Download citation
Download citation
link to html
In the crystal structures of the conformational isomers hydrogen {phosphono­[(pyridin-1-ium-3-yl)amino]­methyl}phos­phon­­ate monohydrate (pro-E), C6H10N2O6P2·H2O, (Ia), and hydrogen {phosphono­[(pyridin-1-ium-3-yl)amino]­methyl}phosphon­ate (pro-Z), C6H10N2O6P2, (Ib), the related hydro­gen {­[(2-chloro­pyridin-1-ium-3-yl)amino]­(phosphono)methyl}phosphon­ate (pro-E), C6H9ClN2O6P2, (II), and the salt bis­(6-chloro­pyridin-3-aminium) [hydrogen bis­({[2-chloropyri­din-1-ium-3-yl(0.5+)]amino}­methylene­diphosphon­ate)] (pro-Z), 2C5H6ClN2+·C12H16Cl2N4O12P42−, (III), chain–chain inter­actions involving phosphono (–PO3H2) and phosphon­ate (–PO3H) groups are dominant in determining the crystal packing. The crystals of (Ia) and (III) comprise similar ribbons, which are held together by N—H...O inter­actions, by water- or cation-mediated contacts, and by π–π inter­actions between the aromatic rings of adjacent zwitterions in (Ia), and those of the cations and anions in (III). The crystals of (Ib) and (II) have a layered architecture: the former exhibits highly corrugated monolayers perpendicular to the [100] direction, while in the latter, flat bilayers parallel to the (001) plane are formed. In both (Ib) and (II), the inter­layer contacts are realised through N—H...O hydrogen bonds and weak C—H...O inter­actions involving aromatic C atoms.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270111040650/fg3227sup1.cif
Contains datablocks global, Ia, Ib, II, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111040650/fg3227Iasup2.hkl
Contains datablock Ia

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111040650/fg3227Ibsup3.hkl
Contains datablock Ib

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111040650/fg3227IIsup4.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111040650/fg3227IIIsup5.hkl
Contains datablock III

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270111040650/fg3227Iasup6.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270111040650/fg3227Ibsup7.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270111040650/fg3227IIsup8.cml
Supplementary material

CCDC references: 855968; 855969; 855970; 855971

Comment top

Pyridine-based bis-phosphonates display a broad spectrum of biological activities, which rely predominantly on their inhibitory potency with respect to FPP synthase, a key enzyme in the mevalonate pathway common in human, parasite and plant cells (De Schutter et al., 2010; Sanders et al., 2003; Szabo et al., 2002; Cao et al., 2008). In recent years, we have investigated the crystal structures of a series of [(pyridin-2-yl)amino]methane-1,1-diphosphonic acids (Matczak-Jon et al., 2001, 2006a,b, 2009; Matczak-Jon, Ślepokura et al., 2010), which are a subclass of pyridine-based acids with a direct C—Namino bond. Their exceptional feature compared with other members of this family is a partially double C2—Namino bond, which leads to two preferred Z and E conformers [Z/E assignment consistent with Matczak-Jon et al. (2001)]. During the course of our studies, it has become apparent that the configurational preferences of [(pyridin-2-yl)amino]methane-1,1-diphosphonic acids are primarily determined by the topology and chemical nature of the substituents attached to the pyridine ring. We have demonstrated that compounds substituted in the 4- or 5-position of the pyridine ring exist in solution as a mixture of almost equally populated Z and E conformers. As long as the pyridine N atom remains protonated, the Z conformer crystallizes preferentially (Sanders et al., 2003; Matczak-Jon et al., 2001, 2006a,b, 2009). The removal of the proton from the pyridinium N atom enables Z/E interconversion and as a result the E form is able to crystallize from a solution (Sanders et al., 2003; Matczak-Jon et al., 2009). A key role for the Z stabilization, in both the solid state and solution, is the symmetrical dimer generated through intermolecular bifurcated N—H···O hydrogen bonds involving both exocyclic and pyridine N atoms as proton donors and an O atom of one of the phosphono/phosphonate group as acceptor. This is a common phenomenon in the crystal structures of all the Z zwitterions of [(pyridin-2-yl)amino]methane-1,1-diphosphonic acids studied to date.

In contrast, acids substituted in the 3-position of the pyridine ring adopt the E conformation, stabilized through an intramolecular hydrogen bond involving the exocyclic N atom as a proton donor and the sterically accessible substituent as a proton acceptor (Szabo et al., 2002; Matczak-Jon et al., 2001), even in the presence of other substituents attached to the pyridine ring (Matczak-Jon, Ślepokura et al., 2010). This generalization fails only for the zwitterion of [(pyridin-2-yl)amino]methane-1,1-diphosphonic acid which, despite almost equal populations of the E and Z conformers in solution, crystallizes as the E conformer (Matczak-Jon et al., 2006a).

Structural data have not as yet been reported for [(pyridinyl)amino]methane-1,1-diphosphonic acids with the aminomethane-1,1-diphosphonate portion attached to the 3-position of the pyridine ring. These compounds display marked differences in their abilities to bind metal ions in solution (Kowalik-Jankowska et al., 2011) compared with 3-, 4-, 5- and 6-ring-substituted [(pyridin-2-yl)amino]methane-1,1-diphosphonic acids (Matczak-Jon, Kowalik-Jankowska et al., 2010; Matczak-Jon et al., 2002). It is, therefore, highly desirable to look for factors which may be responsible for these differences in their behaviour. We present here the crystal structures of the two conformers of hydrogen {phosphono[(pyridin-1-ium-3-yl)amino]methyl}phosphonate as the monohydrate, (Ia), and the unsolvated form, (Ib), the related hydrogen {phosphono[(2-chloropyridin-1-ium-3-yl)amino]methyl}phosphonate, (II), and the salt bis(6-chloropyridin-3-aminium) [hydrogen bis({phosphono[(2-chloropyridin-1-ium-3-yl)amino]methyl}phosphonate)], (III). Principal geometric data are reported in Tables 1, 3, 5 and 7. The asymmetric unit of (Ia) comprises a zwitterion, formed due to proton transfer from one of the phosphono groups to pyridine atom N2 and one water molecule (O1W and O2W, both located on a twofold axis). Compounds (Ib) and (II) crystallize as zwitterions with the same protonation scheme as in (Ia). Compound (III) is a salt, in which atoms H2N and H5 of the anion both have half-occupancy, and the cation is disordered over two orientations with site occupancies of 0.574 (12) and 0.426 (12) (Figs. 1 and 2).

Due to the partial double-bond character of the C3—N1 bond, all four compounds may adopt two different conformations with respect to this bond, labelled pro-E and pro-Z (McNaught & Wilkinson, 1997). We were successful in obtaining crystals of the pro-E and pro-Z conformers of (I). On the other hand, the zwitterion of (II) is the pro-E conformer, while the bis-phosphonate counterpart in (III) adopts the opposite pro-Z conformation. This is reflected in the values of the C1—N1—C3—C2 torsion angle of 174.8 (3)° for (Ia), -3.1 (4)° for (Ib), 174.8 (2)° for (II) and -17.2 (3)° for (III). In (II), the pro-E conformation is additionally stabilized through an intramolecular N1—H1N···Cl1 hydrogen bond. It is also noteworthy that the C3—N1 bonds in (II) and (III) are slightly longer than those found in most of the zwitterions of [(pyridin-2-yl)amino]methane-1,1-diphosphonic acids studied to date (mean value 1.35 Å; Matczak-Jon et al., 2001, 2006a,b, 2009; Matczak-Jon, Ślepokura et al., 2010).

As a consequence of the formal sp2 hybridization of atom N1, atoms N1 and C1 of all four compounds are coplanar with the pyridinium ring. However, as seen from the C1—N1—C3—C2 torsion angles (Tables 1, 3, 5 and 7), in (III) atom C1 deviates from the pyridinium ring plane more than in (Ia), (Ib) and (II).

Similar to [(pyridin-2-yl)amino]methane-1,1-diphosphonic acids, a common feature of all four compounds is the planar W conformation of the HO—P—C—P—O sequence, which enables the formation of O—H···O hydrogen-bonded chains. As a result, each P atom is antiperiplanar (ap) to one of the O atoms from the adjacent phosphonate groups and synclinal (sc) to the remaining atoms of this group. In both conformers of (I) and in (II), the O—P—C—P—OH arrangement is nearly planar, which is reflected in the values of the relevant torsion angles: O1/O2—P1—C1—P2, O5—P2—C1—P1 for (Ia) and (Ib), and O3—P1—C1—P2 and O4—P2—C1—P1 for (II) (Tables 1, 3 and 5). The values of the relevant angles for (III), i.e. O2—P1—C1—P2 and O6—P2—C1—P1 (Table 7), indicate that atom O6 is the most displaced from the P1—C1—P2 plane compared with the O atoms of (Ia), (Ib) and (II).

The orientation of the phosphonate groups relative to the pyridinium ring is defined by the C3—N1—C1—P1 and C3—N1—C1—P2 torsion angles, which reveal that in all four compounds atoms P1 and P2 have an anticlinal orientation with respect to C3.

Consistent with previous observations, the geometry of both the phosphono (–PO3H2) and the phosphonate (–PO3H-) groups deviates significantly from an ideal tetrahedron (Tables 1, 3, 5 and 7). This is mainly reflected in high values of the O1—P1—O2 angle, in which the unprotonated O atoms are involved [average 115.88 (10)°]. On the other hand, the (H)O—P—C1 angles, in which protonated atoms O3, O5 or O6 are involved, have the smallest value in all four compounds [average 101.46 (11)°].

In agreement with the crystal structures of [(pyridin-2-yl)amino]methane-1,1-diphosphonates reported to date, the supramolecular assembly of the zwitterions of (Ia), (Ib) and (II) and the monoanions in (III) is determined by chain–chain interactions involving phosphono (–PO3H2) and phosphonate (–PO3H-) groups (see Figs. 3 and 4, and Tables 2, 4, 6 and 8).

In (Ia) and (III), (—P—C—P—O—H···O)n chains are generated by direct b-axis translation through O5—H5···O1ii and O6—H6···O2iii interactions, respectively (symmetry codes in Tables 2 and 8, respectively [Please confirm added text]). As shown in Fig. 3, in both (Ia) and (III), two bis-phosphonate ions from adjacent chains, related to each other by the action of a twofold axis, are joined by other O—H···O hydrogen bonds to form ribbons along the b axis. The overall architecture of the ribbons is similar and resembles that observed for related derivatives with 1,3-thiazol-2-yl and 1,3-benzothiazol-2-yl rings (Matczak-Jon, Kowalik-Jankowska et al., 2010). The main difference lies in the number of hydrogen bonds per bis-phosphonate pair, which is four in (Ia) and three in (III). However, while the geometry of both unique chain-linking hydrogen bonds in (Ia) (O3—H3···O2i and O6—H6···O4i; Table 2) is actually the same, the O3—H3···O1i and O5···H5···O5i hydrogen bonds joining related chains in (III) (Table 8) are of significantly different geometry, resulting from the different strength/energy of the two interactions. Notable is the short D···A distance [2.424 (3) Å] in the O5···H5···O5i bond, with the H5 atom on a twofold axis.

Ribbon–ribbon interactions in (Ia) and (III) are provided mainly by direct hydrogen bonds [N—H···O in both (Ia) and (III), and additionally N2—H2N···N2 in (III)] and water- [(Ia)] or cation- [(III)] mediated contacts. In the crystal structure of (Ia), water molecules are located on the twofold axis between the ribbons and interact with two zwitterions from two adjacent ribbons each, as well as with each other. Atom O1W is in hydrogen-bonding contact with two zwitterions (related by the action of a twofold axis) through N1—H1N···O1W and O1W—H2W···O3 bonds, and with the other water molecule via O1W—H1W···O2W, as shown in Fig. 1. On the other hand, aatom O2W interacts with two further zwitterions from the same adjacent ribbons through O2W—H3W···O4iv and O2W—H3W···O5iv hydrogen bonds (Table 2). In this way, two hydrogen-bonded water molecules provide interribbon connections by forming hydrogen bonds with four zwitterions from two adjacent ribbons.

An important role is also played by ππ interactions between aromatic rings of adjacent zwitterions in (Ia), and of the cations and anions in (III). In (Ia), the parallel pyridinium rings in the molecules at (x, y, z) and (-x, -y + 1, -z + 1) have an interplanar spacing of 3.418 (2) Å and a centroid-to-centroid distance of 3.725 (2) Å. In (III), the pyridinium ring of the anion forms stacking interactions with the cations at (-x + 1, y - 1, -z + 1/2) and (-x + 1, y, -z + 1/2), with centroid-to-centroid separations of 3.80 (1) and 3.90 (1) Å, respectively.

In contrast with (Ia) and (III), the crystal structures of (Ib) and (II) have a layered architecture (Fig. 4, and Tables 4 and 6). Here, each (—P—C—P—O—H···O)n chain, generated by a direct c- or a-axis translation through O5—H5···O2ii or O3—H3···O4i interactions, respectively (symmetry codes in Tables 4 and 6, respectively [Please confirm added text]), is joined to two adjacent chains of the same type through two significantly different types of interactions. On the one hand, these are centrosymmetric O6—H6···O1iii [in (Ib), Table 4] and O5—H5···O1ii [in (II), Table 6] hydrogen bonds, resulting in R22(12) and R44(16) rings (Fig. 4) [see Bernstein et al. (1995) for hydrogen-bond notation], and this type of interchain connection is the same in (Ib) and (II). On the other hand, a set of O—H···O and N1—H1N···O hydrogen bonds provides another type of interchain connection which is different in (Ib) and (II) and, therefore, results in different architectures of the layers formed in this way, as shown in Fig. 4. However, the highly corrugated monolayers perpendicular to [100] in (Ib), and the flat plane bilayers parallel to (001) in (II) have a common feature. This is an arrangement of the individual zwitterions within the layer, locating the aromatic rings at the interlayer exterior. This determines the interactions between adjacent layers. In both (Ib) and (II), the interlayer contacts are realised mainly through the N2—H2N···O hydrogen bonds and also by weaker C—H···O interactions involving aromatic C atoms (Tables 4 and 6).

In conclusion, chain–chain interactions involving phosphono (–PO3H2) and phosphonate (–PO3H-) groups are dominant in determining the crystal packing in all four title compounds. In (Ia) and (III), O—H···O interactions connect adjacent chains into similar ribbons, which are held together by N—H···O hydrogen bonds [accompanied by N2—H2N···N2 interactions in (III)], water- or cation-mediated contacts and ππ interactions between aromatic rings. In (Ib) and (II), the combination of O—H···O and N1—H1N···O intermolecular interactions results in highly corrugated monolayers or flat bilayers, respectively, joined through N2—H2N···O hydrogen bonds and weak C—H···O contacts. In contrast with previously studied [(pyridin-2-yl)amino]methane-1,1-diphosphonic acids, neither conformational stabilization is provided through inter- or intramolecular hydrogen bonds [except for the intramolecular N1—H1N···OCl1 interaction in (II)]. This leads us to speculate that the barrier for Z/E interconversion in solution for all four compounds is markedly lower than that for aminobis-phosphonates with pyridin-2-yl side chains.

Related literature top

For related literature, see: Bernstein et al. (1995); Cao (2008); De Schutter, Zaretsky, Welbourn, Pause & Tsantrizos (2010); Kowalik-Jankowska, Pietruszka, Jezierska, Matczak-Jon & Kafarski (2011); Matczak-Jon, Kowalik-Jankowska, Ślepokura, Kafarski & Rajewska (2010); Matczak-Jon, Kurzak, Kamecka & Kafarski (2002); Matczak-Jon, Sawka-Dobrowolska, Kafarski & Videnova-Adrabińska (2001); Matczak-Jon, Ślepokura & Kafarski (2006a, 2006b); Matczak-Jon, Ślepokura, Kafarski, Skrzyńska & Jon (2009); Matczak-Jon, Ślepokura, Zierkiewicz, Kafarski & Dąbrowska (2010); McNaught & Wilkinson (1997); Sanders et al. (2003); Sheldrick (2008); Sołoducho et al. (1997); Szabo et al. (2002).

Experimental top

Compounds (Ia), (Ib) (II) and (III) were obtained according to previously described procedures (Sołoducho et al., 1997). Crystals of (Ia) and (Ib) were grown in one vessel upon recrystallization from aqueous solution by slow evaporation at room temperature. Crystals of (II) were obtained in a similar way. To obtain crystals of (III), the solid crude product formed upon standing of the reaction mixture was dissolved in water and the solution was allowed to evaporate slowly. The X-ray data for (Ia) were collected at room temperature (294 K), owing to twinning of the crystal seen in the diffraction pattern at low temperature (100 K).

Spectroscopic analysis for (I) (D2O, pH = 5.50): 1H NMR (reference TMS, δ, p.p.m.): H1 3.86 (3JPH = 19.6 Hz), H21 8.00, H41 7.71, H51 7.57, H61 7.81; 13C NMR (reference TMS, δ, p.p.m.): C1 51.16 (1JPC = 129.9 Hz), C2 124.83, C3 146.80 (3JPC = 4.2 Hz), C4 127.90, C5 126.76, C6 128.20; 31P NMR (reference 85% H3PO4, p.p.m.): δp 14.54.

Spectroscopic analysis for (II) (D2O, pH = 1.88): 1H NMR (reference TMS, δ, p.p.m.): H1 3.97 (3JPH = 20.1 Hz), H41 7.40, H51 7.31, H61 7.62; 13C NMR (reference TMS, δ, p.p.m.): C1 50.57 (1JPC = 133.6 Hz), C2 133.51, C3 141.30 (3JPC = 4.50 Hz), C4 122.19, C5 124.59, C6 133.76; 31P NMR (reference 85% H3PO4, p.p.m.): δp 14.38.

Spectroscopic analysis for (III) (D2O, pH = 1.92): 1H NMR (reference TMS, δ, p.p.m.): H1 3.90 (3JPH = 19.7 Hz), H21 7.84, H41 7.36, H51 7.46; 13C NMR (reference TMS, δ, p.p.m.): C1 50.83 (1JPC = 134.6 Hz), C2 128.87, C3 144.71 (3JPC = 4.50 Hz), C4 126.31, C5 128.13, C6 132.67; 31P NMR (reference 85% H3PO4, p.p.m.): δp 14.61.

Refinement top

The 6-chloropyridin-3-aminium cation in (III) is disordered over two positions [site-occupation factors 0.57 (1) and 0.43 (1)], corresponding to its two different orientations (Fig. 2). In the final model, the equivalent bond lengths and angles of the two positions were restrained to be equal using the SAME instruction [SHELXL97 (Sheldrick, 2008)]. The positions of the Cl atoms (Cl2 and Cl20) were refined with the same fractional coordinates and anisotropic displacement parameters (constraints were applied with the EXYZ and EADP instructions in SHELXL97).

Non-H atoms were refined anisotropically, except for the C and N atoms of both positions of the disordered 6-chloropyridin-3-aminium cation in (III). All H atoms were found in difference Fourier maps. Atom H5 in (III) is located on a twofold axis between two anions, 1.20 (1) Å from each O5 atom, and was refined isotropically. Atom H2W bound to O1W in (Ia) was refined with a site-occupation factor of 0.5, which results in two alternative positions for this atom, related by the action of a twofold axis (Fig. 1). In the final refinement cycles, all water H atoms in (Ia) were refined with O—H and H···H distances restrained to 0.84 and 1.36 Å, respectively, and with Uiso(H) = 1.5Ueq(O). All remaining H atoms were treated as riding atoms in geometrically optimized positions, with C—H = 0.93–1.00 Å, N—H = 0.86–0.91 Å and O—H = 0.82–0.84 Å, and with Uiso(H) = 1.2Ueq(C,N) for CH and NH, or 1.5Ueq(N,O) for NH3 and OH. Atom H2N in (III) was refined with a site-occupation factor of 0.5.

Computing details top

For all compounds, data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Bruker, 1998) and DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Views of (Ia) (top) and (Ib) (bottom), showing the atom-numbering schemes and the symmetry-independent N—H···O and O—H···O hydrogen bonds (thin dashed lines). Displacement ellipsoids are drawn at the 50% probability level. Thick dashed lines indicate covalent bonds to alternative positions of atom H2W (related by the action of a twofold axis; site-occupancy factor = 0.5).
[Figure 2] Fig. 2. Views of (II) (top) and (III) (bottom), showing the atom-numbering schemes and the intramolecular [in (II)] and symmetry-independent intermolecular [in (III)] hydrogen bonds (thin dashed lines). Displacement ellipsoids are drawn at the 50% probability level, except for C and N atoms of the disordered cation in (III). The two positions of the cation in (III) are shown with solid and open lines. Thick dashed lines indicate covalent bonds to H atoms with a site-occupancy factor of 0.5.
[Figure 3] Fig. 3. The arrangement of the zwitterions in (Ia) (top) and the anions in (III) (bottom) within the ribbons along the b axis. O—H···O hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry codes for (Ia): (i) -x + 3/2, y, -z + 3/2; (ii) x, y + 1, z; (iv) x, y - 1, z; symmetry codes for (III): (i) -x + 2, y, -z + 1/2; (ii) x, y + 1, z.]
[Figure 4] Fig. 4. The arrangement of the zwitterions in (Ib) (top) and (II) (bottom) within the layers parallel to the (100) and (001) planes, respectively. O—H···O and N—H···O hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry codes for (Ib): (i) x, -y + 1/2, z - 1/2; (ii) x, y, z + 1; (iii) -x + 2, -y + 1, -z + 1; (iv) x, -y + 1/2, z + 1/2; symmetry codes for (II): (i) x + 1, y, z; (ii) -x + 1, -y + 2, -z + 1; (iii) -x + 1, -y + 1, -z + 1.]
(Ia) hydrogen {phosphono[(pyridin-1-ium-3-yl)amino]methyl}phosphonate monohydrate top
Crystal data top
C6H10N2O6P2·H2OF(000) = 592
Mr = 286.12Dx = 1.779 Mg m3
Monoclinic, P2/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yacCell parameters from 4599 reflections
a = 9.068 (3) Åθ = 3.0–36.6°
b = 7.513 (2) ŵ = 0.44 mm1
c = 16.126 (4) ÅT = 294 K
β = 103.55 (3)°Plate, colourless
V = 1068.1 (5) Å30.38 × 0.30 × 0.15 mm
Z = 4
Data collection top
Kuma KM-4-CCD κ-geometry
diffractometer with Sapphire CCD camera
2907 independent reflections
Radiation source: Enhance (Mo) X-ray Source2229 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω scansθmax = 30.0°, θmin = 3.0°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 1112
Tmin = 0.880, Tmax = 1.000k = 910
9984 measured reflectionsl = 2217
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0497P)2 + 1.2174P]
where P = (Fo2 + 2Fc2)/3
2907 reflections(Δ/σ)max = 0.001
164 parametersΔρmax = 0.52 e Å3
4 restraintsΔρmin = 0.27 e Å3
Crystal data top
C6H10N2O6P2·H2OV = 1068.1 (5) Å3
Mr = 286.12Z = 4
Monoclinic, P2/nMo Kα radiation
a = 9.068 (3) ŵ = 0.44 mm1
b = 7.513 (2) ÅT = 294 K
c = 16.126 (4) Å0.38 × 0.30 × 0.15 mm
β = 103.55 (3)°
Data collection top
Kuma KM-4-CCD κ-geometry
diffractometer with Sapphire CCD camera
2907 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
2229 reflections with I > 2σ(I)
Tmin = 0.880, Tmax = 1.000Rint = 0.034
9984 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0554 restraints
wR(F2) = 0.134H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.52 e Å3
2907 reflectionsΔρmin = 0.27 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
P10.56863 (8)0.48611 (10)0.64225 (4)0.03476 (19)
P20.54692 (8)0.89445 (10)0.65678 (5)0.0400 (2)
O10.4872 (2)0.3430 (3)0.58346 (12)0.0459 (5)
O20.7311 (2)0.5206 (3)0.63803 (12)0.0414 (5)
O30.5568 (2)0.4433 (3)0.73439 (12)0.0413 (5)
H30.63250.48070.76830.062*
O40.5588 (2)0.8874 (3)0.75121 (14)0.0498 (5)
O50.4358 (3)1.0345 (3)0.6104 (2)0.0681 (8)
H50.47971.13010.61130.102*
O60.7007 (2)0.9224 (3)0.63428 (13)0.0467 (5)
H60.76920.90420.67660.070*
N10.3097 (3)0.6715 (3)0.62392 (15)0.0405 (6)
H1N0.30280.63320.67310.049*
N20.0895 (3)0.7016 (4)0.5358 (2)0.0556 (7)
H2N0.17110.67450.55140.067*
C10.4619 (3)0.6894 (4)0.60906 (17)0.0341 (5)
H10.45030.70050.54730.041*
C20.0424 (3)0.6713 (4)0.5892 (2)0.0447 (7)
H210.04480.62330.64260.054*
C30.1779 (3)0.7103 (4)0.56656 (17)0.0346 (6)
C40.1690 (3)0.7876 (4)0.48699 (19)0.0419 (7)
H410.25700.81910.47040.050*
C50.0292 (4)0.8170 (5)0.4330 (2)0.0526 (8)
H510.02280.86670.37950.063*
C60.1016 (4)0.7728 (5)0.4583 (3)0.0604 (10)
H610.19640.79210.42220.072*
O1W0.25000.4159 (6)0.75000.0778 (12)
O2W0.25000.0580 (6)0.75000.1015 (16)
H1W0.25000.3039 (10)0.75000.152*
H2W0.338 (4)0.4501 (19)0.750 (9)0.152*0.50
H3W0.317 (4)0.0072 (16)0.737 (4)0.152*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0338 (4)0.0351 (4)0.0333 (3)0.0017 (3)0.0036 (3)0.0037 (3)
P20.0305 (4)0.0360 (4)0.0494 (4)0.0000 (3)0.0008 (3)0.0060 (3)
O10.0539 (13)0.0392 (11)0.0390 (11)0.0043 (10)0.0003 (9)0.0002 (9)
O20.0338 (10)0.0509 (12)0.0399 (10)0.0038 (9)0.0097 (8)0.0072 (9)
O30.0352 (10)0.0516 (12)0.0359 (10)0.0005 (9)0.0059 (8)0.0091 (9)
O40.0380 (11)0.0612 (14)0.0507 (12)0.0046 (10)0.0115 (9)0.0104 (11)
O50.0400 (13)0.0420 (13)0.108 (2)0.0007 (10)0.0106 (13)0.0166 (14)
O60.0354 (11)0.0561 (13)0.0455 (11)0.0093 (10)0.0034 (9)0.0118 (10)
N10.0304 (12)0.0504 (14)0.0401 (12)0.0005 (11)0.0069 (10)0.0119 (11)
N20.0327 (14)0.0644 (19)0.0705 (19)0.0053 (13)0.0135 (13)0.0158 (15)
C10.0270 (13)0.0389 (14)0.0352 (13)0.0009 (11)0.0045 (10)0.0071 (11)
C20.0363 (15)0.0466 (17)0.0517 (17)0.0049 (13)0.0117 (13)0.0060 (14)
C30.0276 (13)0.0339 (14)0.0410 (14)0.0018 (10)0.0056 (11)0.0028 (11)
C40.0356 (15)0.0460 (17)0.0425 (15)0.0011 (12)0.0059 (12)0.0002 (13)
C50.0514 (19)0.058 (2)0.0414 (16)0.0082 (16)0.0037 (14)0.0029 (15)
C60.0318 (17)0.063 (2)0.075 (2)0.0075 (15)0.0113 (16)0.0161 (19)
O1W0.113 (4)0.068 (2)0.069 (2)0.0000.054 (3)0.000
O2W0.133 (5)0.071 (3)0.123 (4)0.0000.076 (4)0.000
Geometric parameters (Å, º) top
P1—O11.507 (2)N2—C61.339 (5)
P1—O21.513 (2)N2—H2N0.86
P1—O31.548 (2)C1—H10.98
P1—C11.820 (3)C2—C31.393 (4)
P2—O41.502 (2)C2—H210.93
P2—O51.526 (2)C3—C41.393 (4)
P2—O61.536 (2)C4—C51.377 (4)
P2—C11.811 (3)C4—H410.93
O3—H30.82C5—C61.382 (5)
O5—H50.82C5—H510.93
O6—H60.82C6—H610.93
N1—C11.462 (3)O1W—H1W0.84
N1—C31.360 (4)O1W—H2W0.84
N1—H1N0.86O2W—H3W0.84
N2—C21.319 (4)
O1—P1—O2115.63 (13)P1—C1—N1109.38 (18)
O1—P1—O3108.77 (12)P2—C1—N1109.44 (19)
O2—P1—O3111.45 (11)N1—C1—H1107.1
O1—P1—C1105.38 (13)P2—C1—H1107.1
O2—P1—C1107.42 (12)P1—C1—H1107.1
O3—P1—C1107.75 (12)N2—C2—C3120.9 (3)
O4—P2—O5113.77 (16)N2—C2—H21119.6
O4—P2—O6113.01 (12)C3—C2—H21119.6
O5—P2—O6108.81 (14)N1—C3—C2117.7 (3)
O4—P2—C1108.85 (13)N1—C3—C4124.6 (3)
O5—P2—C1102.22 (14)C2—C3—C4117.7 (3)
O6—P2—C1109.60 (13)C5—C4—C3119.7 (3)
P1—O3—H3109.5C5—C4—H41120.2
P2—O5—H5109.5C3—C4—H41120.2
P2—O6—H6109.5C4—C5—C6120.1 (3)
C1—N1—C3125.6 (2)C4—C5—H51119.9
C3—N1—H1N117.2C6—C5—H51119.9
C1—N1—H1N117.2N2—C6—C5118.8 (3)
C2—N2—C6122.8 (3)N2—C6—H61120.6
C2—N2—H2N118.6C5—C6—H61120.6
C6—N2—H2N118.6H1W—O1W—H2W107.8 (11)
P1—C1—P2116.41 (14)
O1—P1—C1—P2170.95 (14)C3—N1—C1—P1131.5 (3)
O2—P1—C1—P247.14 (18)C3—N1—C1—P299.9 (3)
O3—P1—C1—P273.05 (17)C6—N2—C2—C31.0 (5)
O4—P2—C1—P163.49 (18)C1—N1—C3—C2174.8 (3)
O5—P2—C1—P1175.87 (17)C1—N1—C3—C45.7 (5)
O6—P2—C1—P160.57 (18)N2—C2—C3—N1178.4 (3)
O1—P1—C1—N164.4 (2)N2—C2—C3—C42.1 (4)
O2—P1—C1—N1171.79 (18)N1—C3—C4—C5178.4 (3)
O3—P1—C1—N151.6 (2)C2—C3—C4—C52.1 (4)
O4—P2—C1—N161.1 (2)C3—C4—C5—C61.1 (5)
O5—P2—C1—N159.5 (2)C2—N2—C6—C50.1 (5)
O6—P2—C1—N1174.80 (17)C4—C5—C6—N20.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2i0.821.742.532 (3)162
O5—H5···O1ii0.821.672.424 (3)152
O6—H6···O4i0.821.722.519 (3)165
N1—H1N···O1W0.862.172.938 (4)148
N2—H2N···O2iii0.862.162.911 (4)146
O1W—H1W···O2W0.841.852.689 (6)180
O1W—H2W···O30.842.062.859 (2)160
O2W—H3W···O4iv0.842.303.076 (3)155
O2W—H3W···O5iv0.842.553.116 (3)126
C1—H1···O1v0.982.333.253 (4)156
C6—H61···O5vi0.932.483.306 (4)148
Symmetry codes: (i) x+3/2, y, z+3/2; (ii) x, y+1, z; (iii) x1, y, z; (iv) x, y1, z; (v) x+1, y+1, z+1; (vi) x, y+2, z+1.
(Ib) hydrogen {phosphono[(pyridin-1-ium-3-yl)amino]methyl}phosphonate top
Crystal data top
C6H10N2O6P2F(000) = 552
Mr = 268.10Dx = 1.784 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4018 reflections
a = 9.172 (3) Åθ = 4.2–41.9°
b = 14.802 (4) ŵ = 0.45 mm1
c = 7.589 (2) ÅT = 120 K
β = 104.35 (3)°Needle, colourless
V = 998.2 (5) Å30.20 × 0.02 × 0.01 mm
Z = 4
Data collection top
Oxford Xcalibur PX κ-geometry
diffractometer with Onyx CCD camera
2925 independent reflections
Radiation source: Enhance (Mo) X-ray Source1307 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.168
ω and ϕ scansθmax = 30.1°, θmin = 4.2°
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2009)
h = 1212
Tmin = 0.954, Tmax = 0.994k = 2020
17046 measured reflectionsl = 710
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.056H-atom parameters constrained
S = 0.82 w = 1/[σ2(Fo2) + (0.P)2]
where P = (Fo2 + 2Fc2)/3
2925 reflections(Δ/σ)max < 0.001
148 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
C6H10N2O6P2V = 998.2 (5) Å3
Mr = 268.10Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.172 (3) ŵ = 0.45 mm1
b = 14.802 (4) ÅT = 120 K
c = 7.589 (2) Å0.20 × 0.02 × 0.01 mm
β = 104.35 (3)°
Data collection top
Oxford Xcalibur PX κ-geometry
diffractometer with Onyx CCD camera
2925 independent reflections
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2009)
1307 reflections with I > 2σ(I)
Tmin = 0.954, Tmax = 0.994Rint = 0.168
17046 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.056H-atom parameters constrained
S = 0.82Δρmax = 0.46 e Å3
2925 reflectionsΔρmin = 0.51 e Å3
148 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.78368 (9)0.40568 (6)0.18642 (9)0.01320 (18)
P20.77861 (9)0.41123 (6)0.59656 (9)0.01261 (18)
O10.8594 (2)0.49621 (13)0.1933 (2)0.0144 (5)
O20.6726 (2)0.38128 (13)0.0103 (2)0.0183 (5)
O30.9101 (2)0.33353 (12)0.2426 (2)0.0177 (5)
H30.87580.28250.20530.027*
O40.8730 (2)0.33133 (12)0.6649 (2)0.0174 (5)
O50.6506 (2)0.42804 (14)0.6912 (2)0.0189 (5)
H50.67870.41210.80060.028*
O60.8690 (2)0.49965 (13)0.6029 (2)0.0169 (5)
H60.95460.49320.67390.025*
N10.5901 (3)0.31537 (14)0.3420 (3)0.0131 (5)
H1N0.63330.26860.40560.016*
N20.2264 (3)0.36111 (15)0.0378 (3)0.0155 (6)
H2N0.17740.40730.02230.019*
C10.6751 (3)0.39968 (18)0.3591 (3)0.0096 (6)
H10.59990.44990.33290.012*
C20.3675 (3)0.37509 (19)0.1351 (3)0.0129 (7)
H210.41240.43300.13660.016*
C30.4481 (3)0.30430 (18)0.2340 (3)0.0113 (6)
C40.3766 (3)0.21973 (19)0.2166 (3)0.0135 (7)
H410.42960.16880.27660.016*
C50.2307 (4)0.20937 (18)0.1141 (3)0.0157 (6)
H510.18320.15190.10500.019*
C60.1550 (3)0.2824 (2)0.0256 (3)0.0162 (7)
H610.05360.27700.04310.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0123 (5)0.0153 (4)0.0113 (3)0.0018 (4)0.0017 (3)0.0000 (4)
P20.0127 (5)0.0140 (4)0.0102 (3)0.0007 (4)0.0011 (3)0.0002 (4)
O10.0169 (13)0.0118 (11)0.0144 (10)0.0037 (9)0.0040 (9)0.0016 (8)
O20.0167 (12)0.0284 (13)0.0085 (9)0.0068 (9)0.0005 (8)0.0019 (8)
O30.0155 (12)0.0136 (11)0.0235 (11)0.0009 (9)0.0040 (9)0.0032 (9)
O40.0199 (13)0.0126 (12)0.0162 (9)0.0012 (9)0.0021 (9)0.0044 (8)
O50.0144 (12)0.0327 (14)0.0093 (8)0.0008 (10)0.0023 (8)0.0041 (9)
O60.0138 (13)0.0152 (11)0.0175 (11)0.0042 (9)0.0038 (9)0.0027 (9)
N10.0122 (14)0.0103 (14)0.0145 (11)0.0007 (10)0.0012 (11)0.0056 (10)
N20.0160 (15)0.0123 (14)0.0177 (12)0.0041 (11)0.0034 (11)0.0030 (10)
C10.0078 (15)0.0074 (15)0.0114 (12)0.0013 (13)0.0019 (11)0.0026 (12)
C20.0101 (17)0.0144 (17)0.0127 (13)0.0038 (13)0.0002 (12)0.0028 (11)
C30.0100 (17)0.0140 (17)0.0103 (12)0.0002 (13)0.0036 (12)0.0019 (11)
C40.0132 (18)0.0131 (17)0.0155 (14)0.0005 (13)0.0059 (13)0.0009 (13)
C50.0181 (18)0.0116 (16)0.0171 (13)0.0060 (15)0.0037 (13)0.0041 (14)
C60.0115 (17)0.0242 (19)0.0133 (14)0.0050 (14)0.0038 (13)0.0041 (14)
Geometric parameters (Å, º) top
P1—O11.504 (2)N1—H1N0.88
P1—O21.5100 (18)N2—C21.338 (3)
P1—O31.556 (2)N2—C61.328 (3)
P1—C11.834 (2)N2—H2N0.88
P2—O41.4812 (19)C1—H11.00
P2—O51.5405 (19)C2—C31.390 (3)
P2—O61.544 (2)C2—H210.95
P2—C11.825 (2)C3—C41.404 (4)
O3—H30.84C4—C51.380 (4)
O5—H50.84C4—H410.95
O6—H60.84C5—C61.368 (4)
N1—C11.460 (3)C5—H510.95
N1—C31.366 (3)C6—H610.95
O1—P1—O2116.63 (10)P1—C1—P2117.34 (14)
O1—P1—O3107.19 (12)P1—C1—N1110.51 (17)
O2—P1—O3111.83 (11)P2—C1—N1107.66 (16)
O1—P1—C1110.27 (12)N1—C1—H1106.9
O2—P1—C1104.72 (11)P2—C1—H1106.9
O3—P1—C1105.70 (12)P1—C1—H1106.9
O4—P2—O5114.35 (11)N2—C2—C3119.6 (3)
O4—P2—O6113.78 (12)N2—C2—H21120.2
O5—P2—O6108.31 (12)C3—C2—H21120.2
O4—P2—C1112.75 (12)N1—C3—C2122.3 (3)
O5—P2—C1101.85 (11)N1—C3—C4121.1 (2)
O6—P2—C1104.73 (11)C2—C3—C4116.6 (3)
P1—O3—H3109.5C5—C4—C3121.1 (3)
P2—O5—H5109.5C5—C4—H41119.4
P2—O6—H6109.5C3—C4—H41119.4
C1—N1—C3124.4 (2)C6—C5—C4119.5 (3)
C3—N1—H1N117.8C6—C5—H51120.2
C1—N1—H1N117.8C4—C5—H51120.2
C6—N2—C2124.5 (2)N2—C6—C5118.5 (3)
C6—N2—H2N117.7N2—C6—H61120.7
C2—N2—H2N117.7C5—C6—H61120.7
O1—P1—C1—P261.36 (18)C3—N1—C1—P188.9 (3)
O2—P1—C1—P2172.42 (14)C3—N1—C1—P2141.8 (2)
O3—P1—C1—P254.18 (18)C6—N2—C2—C30.9 (4)
O4—P2—C1—P171.32 (19)C1—N1—C3—C23.1 (4)
O5—P2—C1—P1165.67 (15)C1—N1—C3—C4176.4 (2)
O6—P2—C1—P152.90 (18)N2—C2—C3—N1177.1 (2)
O1—P1—C1—N1174.72 (16)N2—C2—C3—C43.4 (3)
O2—P1—C1—N148.5 (2)N1—C3—C4—C5177.0 (2)
O3—P1—C1—N169.75 (19)C2—C3—C4—C53.4 (4)
O4—P2—C1—N154.0 (2)C3—C4—C5—C60.9 (4)
O5—P2—C1—N169.0 (2)C2—N2—C6—C51.7 (4)
O6—P2—C1—N1178.25 (18)C4—C5—C6—N21.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O4i0.841.712.514 (2)159
O5—H5···O2ii0.841.672.479 (2)161
O6—H6···O1iii0.841.762.586 (3)167
N1—H1N···O2iv0.882.353.193 (3)160
N2—H2N···O1v0.881.902.733 (3)157
C2—H21···O5vi0.952.583.220 (3)125
C4—H41···O2iv0.952.593.402 (3)144
C6—H61···O3vii0.952.453.196 (3)136
C6—H61···O4viii0.952.553.346 (4)142
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y, z+1; (iii) x+2, y+1, z+1; (iv) x, y+1/2, z+1/2; (v) x+1, y+1, z; (vi) x+1, y+1, z+1; (vii) x1, y+1/2, z1/2; (viii) x1, y, z1.
(II) hydrogen {phosphono[(2-chloropyridin-1-ium-3-yl)amino]methyl}phosphonate top
Crystal data top
C6H9ClN2O6P2Z = 2
Mr = 302.54F(000) = 308
Triclinic, P1Dx = 1.874 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.667 (2) ÅCell parameters from 5273 reflections
b = 8.364 (2) Åθ = 3.1–37.5°
c = 9.283 (3) ŵ = 0.67 mm1
α = 109.41 (3)°T = 100 K
β = 105.31 (3)°Plate, colourless
γ = 92.39 (3)°0.47 × 0.18 × 0.06 mm
V = 536.0 (3) Å3
Data collection top
Kuma KM-4-CCD κ-geometry
diffractometer with Sapphire CCD camera
2735 independent reflections
Radiation source: Enhance (Mo) X-ray Source2503 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ω scansθmax = 30.0°, θmin = 3.1°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 910
Tmin = 0.920, Tmax = 1.000k = 1011
6017 measured reflectionsl = 1312
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: difference Fourier map
wR(F2) = 0.075H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0406P)2 + 0.3896P]
where P = (Fo2 + 2Fc2)/3
2735 reflections(Δ/σ)max = 0.001
157 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.64 e Å3
Crystal data top
C6H9ClN2O6P2γ = 92.39 (3)°
Mr = 302.54V = 536.0 (3) Å3
Triclinic, P1Z = 2
a = 7.667 (2) ÅMo Kα radiation
b = 8.364 (2) ŵ = 0.67 mm1
c = 9.283 (3) ÅT = 100 K
α = 109.41 (3)°0.47 × 0.18 × 0.06 mm
β = 105.31 (3)°
Data collection top
Kuma KM-4-CCD κ-geometry
diffractometer with Sapphire CCD camera
2735 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
2503 reflections with I > 2σ(I)
Tmin = 0.920, Tmax = 1.000Rint = 0.016
6017 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.075H-atom parameters constrained
S = 1.06Δρmax = 0.44 e Å3
2735 reflectionsΔρmin = 0.64 e Å3
157 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.56754 (5)0.28625 (4)0.82457 (4)0.01229 (9)
P10.72114 (5)0.80652 (5)0.63614 (4)0.00849 (9)
P20.32414 (5)0.79224 (5)0.65783 (4)0.00872 (9)
O10.68469 (16)0.95967 (14)0.58852 (13)0.0132 (2)
O20.70541 (15)0.63999 (13)0.50066 (13)0.0130 (2)
O30.90617 (15)0.84636 (15)0.77120 (13)0.0149 (2)
H30.98750.80340.73150.022*
O40.22189 (15)0.76694 (14)0.76917 (13)0.0131 (2)
O50.30562 (15)0.96590 (13)0.64055 (13)0.0111 (2)
H50.31920.96180.55260.017*
O60.26506 (15)0.64908 (14)0.49138 (13)0.0136 (2)
H60.27600.55370.50180.020*
N10.58316 (17)0.62995 (15)0.78885 (15)0.0098 (2)
H1N0.51540.53390.71960.012*
N20.79389 (17)0.46916 (16)1.10065 (15)0.0113 (2)
H2N0.78300.37331.11930.014*
C10.56473 (19)0.78524 (17)0.74967 (17)0.0083 (3)
H10.60510.88430.85340.010*
C20.69655 (19)0.47309 (18)0.95934 (17)0.0097 (3)
C30.69965 (19)0.62560 (18)0.92683 (17)0.0089 (3)
C40.8222 (2)0.76671 (19)1.04469 (18)0.0118 (3)
H410.83420.87131.02640.014*
C50.9256 (2)0.7555 (2)1.18721 (18)0.0135 (3)
H511.00890.85141.26520.016*
C60.9073 (2)0.6049 (2)1.21529 (18)0.0140 (3)
H610.97390.59711.31420.017*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01508 (18)0.00852 (16)0.01122 (17)0.00042 (12)0.00157 (13)0.00295 (13)
P10.00845 (18)0.00895 (17)0.00909 (18)0.00152 (12)0.00279 (13)0.00431 (14)
P20.00772 (18)0.01010 (17)0.00947 (18)0.00151 (12)0.00236 (13)0.00503 (14)
O10.0180 (6)0.0114 (5)0.0141 (5)0.0034 (4)0.0070 (4)0.0076 (4)
O20.0181 (6)0.0105 (5)0.0110 (5)0.0031 (4)0.0058 (4)0.0030 (4)
O30.0076 (5)0.0230 (6)0.0126 (5)0.0033 (4)0.0026 (4)0.0046 (4)
O40.0107 (5)0.0178 (5)0.0172 (5)0.0042 (4)0.0064 (4)0.0124 (4)
O50.0139 (5)0.0111 (5)0.0111 (5)0.0035 (4)0.0051 (4)0.0060 (4)
O60.0142 (5)0.0108 (5)0.0121 (5)0.0010 (4)0.0006 (4)0.0031 (4)
N10.0112 (6)0.0080 (5)0.0089 (5)0.0005 (4)0.0002 (4)0.0039 (4)
N20.0112 (6)0.0121 (6)0.0121 (6)0.0018 (4)0.0026 (5)0.0069 (5)
C10.0090 (6)0.0082 (6)0.0087 (6)0.0010 (5)0.0023 (5)0.0044 (5)
C20.0095 (7)0.0097 (6)0.0095 (6)0.0007 (5)0.0021 (5)0.0035 (5)
C30.0088 (6)0.0103 (6)0.0089 (6)0.0021 (5)0.0033 (5)0.0045 (5)
C40.0117 (7)0.0114 (7)0.0121 (7)0.0005 (5)0.0028 (5)0.0048 (5)
C50.0138 (7)0.0140 (7)0.0104 (7)0.0015 (5)0.0011 (6)0.0039 (5)
C60.0124 (7)0.0167 (7)0.0112 (7)0.0003 (5)0.0006 (6)0.0062 (6)
Geometric parameters (Å, º) top
Cl1—C21.7040 (17)N1—C31.3671 (18)
P1—O11.5018 (11)N1—H1N0.88
P1—O21.5092 (13)N2—C21.3388 (19)
P1—O31.5617 (13)N2—C61.343 (2)
P1—C11.8315 (15)N2—H2N0.88
P2—O41.5124 (12)C1—H11.00
P2—O51.5217 (11)C2—C31.4057 (18)
P2—O61.5434 (14)C3—C41.407 (2)
P2—C11.8288 (16)C4—C51.387 (2)
O3—H30.84C4—H410.95
O5—H50.84C5—C61.378 (2)
O6—H60.84C5—H510.95
N1—C11.4634 (17)C6—H610.95
O1—P1—O2115.63 (7)P1—C1—P2115.93 (7)
O1—P1—O3110.53 (7)P1—C1—N1110.38 (10)
O2—P1—O3112.38 (7)P2—C1—N1109.95 (10)
O1—P1—C1107.64 (7)N1—C1—H1106.7
O2—P1—C1110.20 (7)P2—C1—H1106.7
O3—P1—C199.10 (7)P1—C1—H1106.7
O4—P2—O5110.88 (7)N2—C2—C3120.95 (14)
O4—P2—O6113.35 (7)N2—C2—Cl1116.67 (11)
O5—P2—O6109.96 (7)C3—C2—Cl1122.37 (11)
O4—P2—C1106.49 (7)N1—C3—C2119.38 (13)
O5—P2—C1108.88 (7)N1—C3—C4124.52 (13)
O6—P2—C1107.06 (7)C2—C3—C4116.07 (13)
P1—O3—H3109.5C5—C4—C3121.00 (13)
P2—O5—H5109.5C5—C4—H41119.5
P2—O6—H6109.5C3—C4—H41119.5
C1—N1—C3123.75 (12)C6—C5—C4119.78 (14)
C3—N1—H1N118.1C6—C5—H51120.1
C1—N1—H1N118.1C4—C5—H51120.1
C2—N2—C6123.01 (13)N2—C6—C5118.96 (14)
C2—N2—H2N118.5N2—C6—H61120.5
C6—N2—H2N118.5C5—C6—H61120.5
O1—P1—C1—P249.65 (10)C6—N2—C2—C34.0 (2)
O2—P1—C1—P277.27 (10)C6—N2—C2—Cl1177.08 (12)
O3—P1—C1—P2164.71 (8)C1—N1—C3—C2174.83 (13)
O4—P2—C1—P1178.28 (7)C1—N1—C3—C43.1 (2)
O5—P2—C1—P162.11 (10)N2—C2—C3—N1172.61 (14)
O6—P2—C1—P156.73 (9)Cl1—C2—C3—N16.2 (2)
O1—P1—C1—N1175.48 (9)N2—C2—C3—C45.5 (2)
O2—P1—C1—N148.56 (11)Cl1—C2—C3—C4175.66 (11)
O3—P1—C1—N169.46 (11)N1—C3—C4—C5174.85 (15)
O4—P2—C1—N152.23 (11)C2—C3—C4—C53.2 (2)
O5—P2—C1—N1171.84 (9)C3—C4—C5—C60.7 (2)
O6—P2—C1—N169.32 (11)C2—N2—C6—C50.2 (2)
C3—N1—C1—P191.50 (15)C4—C5—C6—N22.5 (2)
C3—N1—C1—P2139.37 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O4i0.841.802.540 (2)146
O5—H5···O1ii0.841.642.424 (2)153
O6—H6···O2iii0.841.632.461 (2)173
N1—H1N···Cl10.882.573.002 (2)111
N1—H1N···O2iii0.882.273.103 (2)158
N2—H2N···O4iv0.881.812.649 (2)159
C4—H41···O30.952.523.042 (2)115
C5—H51···O1v0.952.543.429 (3)156
C6—H61···O6vi0.952.323.131 (2)143
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+2, z+1; (iii) x+1, y+1, z+1; (iv) x+1, y+1, z+2; (v) x+2, y+2, z+2; (vi) x+1, y, z+1.
(III) bis(6-chloropyridin-3-aminium) [hydrogen bis({[2-chloropyridin-1-ium-3-yl(0.5+)]amino}methylenediphosphonate)] top
Crystal data top
2C5H6ClN2+·C12H16Cl2N4O12P42F(000) = 880
Mr = 862.20Dx = 1.802 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ycCell parameters from 6035 reflections
a = 8.555 (2) Åθ = 2.8–36.6°
b = 7.585 (2) ŵ = 0.65 mm1
c = 24.560 (5) ÅT = 100 K
β = 94.32 (3)°Plate, colourless
V = 1589.2 (6) Å30.25 × 0.11 × 0.03 mm
Z = 2
Data collection top
Kuma KM-4-CCD κ-geometry
diffractometer with Sapphire CCD camera
4513 independent reflections
Radiation source: Enhance (Mo) X-ray Source3162 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
ω scansθmax = 30.0°, θmin = 2.8°
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2009)
h = 1011
Tmin = 0.895, Tmax = 0.976k = 910
16241 measured reflectionsl = 3431
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: difference Fourier map
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.040P)2]
where P = (Fo2 + 2Fc2)/3
4513 reflections(Δ/σ)max = 0.001
226 parametersΔρmax = 0.46 e Å3
18 restraintsΔρmin = 0.59 e Å3
Crystal data top
2C5H6ClN2+·C12H16Cl2N4O12P42V = 1589.2 (6) Å3
Mr = 862.20Z = 2
Monoclinic, P2/cMo Kα radiation
a = 8.555 (2) ŵ = 0.65 mm1
b = 7.585 (2) ÅT = 100 K
c = 24.560 (5) Å0.25 × 0.11 × 0.03 mm
β = 94.32 (3)°
Data collection top
Kuma KM-4-CCD κ-geometry
diffractometer with Sapphire CCD camera
4513 independent reflections
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2009)
3162 reflections with I > 2σ(I)
Tmin = 0.895, Tmax = 0.976Rint = 0.056
16241 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04118 restraints
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.46 e Å3
4513 reflectionsΔρmin = 0.59 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.18450 (7)0.09767 (8)0.51266 (2)0.02041 (13)
P10.78559 (6)0.06159 (7)0.29686 (2)0.01046 (12)
P20.78166 (6)0.46470 (7)0.29984 (2)0.01042 (12)
O10.79129 (17)0.07478 (19)0.23581 (6)0.0133 (3)
O20.68939 (17)0.08897 (18)0.31686 (6)0.0146 (3)
O30.95636 (17)0.04581 (19)0.32526 (6)0.0145 (3)
H31.02200.06560.30220.022*
O40.68529 (17)0.51126 (19)0.24821 (6)0.0138 (3)
O50.95569 (17)0.4367 (2)0.29528 (6)0.0151 (3)
H51.00000.428 (6)0.25000.068 (16)*
O60.76163 (19)0.59904 (19)0.34715 (6)0.0158 (3)
H60.73980.69890.33390.024*
N10.5366 (2)0.2680 (2)0.32477 (7)0.0124 (4)
H1N0.48570.30070.29390.015*
N20.4302 (2)0.0944 (2)0.45584 (7)0.0133 (4)
H2N0.47360.03550.48390.016*0.50
C10.7072 (2)0.2613 (3)0.32700 (8)0.0099 (4)
H10.74410.25890.36660.012*
C20.5139 (3)0.1309 (3)0.41291 (9)0.0135 (4)
H210.61910.09040.41330.016*
C30.4509 (2)0.2266 (3)0.36778 (9)0.0116 (4)
C40.2926 (3)0.2763 (3)0.36784 (9)0.0137 (4)
H410.24340.33730.33740.016*
C50.2085 (3)0.2368 (3)0.41201 (9)0.0145 (4)
H510.10170.27060.41240.017*
C60.2822 (3)0.1473 (3)0.45572 (9)0.0151 (5)
Cl20.80512 (7)0.57726 (8)0.02849 (2)0.02266 (14)0.574 (11)
N110.6187 (14)0.7999 (15)0.1867 (2)0.011 (3)*0.574 (11)
H11A0.67550.89730.19700.017*0.574 (11)
H11B0.64080.71160.21110.017*0.574 (11)
H11C0.51470.82580.18550.017*0.574 (11)
N120.6030 (6)0.6492 (8)0.0428 (2)0.0142 (18)*0.574 (11)
C120.5619 (7)0.6971 (10)0.0912 (3)0.015 (2)*0.574 (11)
H120.45310.69800.09670.018*0.574 (11)
C130.6592 (9)0.7437 (11)0.13265 (17)0.0127 (17)*0.574 (11)
C140.8273 (6)0.7331 (8)0.1267 (2)0.0136 (15)*0.574 (11)
H140.90170.76000.15620.016*0.574 (11)
C150.8740 (7)0.6816 (9)0.0758 (2)0.0158 (17)*0.574 (11)
H150.98190.67150.06950.019*0.574 (11)
C160.7638 (7)0.6476 (9)0.03680 (15)0.0138 (14)*0.574 (11)
Cl200.80512 (7)0.57726 (8)0.02849 (2)0.02266 (14)0.426 (11)
N1100.6287 (17)0.797 (2)0.1877 (3)0.014 (5)*0.426 (11)
H11D0.69480.88110.20260.021*0.426 (11)
H11E0.63090.70130.21020.021*0.426 (11)
H11F0.52950.84080.18370.021*0.426 (11)
N1200.8616 (7)0.7014 (11)0.0700 (2)0.021 (2)*0.426 (11)
C1200.8213 (8)0.7499 (12)0.1184 (3)0.020 (2)*0.426 (11)
H1200.90220.79160.14380.025*0.426 (11)
C1300.6785 (9)0.7453 (13)0.1345 (2)0.006 (2)*0.426 (11)
C1400.5507 (8)0.6859 (14)0.0962 (3)0.016 (3)*0.426 (11)
H1400.44510.68550.10570.020*0.426 (11)
C1500.5906 (8)0.6296 (13)0.0449 (3)0.019 (3)*0.426 (11)
H1500.51350.58480.01870.022*0.426 (11)
C1600.7389 (8)0.6408 (10)0.03422 (17)0.0093 (19)*0.426 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0184 (3)0.0271 (3)0.0165 (3)0.0009 (2)0.0067 (2)0.0038 (2)
P10.0106 (3)0.0088 (2)0.0119 (3)0.0007 (2)0.0001 (2)0.00034 (19)
P20.0120 (3)0.0092 (2)0.0102 (3)0.0001 (2)0.0017 (2)0.00038 (19)
O10.0140 (8)0.0137 (7)0.0123 (7)0.0001 (6)0.0013 (6)0.0005 (6)
O20.0145 (8)0.0101 (7)0.0192 (8)0.0003 (6)0.0018 (6)0.0011 (6)
O30.0126 (8)0.0160 (8)0.0152 (8)0.0022 (6)0.0022 (6)0.0010 (6)
O40.0161 (8)0.0111 (7)0.0140 (8)0.0010 (6)0.0003 (6)0.0020 (6)
O50.0113 (8)0.0190 (8)0.0153 (8)0.0008 (6)0.0021 (6)0.0010 (6)
O60.0251 (9)0.0095 (7)0.0130 (8)0.0033 (6)0.0033 (7)0.0002 (6)
N10.0105 (9)0.0162 (9)0.0104 (8)0.0008 (7)0.0005 (7)0.0037 (7)
N20.0136 (9)0.0133 (8)0.0135 (9)0.0024 (7)0.0039 (7)0.0000 (7)
C10.0104 (10)0.0086 (9)0.0107 (9)0.0001 (8)0.0014 (8)0.0006 (8)
C20.0134 (11)0.0144 (10)0.0129 (11)0.0026 (8)0.0011 (9)0.0009 (8)
C30.0135 (11)0.0085 (9)0.0127 (10)0.0017 (8)0.0003 (8)0.0022 (8)
C40.0161 (11)0.0131 (10)0.0114 (10)0.0004 (8)0.0012 (8)0.0015 (8)
C50.0133 (11)0.0146 (10)0.0158 (10)0.0006 (8)0.0021 (8)0.0026 (8)
C60.0180 (12)0.0141 (10)0.0137 (11)0.0042 (9)0.0050 (9)0.0014 (8)
Cl20.0304 (3)0.0236 (3)0.0144 (3)0.0056 (2)0.0048 (2)0.0014 (2)
Cl200.0304 (3)0.0236 (3)0.0144 (3)0.0056 (2)0.0048 (2)0.0014 (2)
Geometric parameters (Å, º) top
Cl1—C61.724 (2)N11—C131.459 (3)
P1—O11.5070 (16)N11—H11A0.91
P1—O21.5112 (15)N11—H11B0.91
P1—O31.5754 (16)N11—H11C0.91
P1—C11.835 (2)N12—C121.317 (7)
P2—O41.5016 (16)N12—C161.395 (8)
P2—O51.5164 (16)C12—C131.313 (8)
P2—O61.5644 (15)C12—H120.95
P2—C11.815 (2)C13—C141.459 (9)
O3—H30.84C14—C151.397 (8)
O5—H51.204 (3)C14—H140.95
O6—H60.84C15—C161.319 (8)
N1—C11.458 (3)C15—H150.95
N1—C31.367 (3)N110—C1301.459 (3)
N1—H1N0.88N110—H11D0.91
N2—C21.347 (3)N110—H11E0.91
N2—C61.329 (3)N110—H11F0.91
N2—H2N0.88N120—C1201.317 (7)
C1—H11.00N120—C1601.395 (8)
C2—C31.399 (3)C120—C1301.312 (8)
C2—H210.95C120—H1200.95
C3—C41.406 (3)C130—C1401.460 (9)
C4—C51.379 (3)C140—C1501.396 (8)
C4—H410.95C140—H1400.95
C5—C61.382 (3)C150—C1601.317 (8)
C5—H510.95C150—H1500.95
Cl2—C161.751 (2)
O1—P1—O2115.64 (9)N2—C6—C5121.9 (2)
O1—P1—O3110.31 (9)N2—C6—Cl1116.92 (17)
O2—P1—O3107.95 (8)C5—C6—Cl1121.15 (17)
O1—P1—C1112.76 (9)C12—N12—C16115.5 (4)
O2—P1—C1105.56 (9)C13—C12—N12125.2 (6)
O3—P1—C1103.82 (9)C13—C12—H12117.4
O4—P2—O5116.75 (9)N12—C12—H12117.4
O4—P2—O6112.96 (9)C12—C13—C14118.7 (3)
O5—P2—O6108.01 (9)C12—C13—N11127.1 (8)
O4—P2—C1108.95 (9)C14—C13—N11114.2 (7)
O5—P2—C1106.37 (9)C15—C14—C13117.1 (5)
O6—P2—C1102.69 (9)C15—C14—H14121.5
P1—O3—H3109.5C13—C14—H14121.5
P2—O5—H5117.1 (3)C16—C15—C14117.9 (5)
P2—O6—H6109.5C16—C15—H15121.0
C1—N1—C3123.81 (18)C14—C15—H15121.0
C3—N1—H1N118.1C15—C16—N12125.3 (2)
C1—N1—H1N118.1C15—C16—Cl2122.9 (4)
C6—N2—C2119.94 (19)N12—C16—Cl2111.6 (4)
C6—N2—H2N120.0C130—N110—H11D109.5
C2—N2—H2N120.0C130—N110—H11E109.5
P1—C1—P2113.86 (11)H11D—N110—H11E109.5
P1—C1—N1114.15 (14)C130—N110—H11F109.5
P2—C1—N1109.54 (13)H11D—N110—H11F109.5
N1—C1—H1106.2H11E—N110—H11F109.5
P2—C1—H1106.2C120—N120—C160115.2 (5)
P1—C1—H1106.2C130—C120—N120125.3 (6)
N2—C2—C3122.1 (2)C130—C120—H120117.4
N2—C2—H21119.0N120—C120—H120117.4
C3—C2—H21119.0C120—C130—N110127.1 (8)
N1—C3—C2122.3 (2)C120—C130—C140118.9 (3)
N1—C3—C4120.77 (19)N110—C130—C140114.0 (7)
C2—C3—C4116.9 (2)C150—C140—C130117.0 (5)
C5—C4—C3120.1 (2)C150—C140—H140121.5
C5—C4—H41119.9C130—C140—H140121.5
C3—C4—H41119.9C160—C150—C140117.7 (5)
C4—C5—C6119.0 (2)C160—C150—H150121.2
C4—C5—H51120.5C140—C150—H150121.2
C6—C5—H51120.5C150—C160—N120125.9 (3)
O1—P1—C1—P242.98 (14)C2—N2—C6—C51.3 (3)
O2—P1—C1—P2170.13 (10)C2—N2—C6—Cl1179.12 (15)
O3—P1—C1—P276.41 (12)C4—C5—C6—N21.7 (3)
O4—P2—C1—P184.43 (12)C4—C5—C6—Cl1178.77 (16)
O5—P2—C1—P142.21 (14)C16—N12—C12—C130.7 (12)
O6—P2—C1—P1155.56 (11)N12—C12—C13—C143.8 (13)
O1—P1—C1—N183.82 (16)N12—C12—C13—N11179.1 (9)
O2—P1—C1—N143.33 (16)C12—C13—C14—C153.1 (11)
O3—P1—C1—N1156.79 (14)N11—C13—C14—C15179.4 (7)
O4—P2—C1—N144.73 (16)C13—C14—C15—C160.5 (9)
O5—P2—C1—N1171.38 (13)C14—C15—C16—N123.8 (11)
O6—P2—C1—N175.27 (15)C14—C15—C16—Cl2178.6 (5)
C3—N1—C1—P199.7 (2)C12—N12—C16—C153.3 (11)
C3—N1—C1—P2131.28 (17)C12—N12—C16—Cl2178.6 (6)
C6—N2—C2—C31.1 (3)C160—N120—C120—C1300.1 (14)
C1—N1—C3—C217.2 (3)N120—C120—C130—N110179.8 (12)
C1—N1—C3—C4164.16 (18)N120—C120—C130—C1401.4 (16)
N2—C2—C3—N1178.25 (19)C120—C130—C140—C1502.8 (15)
N2—C2—C3—C43.0 (3)N110—C130—C140—C150178.2 (11)
N1—C3—C4—C5178.67 (19)C130—C140—C150—C1602.6 (15)
C2—C3—C4—C52.6 (3)C140—C150—C160—N1201.2 (16)
C3—C4—C5—C60.4 (3)C120—N120—C160—C1500.3 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O1i0.841.912.729 (2)164
O5—H5···O5i1.20 (1)1.20 (1)2.403 (3)173 (5)
O6—H6···O2ii0.841.712.543 (2)171
N1—H1N···O4iii0.882.353.115 (2)145
N2—H2N···N2iv0.881.912.791 (4)179
N11—H11A···O1ii0.911.892.778 (12)166
N11—H11B···O40.911.802.697 (11)169
N11—H11C···O2v0.911.862.763 (11)172
N110—H11D···O1ii0.911.842.742 (15)168
N110—H11E···O40.911.762.651 (16)165
N110—H11F···O2v0.911.952.850 (14)172
C2—H21···Cl1iv0.952.783.506 (2)134
C4—H41···O4iii0.952.593.379 (3)140
C12—H12···O6iii0.952.493.337 (7)148
C14—H14···O3vi0.952.513.180 (6)128
C120—H120···O3vi0.952.373.189 (8)144
C140—H140···O6iii0.952.283.174 (7)156
C150—H150···N12vii0.952.493.365 (6)153
Symmetry codes: (i) x+2, y, z+1/2; (ii) x, y+1, z; (iii) x+1, y, z+1/2; (iv) x+1, y, z+1; (v) x+1, y+1, z+1/2; (vi) x+2, y+1, z+1/2; (vii) x+1, y+1, z.

Experimental details

(Ia)(Ib)(II)(III)
Crystal data
Chemical formulaC6H10N2O6P2·H2OC6H10N2O6P2C6H9ClN2O6P22C5H6ClN2+·C12H16Cl2N4O12P42
Mr286.12268.10302.54862.20
Crystal system, space groupMonoclinic, P2/nMonoclinic, P21/cTriclinic, P1Monoclinic, P2/c
Temperature (K)294120100100
a, b, c (Å)9.068 (3), 7.513 (2), 16.126 (4)9.172 (3), 14.802 (4), 7.589 (2)7.667 (2), 8.364 (2), 9.283 (3)8.555 (2), 7.585 (2), 24.560 (5)
α, β, γ (°)90, 103.55 (3), 9090, 104.35 (3), 90109.41 (3), 105.31 (3), 92.39 (3)90, 94.32 (3), 90
V3)1068.1 (5)998.2 (5)536.0 (3)1589.2 (6)
Z4422
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.440.450.670.65
Crystal size (mm)0.38 × 0.30 × 0.150.20 × 0.02 × 0.010.47 × 0.18 × 0.060.25 × 0.11 × 0.03
Data collection
DiffractometerKuma KM-4-CCD κ-geometry
diffractometer with Sapphire CCD camera
Oxford Xcalibur PX κ-geometry
diffractometer with Onyx CCD camera
Kuma KM-4-CCD κ-geometry
diffractometer with Sapphire CCD camera
Kuma KM-4-CCD κ-geometry
diffractometer with Sapphire CCD camera
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Analytical
(CrysAlis RED; Oxford Diffraction, 2009)
Multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Analytical
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.880, 1.0000.954, 0.9940.920, 1.0000.895, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
9984, 2907, 2229 17046, 2925, 1307 6017, 2735, 2503 16241, 4513, 3162
Rint0.0340.1680.0160.056
(sin θ/λ)max1)0.7030.7050.7030.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.134, 1.06 0.048, 0.056, 0.82 0.027, 0.075, 1.06 0.041, 0.090, 1.02
No. of reflections2907292527354513
No. of parameters164148157226
No. of restraints40018
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH-atom parameters constrainedH-atom parameters constrainedH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.52, 0.270.46, 0.510.44, 0.640.46, 0.59

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Bruker, 1998) and DIAMOND (Brandenburg, 2005).

Selected geometric parameters (Å, º) for (Ia) top
P1—O11.507 (2)P2—O51.526 (2)
P1—O21.513 (2)P2—O61.536 (2)
P1—O31.548 (2)P2—C11.811 (3)
P1—C11.820 (3)N1—C11.462 (3)
P2—O41.502 (2)N1—C31.360 (4)
O1—P1—O2115.63 (13)O5—P2—O6108.81 (14)
O1—P1—O3108.77 (12)O4—P2—C1108.85 (13)
O2—P1—O3111.45 (11)O5—P2—C1102.22 (14)
O1—P1—C1105.38 (13)O6—P2—C1109.60 (13)
O2—P1—C1107.42 (12)C1—N1—C3125.6 (2)
O3—P1—C1107.75 (12)P1—C1—P2116.41 (14)
O4—P2—O5113.77 (16)P1—C1—N1109.38 (18)
O4—P2—O6113.01 (12)P2—C1—N1109.44 (19)
O1—P1—C1—P2170.95 (14)C3—N1—C1—P299.9 (3)
O5—P2—C1—P1175.87 (17)C1—N1—C3—C2174.8 (3)
C3—N1—C1—P1131.5 (3)
Hydrogen-bond geometry (Å, º) for (Ia) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2i0.821.742.532 (3)162
O5—H5···O1ii0.821.672.424 (3)152
O6—H6···O4i0.821.722.519 (3)165
N1—H1N···O1W0.862.172.938 (4)148
N2—H2N···O2iii0.862.162.911 (4)146
O1W—H1W···O2W0.841.852.689 (6)180
O1W—H2W···O30.842.062.859 (2)160
O2W—H3W···O4iv0.842.303.076 (3)155
O2W—H3W···O5iv0.842.553.116 (3)126
C1—H1···O1v0.982.333.253 (4)156
C6—H61···O5vi0.932.483.306 (4)148
Symmetry codes: (i) x+3/2, y, z+3/2; (ii) x, y+1, z; (iii) x1, y, z; (iv) x, y1, z; (v) x+1, y+1, z+1; (vi) x, y+2, z+1.
Selected geometric parameters (Å, º) for (Ib) top
P1—O11.504 (2)P2—O51.5405 (19)
P1—O21.5100 (18)P2—O61.544 (2)
P1—O31.556 (2)P2—C11.825 (2)
P1—C11.834 (2)N1—C11.460 (3)
P2—O41.4812 (19)N1—C31.366 (3)
O1—P1—O2116.63 (10)O5—P2—O6108.31 (12)
O1—P1—O3107.19 (12)O4—P2—C1112.75 (12)
O2—P1—O3111.83 (11)O5—P2—C1101.85 (11)
O1—P1—C1110.27 (12)O6—P2—C1104.73 (11)
O2—P1—C1104.72 (11)C1—N1—C3124.4 (2)
O3—P1—C1105.70 (12)P1—C1—P2117.34 (14)
O4—P2—O5114.35 (11)P1—C1—N1110.51 (17)
O4—P2—O6113.78 (12)P2—C1—N1107.66 (16)
O2—P1—C1—P2172.42 (14)C3—N1—C1—P2141.8 (2)
O5—P2—C1—P1165.67 (15)C1—N1—C3—C23.1 (4)
C3—N1—C1—P188.9 (3)
Hydrogen-bond geometry (Å, º) for (Ib) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O4i0.841.712.514 (2)159
O5—H5···O2ii0.841.672.479 (2)161
O6—H6···O1iii0.841.762.586 (3)167
N1—H1N···O2iv0.882.353.193 (3)160
N2—H2N···O1v0.881.902.733 (3)157
C2—H21···O5vi0.952.583.220 (3)125
C4—H41···O2iv0.952.593.402 (3)144
C6—H61···O3vii0.952.453.196 (3)136
C6—H61···O4viii0.952.553.346 (4)142
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y, z+1; (iii) x+2, y+1, z+1; (iv) x, y+1/2, z+1/2; (v) x+1, y+1, z; (vi) x+1, y+1, z+1; (vii) x1, y+1/2, z1/2; (viii) x1, y, z1.
Selected geometric parameters (Å, º) for (II) top
P1—O11.5018 (11)P2—O51.5217 (11)
P1—O21.5092 (13)P2—O61.5434 (14)
P1—O31.5617 (13)P2—C11.8288 (16)
P1—C11.8315 (15)N1—C11.4634 (17)
P2—O41.5124 (12)N1—C31.3671 (18)
O1—P1—O2115.63 (7)O5—P2—O6109.96 (7)
O1—P1—O3110.53 (7)O4—P2—C1106.49 (7)
O2—P1—O3112.38 (7)O5—P2—C1108.88 (7)
O1—P1—C1107.64 (7)O6—P2—C1107.06 (7)
O2—P1—C1110.20 (7)C1—N1—C3123.75 (12)
O3—P1—C199.10 (7)P1—C1—P2115.93 (7)
O4—P2—O5110.88 (7)P1—C1—N1110.38 (10)
O4—P2—O6113.35 (7)P2—C1—N1109.95 (10)
O3—P1—C1—P2164.71 (8)C3—N1—C1—P2139.37 (13)
O4—P2—C1—P1178.28 (7)C1—N1—C3—C2174.83 (13)
C3—N1—C1—P191.50 (15)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O4i0.841.802.540 (2)146
O5—H5···O1ii0.841.642.424 (2)153
O6—H6···O2iii0.841.632.461 (2)173
N1—H1N···Cl10.882.573.002 (2)111
N1—H1N···O2iii0.882.273.103 (2)158
N2—H2N···O4iv0.881.812.649 (2)159
C4—H41···O30.952.523.042 (2)115
C5—H51···O1v0.952.543.429 (3)156
C6—H61···O6vi0.952.323.131 (2)143
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+2, z+1; (iii) x+1, y+1, z+1; (iv) x+1, y+1, z+2; (v) x+2, y+2, z+2; (vi) x+1, y, z+1.
Selected geometric parameters (Å, º) for (III) top
P1—O11.5070 (16)P2—O51.5164 (16)
P1—O21.5112 (15)P2—O61.5644 (15)
P1—O31.5754 (16)P2—C11.815 (2)
P1—C11.835 (2)N1—C11.458 (3)
P2—O41.5016 (16)N1—C31.367 (3)
O1—P1—O2115.64 (9)O5—P2—O6108.01 (9)
O1—P1—O3110.31 (9)O4—P2—C1108.95 (9)
O2—P1—O3107.95 (8)O5—P2—C1106.37 (9)
O1—P1—C1112.76 (9)O6—P2—C1102.69 (9)
O2—P1—C1105.56 (9)C1—N1—C3123.81 (18)
O3—P1—C1103.82 (9)P1—C1—P2113.86 (11)
O4—P2—O5116.75 (9)P1—C1—N1114.15 (14)
O4—P2—O6112.96 (9)P2—C1—N1109.54 (13)
O2—P1—C1—P2170.13 (10)C3—N1—C1—P2131.28 (17)
O6—P2—C1—P1155.56 (11)C1—N1—C3—C217.2 (3)
C3—N1—C1—P199.7 (2)
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O1i0.841.912.729 (2)164
O5—H5···O5i1.204 (3)1.204 (3)2.403 (3)173 (5)
O6—H6···O2ii0.841.712.543 (2)171
N1—H1N···O4iii0.882.353.115 (2)145
N2—H2N···N2iv0.881.912.791 (4)179
N11—H11A···O1ii0.911.892.778 (12)166
N11—H11B···O40.911.802.697 (11)169
N11—H11C···O2v0.911.862.763 (11)172
N110—H11D···O1ii0.911.842.742 (15)168
N110—H11E···O40.911.762.651 (16)165
N110—H11F···O2v0.911.952.850 (14)172
C2—H21···Cl1iv0.952.783.506 (2)134
C4—H41···O4iii0.952.593.379 (3)140
C12—H12···O6iii0.952.493.337 (7)148
C14—H14···O3vi0.952.513.180 (6)128
C120—H120···O3vi0.952.373.189 (8)144
C140—H140···O6iii0.952.283.174 (7)156
C150—H150···N12vii0.952.493.365 (6)153
Symmetry codes: (i) x+2, y, z+1/2; (ii) x, y+1, z; (iii) x+1, y, z+1/2; (iv) x+1, y, z+1; (v) x+1, y+1, z+1/2; (vi) x+2, y+1, z+1/2; (vii) x+1, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds