N21—C25—C24120.9 (3)
N1—C5—C6114.5 (2)N21—C25—C26114.9 (2)
C4—C5—C6124.6 (3)C24—C25—C26124.2 (3)
N2—C6—C7121.0 (3)N22—C26—C27121.4 (3)
N2—C6—C5114.7 (2)N22—C26—C25114.2 (2)
C7—C6—C5124.3 (3)C27—C26—C25124.4 (3)
C8—C7—C6119.4 (3)C26—C27—C28118.7 (3)
C8—C7—H7120.3C26—C27—H27120.6
C6—C7—H7120.3C28—C27—H27120.6
C9—C8—C7119.2 (3)C29—C28—C27119.4 (3)
C9—C8—H8120.4C29—C28—H28120.3
C7—C8—H8120.4C27—C28—H28120.3
C8—C9—C10118.8 (3)C28—C29—C30119.4 (3)
C8—C9—H9120.6C28—C29—H29120.3
C10—C9—H9120.6C30—C29—H29120.3
N2—C10—C9122.2 (3)N22—C30—C29121.7 (3)
N2—C10—H10118.9N22—C30—H30119.2
C9—C10—H10118.9C29—C30—H30119.2
C12—C11—H11A109.5C32—C31—H31A109.5
C12—C11—H11B109.5C32—C31—H31B109.5
H11A—C11—H11B109.5H31A—C31—H31B109.5
C12—C11—H11C109.5C32—C31—H31C109.5
H11A—C11—H11C109.5H31A—C31—H31C109.5
H11B—C11—H11C109.5H31B—C31—H31C109.5
O1—C12—C13125.3 (3)O21—C32—C33124.9 (3)
O1—C12—C11115.6 (3)O21—C32—C31114.5 (3)
C13—C12—C11119.1 (3)C33—C32—C31120.6 (3)
C14—C13—C12125.5 (3)C32—C33—C34125.1 (3)
C14—C13—H13117.3C32—C33—H33117.4
C12—C13—H13117.3C34—C33—H33117.4
O2—C14—C13125.2 (3)O22—C34—C33124.9 (3)
O2—C14—C15115.3 (3)O22—C34—C35114.7 (3)
C13—C14—C15119.5 (3)C33—C34—C35120.4 (3)
C14—C15—H15A109.5C34—C35—H35A109.5
C14—C15—H15B109.5C34—C35—H35B109.5
H15A—C15—H15B109.5H35A—C35—H35B109.5
C14—C15—H15C109.5C34—C35—H35C109.5
H15A—C15—H15C109.5H35A—C35—H35C109.5
H15B—C15—H15C109.5H35B—C35—H35C109.5
I1—Cu1—N2—N195.96 (7)I2—Cu2—N21—N2288.60 (7)
I1—Cu1—O2—O1102.15 (7)I2—Cu2—O21—O22104.41 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···I20.933.373.987 (3)126
C3—H3···I20.933.313.967 (3)129
C13—H13···I1i0.933.164.044 (3)160
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formula[Cu(C5H7O2)I(C10H8N2)]
Mr445.75
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.1171 (2), 11.4659 (2), 18.1340 (4)
α, β, γ (°)84.990 (2), 80.120 (2), 76.538 (2)
V3)1615.04 (6)
Z4
Radiation typeMo Kα
µ (mm1)3.27
Crystal size (mm)0.26 × 0.24 × 0.12
Data collection
DiffractometerAgilent Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.678, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
57283, 8476, 6540
Rint0.041
(sin θ/λ)max1)0.700
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.068, 1.05
No. of reflections8476
No. of parameters383
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.02, 1.08

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012).

Selected geometric parameters (Å, º) top
Cu1—O11.9316 (19)Cu2—O221.923 (2)
Cu1—O21.9372 (19)Cu2—O211.9230 (19)
Cu1—N12.019 (2)Cu2—N221.999 (2)
Cu1—N22.025 (2)Cu2—N212.014 (2)
Cu1—I12.8171 (4)Cu2—I22.9598 (4)
O1—Cu1—I1101.11 (7)O22—Cu2—I2103.84 (7)
O2—Cu1—I1102.49 (7)O21—Cu2—I297.55 (7)
N1—Cu1—I197.36 (7)N22—Cu2—I289.90 (6)
N2—Cu1—I198.97 (7)N21—Cu2—I297.91 (6)
I1—Cu1—N2—N195.96 (7)I2—Cu2—N21—N2288.60 (7)
I1—Cu1—O2—O1102.15 (7)I2—Cu2—O21—O22104.41 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···I20.933.373.987 (3)126
C3—H3···I20.933.313.967 (3)129.2
C13—H13···I1i0.933.164.044 (3)159.9
Symmetry code: (i) x1, y, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds