Download citation
Download citation
link to html
In the four compounds of chloranilic acid (2,5-dichloro-3,6-dihy­droxy­cyclo­hexa-2,5-diene-1,4-dione) with pyrrolidin-2-one and piperidin-2-one, namely, chloranilic acid–pyrrolidin-2-one (1/1), C6H2Cl2O4·C4H7NO, (I), chloranilic acid–pyrrolidin-2-one (1/2), C6H2Cl2O4·2C4H7NO, (II), chloranilic acid–piperidin-2-one (1/1), C6H2Cl2O4·C5H9NO, (III), and chloranilic acid–piperidin-2-one (1/2), C6H2Cl2O4·2C5H9NO, (IV), the shortest inter­actions between the two components are O—H...O hydrogen bonds, which act as the primary inter­molecular inter­action in the crystal structures. In (II), (III) and (IV), the chloranilic acid mol­ecules lie about inversion centres. For (III), this necessitates the presence of two independent acid molecules. In (I), there are two formula units in the asymmetric unit. The O...O distances are 2.4728 (11) and 2.4978 (11) Å in (I), 2.5845 (11) Å in (II), 2.6223 (11) and 2.5909 (10) Å in (III), and 2.4484 (10) Å in (IV). In the hydrogen bond of (IV), the H atom is disordered over two positions with site occupancies of 0.44 (3) and 0.56 (3). This indicates that proton transfer between the acid and base has partly taken place to form ion pairs. In (I) and (II), N—H...O hydrogen bonds, the secondary inter­molecular inter­actions, connect the pyrrolidin-2-one mol­ecules into a dimer, while in (III) and (IV) these hydrogen bonds link the acid and base to afford three- and two-dimensional hydrogen-bonded networks, respectively.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270111048165/fg3233sup1.cif
Contains datablocks global, I, II, III, IV

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111048165/fg3233Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111048165/fg3233IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111048165/fg3233IIIsup4.hkl
Contains datablock III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111048165/fg3233IVsup5.hkl
Contains datablock IV

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270111048165/fg3233Isup6.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270111048165/fg3233IIsup7.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270111048165/fg3233IIIsup8.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270111048165/fg3233IVsup9.cml
Supplementary material

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S0108270111048165/fg3233sup10.pdf
Supplementary material

CCDC references: 862239; 862240; 862241; 862242

Comment top

Chloranilic acid (2,5-dichloro-3,6-dihydroxycyclohexa-2,5-diene-1,4-dione), a strong dibasic acid with both hydrogen-bond donor and acceptor groups, appears particularly attractive as a template for generating tightly bound self-assemblies with various organic bases (Ishida & Kashino, 1999a,b, 2002; Zaman et al., 1999, 2004; Gotoh, Maruyama & Ishida, 2010), and also as a model compound for investigating hydrogen-transfer mechanisms in O—H···N and N—H···O hydrogen-bond systems (Ikeda et al., 2005; Suzuki et al., 2007; Gotoh et al., 2008; Gotoh, Asaji & Ishida, 2010; Seliger et al., 2009, 2011; Asaji, Hoshino et al., 2010; Asaji, Seliger et al., 2010). Furthermore, salts and co-crystals of chloranilic acid with pyridine derivatives have recently attracted much interest with respect to organic ferroelectrics (Horiuchi, Ishii et al., 2005; Horiuchi, Kumai & Tokura, 2005; Asaji et al., 2007; Gotoh et al., 2007; Horiuchi & Tokura, 2008; Horiuchi et al., 2010).

In the present study, we have prepared four compounds of chloranilic acid with pyrrolidin-2-one and piperidin-2-one, namely, chloranilic acid–pyrrolidin-2-one (1/1), (I), chloranilic acid–pyrrolidin-2-one (1/2), (II), chloranilic acid–piperidin-2-one (1/1), (III), and chloranilic acid–piperidin-2-one (1/2), (IV), and determined their crystal structures at 180 K in order to extend our study of D—H···A hydrogen bonding (D = N, O or C; A = N, O or Cl) in chloranilic acid–organic base systems (Gotoh et al., 2009; Gotoh & Ishida, 2009).

The molecular structures of (I), (II), (III) and (IV) are shown in Figs. 1, 2, 3 and 4, respectively. The chloranilic acid molecules in all four compounds show a characteristic structure with two long and two short C—C bonds, as described by Andersen (1967). The pyrrolidin-2-one molecules in (I) and (II) adopt an approximate envelope conformation, while the piperidin-2-one molecules in (III) and (IV) have half-chair conformations.

The asymmetric unit of (I) contains two crystallographically independent pyrrolidin-2-one molecules and two chloranilic acid molecules (Fig. 1). The acid and base are held together by short O—H···O hydrogen bonds (O2—H2A···O9 and O6—H6···O10; Table 1), and the two bases are further connected to each other by a pair of N—H···O hydrogen bonds (N1—H1···O10 and N2—H2B···O9; Table 1), thus forming a quasi-centrosymmetric 2+2 aggregate. These 2+2 aggregates are linked through a pair of O—H···O hydrogen bonds between the chloranilic acid molecules (O4—H4···O5i and O8—H8···O1ii; details and symmetry codes in Table 1), forming an approximately flat tape structure along the b axis (Fig. 5). The hydrogen-bonded pyrrolidin-2-one dimers are thus linked by hydrogen bonding across the hydrogen-bonded chloranilic acid dimer, forming a tape. In this tape, the dihedral angle between the acid C1–C6 and C7–C12 rings is 2.67 (5)°, and those between the least-squares plane of atoms N1/C13–C16/O9/N2/C17–C20/O10 of the hydrogen-bonded pyrrolidin-2-one dimer and the acid C1–C6 and C7–C12 rings are 9.23 (4) and 6.92 (4)°, respectively. The tapes, related to each other by an inversion centre, are stacked alternately along the a axis, forming a layer parallel to the ab plane.

In compound (II), the acid molecule is located on an inversion centre, so that the asymmetric unit contains one pyrrolidin-2-one molecule and one half-molecule of chloranilic acid (Fig. 2). The acid and the base are connected by a short O—H···O hydrogen bond (O2—H2···O3; Table 2) and the two components are further connected by an N—H···(O,O) bifurcated hydrogen bond (N1—H1···O1i/O3ii; details and symmetry codes in Table 2), forming a centrosymmetric 2+2 aggregate similar to (I). The 2+2 units are further connected by hydrogen bonds such that the hydrogen-bonded pyrrolidin-2-one dimer and the chloranilic acid are arranged alternately into an essentially planar molecular tape along the [111] direction (Fig. 6). In this tape, the dihedral angle between the acid ring and the least-squares plane of atoms N1/C4–C7/O3 of the pyrrolidin-2-one is 8.81 (12)°. The tapes are stacked along the a axis and form a layer parallel to the (011) plane.

In the asymmetric unit of (III), there are one piperidin-2-one molecule and two crystallographically independent half-molecules of chloranilic acid, with each of the acid molecules lying about an inversion centre (Fig. 3). No formation of dimers of piperidin-2-one molecules is observed, while the piperidin-2-one O atom participates in two O—H···O hydrogen bonds as an acceptor for two chloranilic acid O—H groups (O2—H2···O5 and O4—H4···O5; Table 3), forming a zigzag chain along the [101] direction in which the two components are arranged alternately (Fig. 7). The N—H···O hydrogen bond (N1—H1···O3i; symmetry code in Table 3) formed between the piperidin-2-one and chloranilic acid molecules connects the chains into a three-dimensional network (Fig. 8).

The asymmetric unit of (IV) contains one piperidin-2-one molecule and one half-molecule of chloranilic acid, which is located on an inversion centre (Fig. 4). A short O—H···O hydrogen bond with an O···O distance of 2.4484 (10) Å connects the two components. The H atom in the hydrogen bond is disordered over two positions with refined occupancies of 0.44 (3) and 0.56 (3) at the O2 and O3 sites, respectively. This disordered feature is confirmed in a difference Fourier map (see supplementary figure). The acid and base are further connected by an N—H···(O,O) bifurcated hydrogen bond [N1—H1···(O1i,O2ii); details and symmetry codes in Table 4], forming a layer parallel to the (101) plane (Fig. 9).

We have shown that in all compounds the primary intermolecular interactions are O—H···O hydrogen bonds formed between the acid and the base. The secondary interactions are N—H···O hydrogen bonds, which connect the pyrrolidin-2-one molecules into a dimer in (I) and (II), and link the acid and base into three- and two-dimensional hydrogen-bonded networks, respectively, in (III) and (IV). Furthermore, in (IV) it is noteworthy that (a) the orientation of the O—H group of the acid is different from that in (I), (II) and (III), in that the O—H group in (IV) points to the Cl atom due to the N—H···(O,O) hydrogen bond; and (b) the O atom of the base acts as a single acceptor only for the O—H group. These may cause the disorder of the H atom in the O···H···O hydrogen bond.

Related literature top

For related literature, see: Andersen (1967); Asaji et al. (2007); Asaji, Hoshino, Ishida, Konnai, Shinoda, Seliger & Žagar (2010); Asaji, Seliger, Žagar & Ishida (2010); Gotoh & Ishida (2009); Gotoh et al. (2007, 2008); Gotoh, Asaji & Ishida (2010); Gotoh, Maruyama & Ishida (2010); Gotoh, Nagoshi & Ishida (2009); Horiuchi & Tokura (2008); Horiuchi et al. (2010); Horiuchi, Ishii, Kumai, Okimoto, Tachibana, Nagaosa & Tokura (2005); Horiuchi, Kumai & Tokura (2005); Ikeda et al. (2005); Ishida & Kashino (1999a, 1999b, 2002); Seliger et al. (2009, 2011); Suzuki et al. (2007); Zaman et al. (1999, 2004).

Experimental top

Single crystals of the 1:1 compounds (I) and (III) were obtained by slow evaporation from acetonitrile solutions [120 and 200 ml for (I) and (III), respectively] of chloranilic acid with pyrrolidin-2-one or piperidin-2-one in a 1:1 molar ratio [0.475 g of chloranilic acid and 0.194 g of pyrrolidin-2-one for (I), and 1.03 g of chloranilic acid and 0.49 g of piperidin-2-one for (III)] at room temperature. Single crystals of the 1:2 compounds (II) and (IV) were obtained by slow evaporation from acetonitrile solutions [200 and 125 ml for (II) and (IV), respectively] of chloranilic acid with pyrrolidin-2-one or piperidin-2-one in a 1:2.2 molar ratio [0.452 g of chloranilic acid and 0.405 g of pyrrolidin-2-one for (II), and 0.367 g of chloranilic acid and 0.383 g of piperidin-2-one for (IV)] at room temperature. About 10% excess pyrrolidin-2-one or piperidin-2-one was used to avoid contamination of the 1:1 compound.

Refinement top

H atoms attached to O and N atoms were found in difference Fourier maps and refined isotropically (refined O—H and N—H distances are given in Tables 1–4). For compound (IV), the O-bound H atom, which is involved in the O···H···O hydrogen bond, was found to be disordered over two positions in a difference Fourier map. Since the site-occupancy factors and isotropic displacement parameters were strongly correlated, the positional parameters and occupancy factors were refined, with Uiso(H) = 1.5Ueq(O). The positional parameters were refined with bond restraints of O—H = 0.84 (2) Å. Other H atoms were treated as riding, with C—H = 0.99 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

For all compounds, data collection: PROCESS-AUTO (Rigaku/MSC, 2004); cell refinement: PROCESS-AUTO (Rigaku/MSC, 2004); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008). Molecular graphics: ORTEP-3 (Farrugia, 1997) for (I), (II), (III); ORTEP-3 (Farrugia, 1997) and WinGX (Farrugia, 1999) for (IV). For all compounds, software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2004) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. O—H···O and N—H···O hydrogen bonds are indicated by dashed lines.
[Figure 2] Fig. 2. The molecular structure of (II), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. O—H···O hydrogen bonds are indicated by dashed lines. [Symmetry code: (iii) -x + 1, -y + 1, -z + 2.]
[Figure 3] Fig. 3. A molecular view of (III), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. O—H···O hydrogen bonds are indicated by dashed lines. [Symmetry codes: (iii) -x, -y, -z; (iv) -x + 1, -y, -z + 1.]
[Figure 4] Fig. 4. A molecular view of (IV), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. O···H···O hydrogen bonds are indicated by dashed lines. [Symmetry code: (iv) -x + 1, -y + 1, -z + 1.]
[Figure 5] Fig. 5. A partial packing diagram for (I), showing the hydrogen-bonded tape structure formed by the 2+2 aggregates. Dashed lines show N—H···O and O—H···O hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted. [Symmetry codes: (i) x, y - 1, z; (ii) x, y + 1, z.]
[Figure 6] Fig. 6. A partial packing diagram for (II), showing the hydrogen-bonded tape structure. Dashed lines show N—H···O and O—H···O hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted. [Symmetry codes: (i) x - 1, y - 1, z - 1; (ii) -x, -y, -z + 1; (iii) -x + 1, -y + 1, -z + 2.]
[Figure 7] Fig. 7. A partial packing diagram for (III), showing the hydrogen-bonded chain structure. Dashed lines show O—H···O hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted. [Symmetry codes: (iii) -x, -y, -z; (iv) -x + 1, -y, -z + 1.]
[Figure 8] Fig. 8. A partial packing diagram for (III), showing the three-dimensional hydrogen-bonded network. Dashed lines show N—H···O, O—H···O and C—H···O hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted. [Symmetry codes: (ii) x + 1, -y + 1/2, z + 1/2; (iii) -x, -y, -z; (iv) -x + 1, -y, -z + 1; (v) -x, y - 1/2, -z + 1/2.]
[Figure 9] Fig. 9. A packing diagram for (IV), viewed along the b axis, showing the hydrogen-bonded layer structure. Dashed lines show N—H···O and O—H···O hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted. [Symmetry codes: (i) x - 1/2, -y + 1/2, z - 1/2; (ii) -x + 1/2, y - 1/2, -z + 1/2; (iv) -x + 1, -y + 1, -z + 1; (v) -x + 1/2, y + 1/2, -z + 1/2; (vi) x + 1/2, -y + 1/2, z + 1/2.]
(I) 2,5-dichloro-3,6-dihydroxycyclohexa-2,5-diene-1,4-dione–pyrrolidin-2-one (1/1) top
Crystal data top
C4H7NO·C6H2Cl2O4F(000) = 1200.00
Mr = 294.09Dx = 1.716 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ybcCell parameters from 36720 reflections
a = 7.7256 (4) Åθ = 3.0–30.2°
b = 19.3792 (11) ŵ = 0.58 mm1
c = 15.2486 (8) ÅT = 180 K
β = 94.404 (2)°Block, brown
V = 2276.2 (2) Å30.35 × 0.20 × 0.15 mm
Z = 8
Data collection top
Rigaku R-AXIS RAPID II
diffractometer
5477 reflections with I > 2σ(I)
Detector resolution: 10.00 pixels mm-1Rint = 0.022
ω scansθmax = 30.0°
Absorption correction: numerical
(NUMABS; Higashi, 1999)
h = 1010
Tmin = 0.858, Tmax = 0.916k = 2727
47031 measured reflectionsl = 2121
6636 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0744P)2 + 0.1003P]
where P = (Fo2 + 2Fc2)/3
6636 reflections(Δ/σ)max = 0.002
349 parametersΔρmax = 1.05 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C4H7NO·C6H2Cl2O4V = 2276.2 (2) Å3
Mr = 294.09Z = 8
Monoclinic, P21/cMo Kα radiation
a = 7.7256 (4) ŵ = 0.58 mm1
b = 19.3792 (11) ÅT = 180 K
c = 15.2486 (8) Å0.35 × 0.20 × 0.15 mm
β = 94.404 (2)°
Data collection top
Rigaku R-AXIS RAPID II
diffractometer
6636 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
5477 reflections with I > 2σ(I)
Tmin = 0.858, Tmax = 0.916Rint = 0.022
47031 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 1.05 e Å3
6636 reflectionsΔρmin = 0.30 e Å3
349 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.47142 (4)0.074726 (14)0.338731 (17)0.02434 (8)
Cl20.03903 (3)0.115359 (14)0.669443 (17)0.02511 (8)
Cl30.03936 (4)0.737210 (15)0.663182 (19)0.03042 (9)
Cl40.43434 (4)0.696135 (15)0.320246 (19)0.02849 (9)
O10.31761 (11)0.03179 (4)0.44873 (5)0.02405 (17)
O20.38228 (11)0.20697 (4)0.41873 (5)0.02328 (17)
O30.19289 (11)0.22175 (4)0.56024 (6)0.02743 (19)
O40.12838 (11)0.01809 (4)0.58734 (6)0.02334 (17)
O50.17091 (11)0.84382 (4)0.54524 (6)0.02559 (18)
O60.12580 (12)0.60462 (4)0.58253 (5)0.02783 (19)
O70.29328 (12)0.59007 (4)0.43419 (6)0.02925 (19)
O80.35646 (11)0.82973 (4)0.40553 (6)0.02527 (18)
O90.33325 (12)0.32916 (4)0.45643 (5)0.02627 (18)
O100.19689 (11)0.48186 (4)0.55062 (5)0.02815 (19)
N10.36175 (14)0.43510 (5)0.39621 (6)0.0243 (2)
N20.15944 (13)0.37558 (5)0.60968 (6)0.02284 (19)
C10.29092 (13)0.02762 (5)0.47153 (7)0.01785 (19)
C20.35319 (13)0.08757 (5)0.42792 (7)0.01731 (19)
C30.32313 (13)0.15273 (5)0.45676 (6)0.01677 (19)
C40.21969 (13)0.16321 (5)0.53620 (7)0.01796 (19)
C50.15645 (13)0.10223 (5)0.58002 (7)0.01801 (19)
C60.18762 (13)0.03833 (5)0.55030 (7)0.01796 (19)
C70.20045 (13)0.78418 (5)0.52370 (7)0.0198 (2)
C80.14501 (14)0.72414 (5)0.56984 (7)0.0200 (2)
C90.17536 (14)0.65934 (5)0.54141 (7)0.0198 (2)
C100.26969 (14)0.64856 (5)0.45899 (7)0.0201 (2)
C110.32711 (13)0.70957 (5)0.41302 (7)0.0200 (2)
C120.29929 (13)0.77344 (5)0.44357 (7)0.0196 (2)
C130.37277 (14)0.36749 (5)0.39448 (7)0.0205 (2)
C140.43783 (15)0.34400 (6)0.30898 (7)0.0231 (2)
H14A0.34330.32290.27050.028*
H14B0.53320.31010.31920.028*
C150.50285 (16)0.41064 (6)0.26846 (8)0.0262 (2)
H15A0.63080.41410.27750.031*
H15B0.46840.41260.20460.031*
C160.41537 (15)0.46817 (6)0.31736 (7)0.0248 (2)
H16A0.49780.50620.33240.030*
H16B0.31390.48680.28130.030*
C170.14719 (14)0.44354 (5)0.61008 (7)0.0205 (2)
C180.06943 (15)0.46823 (6)0.69205 (7)0.0242 (2)
H18A0.03080.49900.67740.029*
H18B0.15650.49320.73120.029*
C190.01142 (15)0.40086 (6)0.73566 (7)0.0243 (2)
H19A0.04650.40100.79950.029*
H19B0.11620.39530.72720.029*
C200.10378 (15)0.34266 (5)0.68915 (7)0.0234 (2)
H20A0.20470.32520.72660.028*
H20B0.02340.30390.67410.028*
H10.3189 (19)0.4563 (8)0.4399 (10)0.035 (4)*
H2B0.2074 (19)0.3547 (8)0.5699 (10)0.034 (4)*
H2A0.350 (3)0.2562 (11)0.4403 (15)0.082 (7)*
H40.172 (2)0.0543 (9)0.5668 (12)0.045 (5)*
H60.161 (3)0.5596 (11)0.5596 (13)0.069 (6)*
H80.311 (2)0.8651 (9)0.4274 (11)0.043 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.03294 (15)0.01817 (14)0.02329 (14)0.00229 (9)0.01115 (11)0.00179 (9)
Cl20.02980 (15)0.02248 (15)0.02446 (14)0.00148 (10)0.01112 (11)0.00045 (9)
Cl30.04477 (18)0.02118 (14)0.02749 (15)0.00090 (11)0.01685 (12)0.00437 (10)
Cl40.03442 (15)0.02384 (15)0.02919 (15)0.00121 (10)0.01530 (11)0.00017 (10)
O10.0322 (4)0.0103 (3)0.0302 (4)0.0006 (3)0.0066 (3)0.0018 (3)
O20.0346 (4)0.0098 (3)0.0267 (4)0.0003 (3)0.0110 (3)0.0017 (3)
O30.0395 (5)0.0121 (3)0.0324 (4)0.0008 (3)0.0137 (4)0.0038 (3)
O40.0290 (4)0.0118 (3)0.0304 (4)0.0010 (3)0.0096 (3)0.0029 (3)
O50.0331 (4)0.0133 (3)0.0312 (4)0.0002 (3)0.0077 (3)0.0018 (3)
O60.0463 (5)0.0114 (3)0.0273 (4)0.0012 (3)0.0127 (4)0.0019 (3)
O70.0457 (5)0.0129 (3)0.0304 (4)0.0018 (3)0.0110 (4)0.0022 (3)
O80.0300 (4)0.0141 (4)0.0329 (4)0.0000 (3)0.0106 (3)0.0047 (3)
O90.0423 (5)0.0139 (3)0.0239 (4)0.0008 (3)0.0107 (3)0.0024 (3)
O100.0429 (5)0.0143 (3)0.0289 (4)0.0010 (3)0.0136 (4)0.0028 (3)
N10.0378 (5)0.0134 (4)0.0230 (4)0.0014 (4)0.0119 (4)0.0014 (3)
N20.0325 (5)0.0152 (4)0.0223 (4)0.0030 (4)0.0119 (4)0.0023 (3)
C10.0201 (5)0.0129 (4)0.0205 (5)0.0001 (3)0.0011 (4)0.0001 (4)
C20.0220 (5)0.0124 (4)0.0180 (4)0.0015 (3)0.0046 (4)0.0004 (3)
C30.0205 (4)0.0118 (4)0.0182 (4)0.0007 (3)0.0023 (4)0.0007 (3)
C40.0215 (5)0.0131 (4)0.0195 (4)0.0004 (4)0.0031 (4)0.0006 (4)
C50.0210 (5)0.0149 (4)0.0187 (4)0.0010 (4)0.0046 (4)0.0006 (4)
C60.0197 (5)0.0132 (4)0.0211 (5)0.0002 (3)0.0019 (4)0.0023 (4)
C70.0216 (5)0.0138 (4)0.0240 (5)0.0001 (4)0.0019 (4)0.0003 (4)
C80.0257 (5)0.0144 (4)0.0205 (5)0.0007 (4)0.0055 (4)0.0005 (4)
C90.0263 (5)0.0136 (4)0.0198 (5)0.0005 (4)0.0038 (4)0.0009 (4)
C100.0247 (5)0.0151 (4)0.0208 (5)0.0006 (4)0.0037 (4)0.0003 (4)
C110.0215 (5)0.0164 (5)0.0226 (5)0.0009 (4)0.0045 (4)0.0008 (4)
C120.0206 (5)0.0147 (4)0.0238 (5)0.0006 (4)0.0028 (4)0.0025 (4)
C130.0245 (5)0.0150 (4)0.0224 (5)0.0011 (4)0.0042 (4)0.0009 (4)
C140.0304 (5)0.0160 (5)0.0234 (5)0.0030 (4)0.0057 (4)0.0017 (4)
C150.0313 (6)0.0238 (5)0.0248 (5)0.0007 (4)0.0106 (4)0.0016 (4)
C160.0334 (6)0.0187 (5)0.0239 (5)0.0041 (4)0.0122 (4)0.0005 (4)
C170.0238 (5)0.0158 (4)0.0226 (5)0.0007 (4)0.0050 (4)0.0003 (4)
C180.0267 (5)0.0238 (5)0.0234 (5)0.0008 (4)0.0098 (4)0.0068 (4)
C190.0297 (5)0.0217 (5)0.0224 (5)0.0009 (4)0.0085 (4)0.0002 (4)
C200.0308 (5)0.0161 (5)0.0242 (5)0.0004 (4)0.0083 (4)0.0031 (4)
Geometric parameters (Å, º) top
Cl1—C21.7137 (10)C3—C41.5151 (13)
Cl2—C51.7138 (10)C4—C51.4601 (14)
Cl3—C81.7130 (11)C5—C61.3466 (14)
Cl4—C111.7133 (11)C7—C81.4418 (14)
O1—C11.2247 (12)C7—C121.5042 (14)
O2—C31.3002 (11)C8—C91.3548 (14)
O2—H2A1.05 (2)C9—C101.5149 (14)
O3—C41.2148 (12)C10—C111.4606 (14)
O4—C61.3281 (12)C11—C121.3457 (14)
O4—H40.848 (18)C13—C141.5035 (14)
O5—C71.2277 (12)C14—C151.5327 (15)
O6—C91.3043 (12)C14—H14A0.9900
O6—H60.99 (2)C14—H14B0.9900
O7—C101.2131 (12)C15—C161.5274 (15)
O8—C121.3269 (12)C15—H15A0.9900
O8—H80.851 (17)C15—H15B0.9900
O9—C131.2576 (12)C16—H16A0.9900
O10—C171.2548 (13)C16—H16B0.9900
N1—C131.3133 (13)C17—C181.5058 (14)
N1—C161.4507 (13)C18—C191.5471 (16)
N1—H10.869 (16)C18—H18A0.9900
N2—C171.3204 (13)C18—H18B0.9900
N2—C201.4631 (13)C19—C201.5368 (15)
N2—H2B0.838 (15)C19—H19A0.9900
C1—C21.4397 (13)C19—H19B0.9900
C1—C61.5066 (14)C20—H20A0.9900
C2—C31.3630 (13)C20—H20B0.9900
C3—O2—H2A119.7 (12)O8—C12—C7116.62 (9)
C6—O4—H4111.4 (12)C11—C12—C7120.87 (9)
C9—O6—H6116.7 (12)O9—C13—N1123.66 (10)
C12—O8—H8109.1 (11)O9—C13—C14126.09 (9)
C13—O9—H2A114.9 (9)N1—C13—C14110.25 (9)
C13—N1—C16113.63 (9)C13—C14—C15103.66 (9)
C13—N1—H1121.1 (10)C13—C14—H14A111.0
C16—N1—H1125.1 (10)C15—C14—H14A111.0
C17—N2—C20113.91 (9)C13—C14—H14B111.0
C17—N2—H2B121.3 (10)C15—C14—H14B111.0
C20—N2—H2B124.3 (10)H14A—C14—H14B109.0
O1—C1—C2123.92 (9)C16—C15—C14104.32 (8)
O1—C1—C6117.83 (9)C16—C15—H15A110.9
C2—C1—C6118.24 (9)C14—C15—H15A110.9
C3—C2—C1121.83 (9)C16—C15—H15B110.9
C3—C2—Cl1120.34 (8)C14—C15—H15B110.9
C1—C2—Cl1117.82 (7)H15A—C15—H15B108.9
O2—C3—C2122.04 (9)N1—C16—C15104.32 (9)
O2—C3—C4118.25 (8)N1—C16—H16A110.9
C2—C3—C4119.70 (9)C15—C16—H16A110.9
O3—C4—C5123.16 (9)N1—C16—H16B110.9
O3—C4—C3118.62 (9)C15—C16—H16B110.9
C5—C4—C3118.23 (8)H16A—C16—H16B108.9
C6—C5—C4121.03 (9)O10—C17—N2124.12 (10)
C6—C5—Cl2121.57 (8)O10—C17—C18125.13 (10)
C4—C5—Cl2117.40 (8)N2—C17—C18110.74 (9)
O4—C6—C5122.52 (10)C17—C18—C19103.64 (9)
O4—C6—C1116.52 (9)C17—C18—H18A111.0
C5—C6—C1120.96 (9)C19—C18—H18A111.0
O5—C7—C8124.12 (10)C17—C18—H18B111.0
O5—C7—C12117.65 (9)C19—C18—H18B111.0
C8—C7—C12118.24 (9)H18A—C18—H18B109.0
C9—C8—C7121.78 (9)C20—C19—C18105.12 (8)
C9—C8—Cl3120.54 (8)C20—C19—H19A110.7
C7—C8—Cl3117.68 (8)C18—C19—H19A110.7
O6—C9—C8122.37 (9)C20—C19—H19B110.7
O6—C9—C10117.67 (9)C18—C19—H19B110.7
C8—C9—C10119.96 (9)H19A—C19—H19B108.8
O7—C10—C11123.25 (10)N2—C20—C19103.81 (8)
O7—C10—C9118.74 (9)N2—C20—H20A111.0
C11—C10—C9118.01 (9)C19—C20—H20A111.0
C12—C11—C10121.06 (9)N2—C20—H20B111.0
C12—C11—Cl4121.72 (8)C19—C20—H20B111.0
C10—C11—Cl4117.21 (8)H20A—C20—H20B109.0
O8—C12—C11122.51 (10)
O1—C1—C2—C3178.68 (10)Cl3—C8—C9—C10179.71 (8)
C6—C1—C2—C30.93 (16)O6—C9—C10—O70.87 (16)
O1—C1—C2—Cl10.09 (15)C8—C9—C10—O7179.02 (11)
C6—C1—C2—Cl1179.69 (7)O6—C9—C10—C11179.42 (10)
C1—C2—C3—O2178.49 (10)C8—C9—C10—C110.69 (16)
Cl1—C2—C3—O20.24 (15)O7—C10—C11—C12179.39 (11)
C1—C2—C3—C40.73 (16)C9—C10—C11—C120.91 (16)
Cl1—C2—C3—C4179.47 (7)O7—C10—C11—Cl40.58 (15)
O2—C3—C4—O31.49 (15)C9—C10—C11—Cl4179.73 (7)
C2—C3—C4—O3179.25 (10)C10—C11—C12—O8176.98 (10)
O2—C3—C4—C5178.71 (9)Cl4—C11—C12—O81.78 (16)
C2—C3—C4—C50.54 (15)C10—C11—C12—C72.98 (16)
O3—C4—C5—C6179.17 (11)Cl4—C11—C12—C7178.26 (7)
C3—C4—C5—C60.61 (15)O5—C7—C12—O84.11 (15)
O3—C4—C5—Cl20.04 (15)C8—C7—C12—O8176.45 (9)
C3—C4—C5—Cl2179.74 (7)O5—C7—C12—C11175.92 (10)
C4—C5—C6—O4178.33 (9)C8—C7—C12—C113.51 (15)
Cl2—C5—C6—O40.77 (15)C16—N1—C13—O9179.68 (11)
C4—C5—C6—C10.84 (16)C16—N1—C13—C140.46 (14)
Cl2—C5—C6—C1179.93 (8)O9—C13—C14—C15167.72 (11)
O1—C1—C6—O42.14 (15)N1—C13—C14—C1512.42 (12)
C2—C1—C6—O4178.23 (9)C13—C14—C15—C1618.55 (12)
O1—C1—C6—C5178.65 (10)C13—N1—C16—C1511.78 (14)
C2—C1—C6—C50.98 (16)C14—C15—C16—N118.43 (12)
O5—C7—C8—C9177.48 (11)C20—N2—C17—O10175.97 (11)
C12—C7—C8—C91.92 (16)C20—N2—C17—C182.85 (13)
O5—C7—C8—Cl32.87 (15)O10—C17—C18—C19173.19 (11)
C12—C7—C8—Cl3177.73 (7)N2—C17—C18—C197.99 (13)
C7—C8—C9—O6179.96 (10)C17—C18—C19—C2014.86 (12)
Cl3—C8—C9—O60.40 (16)C17—N2—C20—C1912.47 (13)
C7—C8—C9—C100.07 (16)C18—C19—C20—N216.35 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O100.870 (15)2.056 (15)2.9065 (13)165.5 (14)
O2—H2A···O91.05 (2)1.44 (2)2.4728 (11)167 (2)
N2—H2B···O90.839 (15)2.108 (15)2.9249 (13)164.6 (15)
O4—H4···O5i0.849 (17)2.002 (17)2.7774 (11)151.6 (15)
O6—H6···O100.99 (2)1.54 (2)2.4978 (11)163 (2)
O8—H8···O1ii0.850 (17)2.025 (17)2.7850 (11)148.5 (15)
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z.
(II) 2,5-dichloro-3,6-dihydroxycyclohexa-2,5-diene-1,4-dione–pyrrolidin-2-one (1/2) top
Crystal data top
C6H2Cl2O4·2C4H7NOZ = 1
Mr = 379.20F(000) = 196.00
Triclinic, P1Dx = 1.588 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71075 Å
a = 4.9665 (3) ÅCell parameters from 8795 reflections
b = 7.4767 (4) Åθ = 3.0–30.1°
c = 11.8445 (6) ŵ = 0.44 mm1
α = 106.7904 (19)°T = 180 K
β = 90.299 (2)°Block, brown
γ = 108.734 (2)°0.38 × 0.32 × 0.25 mm
V = 396.42 (4) Å3
Data collection top
Rigaku R-AXIS RAPID II
diffractometer
2156 reflections with I > 2σ(I)
Detector resolution: 10.00 pixels mm-1Rint = 0.024
ω scansθmax = 30.0°, θmin = 3.0°
Absorption correction: numerical
(NUMABS; Higashi, 1999)
h = 66
Tmin = 0.853, Tmax = 0.895k = 1010
9315 measured reflectionsl = 1615
2296 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0452P)2 + 0.0921P]
where P = (Fo2 + 2Fc2)/3
2296 reflections(Δ/σ)max = 0.001
117 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C6H2Cl2O4·2C4H7NOγ = 108.734 (2)°
Mr = 379.20V = 396.42 (4) Å3
Triclinic, P1Z = 1
a = 4.9665 (3) ÅMo Kα radiation
b = 7.4767 (4) ŵ = 0.44 mm1
c = 11.8445 (6) ÅT = 180 K
α = 106.7904 (19)°0.38 × 0.32 × 0.25 mm
β = 90.299 (2)°
Data collection top
Rigaku R-AXIS RAPID II
diffractometer
2296 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
2156 reflections with I > 2σ(I)
Tmin = 0.853, Tmax = 0.895Rint = 0.024
9315 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.31 e Å3
2296 reflectionsΔρmin = 0.39 e Å3
117 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.08647 (5)0.76633 (4)0.94308 (2)0.02797 (9)
O10.85407 (19)0.79167 (13)1.17509 (7)0.0369 (2)
O20.63936 (17)0.43116 (13)0.76924 (6)0.02898 (17)
O30.29637 (16)0.17553 (12)0.58756 (6)0.02901 (17)
N10.26260 (19)0.08485 (14)0.38446 (7)0.02405 (18)
C10.6975 (2)0.65861 (15)1.09265 (8)0.02316 (19)
C20.7647 (2)0.61826 (14)0.96995 (8)0.02138 (18)
C30.5824 (2)0.47035 (14)0.88085 (8)0.02189 (18)
C40.39885 (19)0.18575 (14)0.49228 (8)0.02097 (18)
C50.6955 (2)0.31323 (15)0.48221 (9)0.02438 (19)
H5A0.84070.26570.50960.029*
H5B0.73310.45310.52990.029*
C60.7007 (2)0.29287 (18)0.34969 (9)0.0303 (2)
H6A0.69490.41530.33480.036*
H6B0.87610.26770.32110.036*
C70.4338 (2)0.11639 (17)0.28707 (9)0.0289 (2)
H7A0.33000.14840.22830.035*
H7B0.48450.00230.24660.035*
H10.118 (4)0.014 (3)0.3762 (16)0.045 (5)*
H20.512 (4)0.338 (3)0.7191 (18)0.058 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02311 (13)0.03086 (14)0.02313 (13)0.00043 (9)0.00508 (9)0.00788 (10)
O10.0312 (4)0.0403 (5)0.0188 (4)0.0069 (3)0.0021 (3)0.0001 (3)
O20.0265 (4)0.0340 (4)0.0150 (3)0.0008 (3)0.0037 (3)0.0030 (3)
O30.0237 (3)0.0348 (4)0.0171 (3)0.0024 (3)0.0042 (3)0.0048 (3)
N10.0189 (4)0.0273 (4)0.0173 (4)0.0010 (3)0.0019 (3)0.0039 (3)
C10.0220 (4)0.0259 (4)0.0173 (4)0.0038 (3)0.0023 (3)0.0053 (3)
C20.0192 (4)0.0245 (4)0.0175 (4)0.0035 (3)0.0032 (3)0.0064 (3)
C30.0216 (4)0.0252 (4)0.0162 (4)0.0050 (3)0.0030 (3)0.0056 (3)
C40.0181 (4)0.0218 (4)0.0182 (4)0.0019 (3)0.0024 (3)0.0046 (3)
C50.0186 (4)0.0273 (4)0.0201 (4)0.0005 (3)0.0030 (3)0.0059 (3)
C60.0245 (5)0.0377 (6)0.0219 (5)0.0005 (4)0.0047 (4)0.0113 (4)
C70.0284 (5)0.0325 (5)0.0179 (4)0.0019 (4)0.0053 (4)0.0054 (4)
Geometric parameters (Å, º) top
Cl1—C21.7186 (10)C3—C1i1.5095 (13)
O1—C11.2173 (12)C4—C51.5031 (12)
O2—C31.3217 (11)C5—C61.5338 (14)
O2—H20.84 (2)C5—H5A0.9900
O3—C41.2528 (11)C5—H5B0.9900
N1—C41.3283 (12)C6—C71.5328 (15)
N1—C71.4654 (13)C6—H6A0.9900
N1—H10.731 (19)C6—H6B0.9900
C1—C21.4598 (13)C7—H7A0.9900
C1—C3i1.5095 (13)C7—H7B0.9900
C2—C31.3524 (13)
C3—O2—H2116.2 (14)C4—C5—H5A110.8
C4—N1—C7114.73 (8)C6—C5—H5A110.8
C4—N1—H1121.1 (14)C4—C5—H5B110.8
C7—N1—H1124.0 (14)C6—C5—H5B110.8
O1—C1—C2123.62 (9)H5A—C5—H5B108.9
O1—C1—C3i117.95 (8)C7—C6—C5105.67 (8)
C2—C1—C3i118.43 (8)C7—C6—H6A110.6
C3—C2—C1121.62 (8)C5—C6—H6A110.6
C3—C2—Cl1121.16 (7)C7—C6—H6B110.6
C1—C2—Cl1117.22 (7)C5—C6—H6B110.6
O2—C3—C2122.56 (9)H6A—C6—H6B108.7
O2—C3—C1i117.48 (8)N1—C7—C6103.28 (8)
C2—C3—C1i119.95 (8)N1—C7—H7A111.1
O3—C4—N1125.27 (9)C6—C7—H7A111.1
O3—C4—C5125.29 (8)N1—C7—H7B111.1
N1—C4—C5109.45 (8)C6—C7—H7B111.1
C4—C5—C6104.66 (8)H7A—C7—H7B109.1
O1—C1—C2—C3179.09 (11)C7—N1—C4—O3177.42 (10)
C3i—C1—C2—C30.41 (16)C7—N1—C4—C52.27 (13)
O1—C1—C2—Cl11.09 (15)O3—C4—C5—C6172.89 (10)
C3i—C1—C2—Cl1179.40 (7)N1—C4—C5—C67.42 (12)
C1—C2—C3—O2179.87 (9)C4—C5—C6—C713.55 (12)
Cl1—C2—C3—O20.07 (15)C4—N1—C7—C610.88 (13)
C1—C2—C3—C1i0.42 (16)C5—C6—C7—N114.51 (12)
Cl1—C2—C3—C1i179.38 (7)
Symmetry code: (i) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1ii0.73 (2)2.537 (19)3.0036 (12)123.8 (17)
N1—H1···O3iii0.73 (2)2.22 (2)2.9185 (13)162.0 (19)
O2—H2···O30.84 (2)1.76 (2)2.5845 (11)164 (2)
Symmetry codes: (ii) x1, y1, z1; (iii) x, y, z+1.
(III) 2,5-dichloro-3,6-dihydroxycyclohexa-2,5-diene-1,4-dione–piperidin-2-one (1/1) top
Crystal data top
C6H2Cl2O4·C5H9NOF(000) = 632.00
Mr = 308.12Dx = 1.644 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ybcCell parameters from 20671 reflections
a = 9.41079 (17) Åθ = 3.1–30.1°
b = 8.0690 (4) ŵ = 0.54 mm1
c = 18.1026 (3) ÅT = 180 K
β = 115.1397 (7)°Block, brown
V = 1244.42 (7) Å30.43 × 0.36 × 0.26 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID II
diffractometer
3461 reflections with I > 2σ(I)
Detector resolution: 10.00 pixels mm-1Rint = 0.018
ω scansθmax = 30.0°
Absorption correction: numerical
(NUMABS; Higashi, 1999)
h = 1313
Tmin = 0.793, Tmax = 0.870k = 1111
22572 measured reflectionsl = 2523
3626 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0504P)2 + 0.3081P]
where P = (Fo2 + 2Fc2)/3
3626 reflections(Δ/σ)max = 0.001
184 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C6H2Cl2O4·C5H9NOV = 1244.42 (7) Å3
Mr = 308.12Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.41079 (17) ŵ = 0.54 mm1
b = 8.0690 (4) ÅT = 180 K
c = 18.1026 (3) Å0.43 × 0.36 × 0.26 mm
β = 115.1397 (7)°
Data collection top
Rigaku R-AXIS RAPID II
diffractometer
3626 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
3461 reflections with I > 2σ(I)
Tmin = 0.793, Tmax = 0.870Rint = 0.018
22572 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.48 e Å3
3626 reflectionsΔρmin = 0.30 e Å3
184 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.30305 (3)0.02569 (4)0.031690 (16)0.03449 (9)
Cl20.80710 (3)0.06618 (3)0.475761 (15)0.02900 (8)
O10.24763 (9)0.16354 (12)0.10548 (5)0.03547 (19)
O20.00427 (9)0.14039 (10)0.13842 (4)0.02759 (16)
O30.77697 (8)0.06244 (10)0.62203 (4)0.02892 (16)
O40.48019 (8)0.14740 (9)0.35802 (4)0.02517 (15)
O50.23199 (8)0.29476 (9)0.25294 (4)0.02459 (14)
N10.11471 (9)0.53820 (10)0.20403 (5)0.02419 (16)
C10.13645 (10)0.08690 (11)0.05607 (5)0.02177 (17)
C20.13551 (10)0.00962 (12)0.01693 (6)0.02176 (17)
C30.00826 (10)0.07172 (11)0.07132 (5)0.02066 (17)
C40.65172 (10)0.03715 (11)0.56359 (5)0.01989 (16)
C50.63718 (10)0.03365 (11)0.48650 (6)0.01996 (16)
C60.49578 (10)0.07663 (11)0.42678 (5)0.01946 (16)
C70.24018 (10)0.45058 (11)0.24947 (5)0.01901 (16)
C80.39309 (10)0.53859 (12)0.29494 (6)0.02279 (17)
H8A0.45860.52550.26460.027*
H8B0.44930.48550.34900.027*
C90.37450 (12)0.72260 (12)0.30730 (6)0.0292 (2)
H9A0.47800.77810.32770.035*
H9B0.33180.73780.34830.035*
C100.26314 (11)0.79935 (12)0.22612 (6)0.02631 (19)
H10A0.25390.92000.23310.032*
H10B0.30550.78300.18510.032*
C110.10335 (11)0.71930 (12)0.19677 (7)0.0285 (2)
H11A0.04900.76200.22920.034*
H11B0.03980.74970.13900.034*
H10.0264 (19)0.486 (2)0.1784 (10)0.045 (4)*
H20.088 (2)0.189 (2)0.1716 (11)0.053 (5)*
H40.391 (2)0.186 (2)0.3278 (11)0.046 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02054 (13)0.05097 (18)0.03451 (14)0.00548 (9)0.01415 (10)0.00441 (11)
Cl20.01766 (12)0.03618 (14)0.03463 (14)0.00054 (8)0.01251 (10)0.00429 (9)
O10.0231 (3)0.0473 (5)0.0324 (4)0.0127 (3)0.0083 (3)0.0133 (3)
O20.0240 (3)0.0343 (4)0.0231 (3)0.0020 (3)0.0087 (3)0.0063 (3)
O30.0164 (3)0.0365 (4)0.0276 (3)0.0018 (3)0.0033 (3)0.0079 (3)
O40.0210 (3)0.0300 (3)0.0232 (3)0.0028 (3)0.0081 (3)0.0068 (3)
O50.0250 (3)0.0202 (3)0.0219 (3)0.0004 (2)0.0035 (3)0.0009 (2)
N10.0155 (3)0.0235 (4)0.0280 (4)0.0005 (3)0.0039 (3)0.0044 (3)
C10.0172 (4)0.0234 (4)0.0213 (4)0.0012 (3)0.0049 (3)0.0004 (3)
C20.0153 (4)0.0261 (4)0.0229 (4)0.0004 (3)0.0071 (3)0.0014 (3)
C30.0186 (4)0.0215 (4)0.0197 (4)0.0010 (3)0.0060 (3)0.0012 (3)
C40.0154 (4)0.0187 (4)0.0231 (4)0.0006 (3)0.0057 (3)0.0001 (3)
C50.0143 (4)0.0213 (4)0.0237 (4)0.0005 (3)0.0075 (3)0.0003 (3)
C60.0174 (4)0.0186 (4)0.0213 (4)0.0003 (3)0.0072 (3)0.0004 (3)
C70.0178 (4)0.0215 (4)0.0169 (4)0.0006 (3)0.0067 (3)0.0005 (3)
C80.0159 (4)0.0213 (4)0.0268 (4)0.0011 (3)0.0049 (3)0.0005 (3)
C90.0246 (4)0.0213 (4)0.0321 (5)0.0010 (3)0.0030 (4)0.0036 (4)
C100.0232 (4)0.0208 (4)0.0328 (5)0.0003 (3)0.0098 (4)0.0029 (3)
C110.0200 (4)0.0238 (4)0.0376 (5)0.0045 (3)0.0084 (4)0.0081 (4)
Geometric parameters (Å, º) top
Cl1—C21.7124 (9)C4—C51.4596 (13)
Cl2—C51.7111 (9)C4—C6ii1.5047 (12)
O1—C11.2174 (11)C5—C61.3556 (12)
O2—C31.3211 (11)C7—C81.4987 (12)
O2—H20.913 (19)C8—C91.5226 (13)
O3—C41.2209 (11)C8—H8A0.9900
O4—C61.3197 (11)C8—H8B0.9900
O4—H40.845 (18)C9—C101.5273 (14)
O5—C71.2629 (11)C9—H9A0.9900
N1—C71.3211 (11)C9—H9B0.9900
N1—C111.4671 (13)C10—C111.5106 (13)
N1—H10.870 (17)C10—H10A0.9900
C1—C21.4578 (13)C10—H10B0.9900
C1—C3i1.5051 (12)C11—H11A0.9900
C2—C31.3537 (12)C11—H11B0.9900
C3—O2—H2115.6 (12)N1—C7—C8118.95 (8)
C6—O4—H4116.8 (12)C7—C8—C9113.54 (8)
C7—N1—C11126.92 (8)C7—C8—H8A108.9
C7—N1—H1118.0 (12)C9—C8—H8A108.9
C11—N1—H1114.8 (12)C7—C8—H8B108.9
O1—C1—C2123.76 (9)C9—C8—H8B108.9
O1—C1—C3i117.95 (9)H8A—C8—H8B107.7
C2—C1—C3i118.29 (7)C8—C9—C10109.19 (8)
C3—C2—C1121.97 (8)C8—C9—H9A109.8
C3—C2—Cl1120.79 (7)C10—C9—H9A109.8
C1—C2—Cl1117.23 (7)C8—C9—H9B109.8
O2—C3—C2122.88 (8)C10—C9—H9B109.8
O2—C3—C1i117.39 (8)H9A—C9—H9B108.3
C2—C3—C1i119.73 (8)C11—C10—C9109.80 (8)
O3—C4—C5123.89 (8)C11—C10—H10A109.7
O3—C4—C6ii117.57 (8)C9—C10—H10A109.7
C5—C4—C6ii118.51 (7)C11—C10—H10B109.7
C6—C5—C4121.62 (8)C9—C10—H10B109.7
C6—C5—Cl2121.21 (7)H10A—C10—H10B108.2
C4—C5—Cl2117.14 (6)N1—C11—C10111.75 (8)
O4—C6—C5122.75 (8)N1—C11—H11A109.3
O4—C6—C4ii117.55 (7)C10—C11—H11A109.3
C5—C6—C4ii119.65 (8)N1—C11—H11B109.3
O5—C7—N1120.43 (8)C10—C11—H11B109.3
O5—C7—C8120.60 (8)H11A—C11—H11B107.9
O1—C1—C2—C3178.61 (10)C4—C5—C6—O4176.99 (8)
C3i—C1—C2—C31.23 (14)Cl2—C5—C6—O40.99 (13)
O1—C1—C2—Cl11.33 (13)C4—C5—C6—C4ii5.53 (14)
C3i—C1—C2—Cl1178.83 (7)Cl2—C5—C6—C4ii176.49 (6)
C1—C2—C3—O2178.95 (9)C11—N1—C7—O5176.79 (10)
Cl1—C2—C3—O20.99 (13)C11—N1—C7—C84.85 (14)
C1—C2—C3—C1i1.25 (15)O5—C7—C8—C9161.19 (9)
Cl1—C2—C3—C1i178.82 (7)N1—C7—C8—C920.45 (12)
O3—C4—C5—C6172.46 (9)C7—C8—C9—C1048.49 (12)
C6ii—C4—C5—C65.47 (14)C8—C9—C10—C1161.75 (11)
O3—C4—C5—Cl25.60 (13)C7—N1—C11—C1018.13 (15)
C6ii—C4—C5—Cl2176.48 (6)C9—C10—C11—N145.75 (12)
Symmetry codes: (i) x, y, z; (ii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3iii0.869 (18)2.213 (19)2.8871 (12)134.2 (14)
O2—H2···O50.909 (19)1.743 (18)2.6223 (11)162.1 (18)
O4—H4···O50.843 (19)1.767 (18)2.5909 (10)165.1 (19)
Symmetry code: (iii) x1, y+1/2, z1/2.
(IV) 2,5-dichloro-3,6-dihydroxycyclohexa-2,5-diene-1,4-dione–piperidin-2-one (1/2) top
Crystal data top
C6H0.88Cl2O4·2C5H9.56NOF(000) = 848.00
Mr = 407.25Dx = 1.562 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71075 Å
Hall symbol: -C 2ycCell parameters from 16592 reflections
a = 17.8438 (5) Åθ = 3.1–30.1°
b = 5.4253 (3) ŵ = 0.41 mm1
c = 19.5958 (5) ÅT = 180 K
β = 114.0658 (7)°Block, brown
V = 1732.12 (12) Å30.45 × 0.40 × 0.15 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID II
diffractometer
2382 reflections with I > 2σ(I)
Detector resolution: 10.00 pixels mm-1Rint = 0.024
ω scansθmax = 30.0°
Absorption correction: numerical
(NUMABS; Higashi, 1999)
h = 2423
Tmin = 0.835, Tmax = 0.940k = 77
17611 measured reflectionsl = 2727
2524 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0457P)2 + 1.3417P]
where P = (Fo2 + 2Fc2)/3
2524 reflections(Δ/σ)max < 0.001
129 parametersΔρmax = 0.51 e Å3
2 restraintsΔρmin = 0.24 e Å3
Crystal data top
C6H0.88Cl2O4·2C5H9.56NOV = 1732.12 (12) Å3
Mr = 407.25Z = 4
Monoclinic, C2/cMo Kα radiation
a = 17.8438 (5) ŵ = 0.41 mm1
b = 5.4253 (3) ÅT = 180 K
c = 19.5958 (5) Å0.45 × 0.40 × 0.15 mm
β = 114.0658 (7)°
Data collection top
Rigaku R-AXIS RAPID II
diffractometer
2524 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
2382 reflections with I > 2σ(I)
Tmin = 0.835, Tmax = 0.940Rint = 0.024
17611 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0312 restraints
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.51 e Å3
2524 reflectionsΔρmin = 0.24 e Å3
129 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.465981 (16)0.09806 (5)0.374641 (14)0.02668 (9)
O10.61956 (5)0.19341 (17)0.50597 (4)0.02586 (18)
O20.34615 (4)0.48559 (15)0.38457 (4)0.02051 (16)
H20.337 (2)0.409 (6)0.3457 (15)0.031*0.44 (3)
O30.29272 (5)0.32019 (14)0.25730 (4)0.02089 (16)
H30.3147 (18)0.373 (5)0.3016 (11)0.031*0.56 (3)
N10.26990 (5)0.41843 (16)0.14037 (5)0.01920 (17)
C10.56330 (6)0.33049 (18)0.50198 (5)0.01697 (18)
C20.48207 (6)0.32122 (18)0.44190 (5)0.01725 (18)
C30.41991 (6)0.47818 (18)0.43657 (5)0.01609 (17)
C40.31035 (6)0.45331 (18)0.21213 (5)0.01705 (18)
C50.37794 (6)0.6410 (2)0.24154 (6)0.0223 (2)
H5A0.43140.55420.26310.027*
H5B0.37190.73510.28230.027*
C60.37856 (7)0.8198 (2)0.18228 (6)0.0261 (2)
H6A0.33370.94130.17100.031*
H6B0.43130.91040.20080.031*
C70.36730 (7)0.6781 (2)0.11206 (6)0.0270 (2)
H7A0.41120.55290.12370.032*
H7B0.37100.79220.07410.032*
C80.28386 (7)0.5527 (2)0.08166 (6)0.0241 (2)
H8A0.24040.67840.05960.029*
H8B0.28040.43640.04150.029*
H10.2306 (10)0.317 (3)0.1275 (9)0.030 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02541 (14)0.02710 (15)0.02114 (13)0.00458 (9)0.00296 (10)0.01027 (9)
O10.0203 (3)0.0312 (4)0.0216 (4)0.0097 (3)0.0039 (3)0.0047 (3)
O20.0149 (3)0.0273 (4)0.0153 (3)0.0020 (3)0.0020 (3)0.0029 (3)
O30.0226 (3)0.0209 (3)0.0163 (3)0.0045 (3)0.0051 (3)0.0014 (3)
N10.0174 (4)0.0213 (4)0.0157 (4)0.0048 (3)0.0035 (3)0.0021 (3)
C10.0162 (4)0.0193 (4)0.0141 (4)0.0016 (3)0.0049 (3)0.0002 (3)
C20.0172 (4)0.0189 (4)0.0134 (4)0.0011 (3)0.0040 (3)0.0037 (3)
C30.0154 (4)0.0190 (4)0.0131 (4)0.0002 (3)0.0049 (3)0.0001 (3)
C40.0148 (4)0.0167 (4)0.0176 (4)0.0002 (3)0.0045 (3)0.0024 (3)
C50.0202 (4)0.0252 (5)0.0188 (4)0.0086 (4)0.0053 (4)0.0047 (4)
C60.0269 (5)0.0245 (5)0.0258 (5)0.0091 (4)0.0096 (4)0.0026 (4)
C70.0234 (5)0.0366 (6)0.0216 (5)0.0080 (4)0.0097 (4)0.0017 (4)
C80.0220 (5)0.0322 (5)0.0159 (4)0.0059 (4)0.0055 (4)0.0001 (4)
Geometric parameters (Å, º) top
Cl1—C21.7254 (9)C4—C51.5020 (13)
O1—C11.2259 (12)C5—C61.5169 (15)
O2—C31.2956 (11)C5—H5A0.9900
O2—H20.824 (19)C5—H5B0.9900
O3—C41.2773 (12)C6—C71.5166 (16)
O3—H30.844 (18)C6—H6A0.9900
N1—C41.3063 (12)C6—H6B0.9900
N1—C81.4662 (13)C7—C81.5201 (15)
N1—H10.845 (18)C7—H7A0.9900
C1—C21.4483 (13)C7—H7B0.9900
C1—C3i1.5241 (13)C8—H8A0.9900
C2—C31.3681 (13)C8—H8B0.9900
C3—O2—H2118 (3)C6—C5—H5B108.9
C4—O3—H3112 (2)H5A—C5—H5B107.7
C4—N1—C8125.21 (9)C7—C6—C5109.30 (9)
C4—N1—H1116.3 (11)C7—C6—H6A109.8
C8—N1—H1118.4 (11)C5—C6—H6A109.8
O1—C1—C2123.56 (9)C7—C6—H6B109.8
O1—C1—C3i118.08 (8)C5—C6—H6B109.8
C2—C1—C3i118.36 (8)H6A—C6—H6B108.3
C3—C2—C1123.50 (8)C6—C7—C8109.18 (9)
C3—C2—Cl1120.08 (7)C6—C7—H7A109.8
C1—C2—Cl1116.42 (7)C8—C7—H7A109.8
O2—C3—C2127.68 (9)C6—C7—H7B109.8
O2—C3—C1i114.18 (8)C8—C7—H7B109.8
C2—C3—C1i118.14 (8)H7A—C7—H7B108.3
O3—C4—N1118.69 (9)N1—C8—C7111.56 (8)
O3—C4—C5120.22 (9)N1—C8—H8A109.3
N1—C4—C5121.07 (9)C7—C8—H8A109.3
C4—C5—C6113.28 (9)N1—C8—H8B109.3
C4—C5—H5A108.9C7—C8—H8B109.3
C6—C5—H5A108.9H8A—C8—H8B108.0
C4—C5—H5B108.9
O1—C1—C2—C3178.38 (10)C8—N1—C4—O3178.86 (10)
C3i—C1—C2—C31.26 (16)C8—N1—C4—C50.52 (16)
O1—C1—C2—Cl11.34 (14)O3—C4—C5—C6167.26 (9)
C3i—C1—C2—Cl1179.02 (7)N1—C4—C5—C614.43 (14)
C1—C2—C3—O2178.93 (9)C4—C5—C6—C745.18 (12)
Cl1—C2—C3—O20.78 (15)C5—C6—C7—C862.86 (12)
C1—C2—C3—C1i1.25 (16)C4—N1—C8—C718.30 (15)
Cl1—C2—C3—C1i179.03 (7)C6—C7—C8—N148.79 (13)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1ii0.845 (18)2.398 (17)2.9561 (12)124.1 (14)
N1—H1···O2iii0.845 (18)2.214 (17)3.0358 (12)164.3 (15)
O3—H3···O20.84 (2)1.61 (2)2.4484 (10)173 (3)
O2—H2···O30.82 (3)1.66 (3)2.4484 (10)161 (4)
Symmetry codes: (ii) x1/2, y+1/2, z1/2; (iii) x+1/2, y1/2, z+1/2.

Experimental details

(I)(II)(III)(IV)
Crystal data
Chemical formulaC4H7NO·C6H2Cl2O4C6H2Cl2O4·2C4H7NOC6H2Cl2O4·C5H9NOC6H0.88Cl2O4·2C5H9.56NO
Mr294.09379.20308.12407.25
Crystal system, space groupMonoclinic, P21/cTriclinic, P1Monoclinic, P21/cMonoclinic, C2/c
Temperature (K)180180180180
a, b, c (Å)7.7256 (4), 19.3792 (11), 15.2486 (8)4.9665 (3), 7.4767 (4), 11.8445 (6)9.41079 (17), 8.0690 (4), 18.1026 (3)17.8438 (5), 5.4253 (3), 19.5958 (5)
α, β, γ (°)90, 94.404 (2), 90106.7904 (19), 90.299 (2), 108.734 (2)90, 115.1397 (7), 9090, 114.0658 (7), 90
V3)2276.2 (2)396.42 (4)1244.42 (7)1732.12 (12)
Z8144
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.580.440.540.41
Crystal size (mm)0.35 × 0.20 × 0.150.38 × 0.32 × 0.250.43 × 0.36 × 0.260.45 × 0.40 × 0.15
Data collection
DiffractometerRigaku R-AXIS RAPID II
diffractometer
Rigaku R-AXIS RAPID II
diffractometer
Rigaku R-AXIS RAPID II
diffractometer
Rigaku R-AXIS RAPID II
diffractometer
Absorption correctionNumerical
(NUMABS; Higashi, 1999)
Numerical
(NUMABS; Higashi, 1999)
Numerical
(NUMABS; Higashi, 1999)
Numerical
(NUMABS; Higashi, 1999)
Tmin, Tmax0.858, 0.9160.853, 0.8950.793, 0.8700.835, 0.940
No. of measured, independent and
observed [I > 2σ(I)] reflections
47031, 6636, 5477 9315, 2296, 2156 22572, 3626, 3461 17611, 2524, 2382
Rint0.0220.0240.0180.024
(sin θ/λ)max1)0.7040.7030.7040.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.108, 1.06 0.030, 0.081, 1.11 0.029, 0.083, 1.06 0.031, 0.083, 1.07
No. of reflections6636229636262524
No. of parameters349117184129
No. of restraints0002
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.05, 0.300.31, 0.390.48, 0.300.51, 0.24

Computer programs: PROCESS-AUTO (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and WinGX (Farrugia, 1999), CrystalStructure (Rigaku/MSC, 2004) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O100.870 (15)2.056 (15)2.9065 (13)165.5 (14)
O2—H2A···O91.05 (2)1.44 (2)2.4728 (11)167 (2)
N2—H2B···O90.839 (15)2.108 (15)2.9249 (13)164.6 (15)
O4—H4···O5i0.849 (17)2.002 (17)2.7774 (11)151.6 (15)
O6—H6···O100.99 (2)1.54 (2)2.4978 (11)163 (2)
O8—H8···O1ii0.850 (17)2.025 (17)2.7850 (11)148.5 (15)
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.73 (2)2.537 (19)3.0036 (12)123.8 (17)
N1—H1···O3ii0.73 (2)2.22 (2)2.9185 (13)162.0 (19)
O2—H2···O30.84 (2)1.76 (2)2.5845 (11)164 (2)
Symmetry codes: (i) x1, y1, z1; (ii) x, y, z+1.
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.869 (18)2.213 (19)2.8871 (12)134.2 (14)
O2—H2···O50.909 (19)1.743 (18)2.6223 (11)162.1 (18)
O4—H4···O50.843 (19)1.767 (18)2.5909 (10)165.1 (19)
Symmetry code: (i) x1, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) for (IV) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.845 (18)2.398 (17)2.9561 (12)124.1 (14)
N1—H1···O2ii0.845 (18)2.214 (17)3.0358 (12)164.3 (15)
O3—H3···O20.84 (2)1.61 (2)2.4484 (10)173 (3)
O2—H2···O30.82 (3)1.66 (3)2.4484 (10)161 (4)
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1/2, y1/2, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds